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Abstract

We give a dynamical proof of a result due to J. Brémont in [4]. It con-
cerns the problem of maximizing measures for some given observable ¢: for
a subshift of finite type, and when ¢ only depends on a finite number of co-
ordinates, it was proved in [4] that the unique Equilibrium State associated
to B¢ converges to some measure when (3 goes to +oo. This measure has
maximal entropy among the maximizing measures for ¢. We give here a dy-
namical proof of this result and we improve it. We prove that for any Holder
continuous function (not necessarily locally constant), f, the unique Equilib-
rium State associated to f 4+ B¢ converges to some measure with maximal
f-pressure among the maximizing measures. Moreover we also identify the
limit measure.

AMS 2000 classification: 37A30, 37TA60, 37D20, 37D35.
Keywords : Equilibrium States, Gibbs measures, subshift of finite type, max-
imizing measures.

1 Introduction and statement of results.

1.1 Presentation.

In this article we deal with the so-called ground state in physic. In mathematic
it concerns the problem of maximizing measures for some given observable. Let
(Q, ¢) be some dynamical system, ¢ be some function from 2 to IR and p be some
Equilibrium State associated to ¢. With a physical point of view, the probability
measure ;. means that some equilibrium has been reached for the system. When
the temperature decreases to zero, the equilibrium state changes: at the limit, some
transitions disappear and some independent clusters appear.
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Recently, J. Brémont published a result in [4] on this topic; he proved that when
(2, ) is a semi-infinite mixing subshift of finite type, and when ¢ is locally constant,
and if figs denotes the unique Equilibrium State associated to G¢ (and § € IR),
then the family jigs converges as [ goes to +oo to some limit measure zi. Here the
parameter 3 denotes the inverse of the temperature (this parameter was denoted
by ¢ in [4]). It is known that this limit measure must be a maximizing measure
for ¢, i.e. [ ¢dp is mazimal among the p-invariant probabilities. Moreover fi has
maximal entropy among the maximizing measures.

Brémont’s proof is based on a general statement of Analytic Geometry, hence the
theorem can be seen as a general result for matrices and not only a result in ergodic
theory. However, for a dynamical point of view, the proof does not explain the
phenomenon. The first goal of our article is to give a dynamical proof of Brémont’s
result.

If the function ¢ is constant, then every invariant measure is a maximizing measure.
However, the question becomes more difficult as soon as ¢ is not constant. For
the Uniformly Hyperbolic case, and when ¢ is Holder continuous, it is known that
there exists some invariant compact set IKy such that a probability measure p is a
maximizing measure for ¢ if and only if its support is included in IK, (see [15] and
[7]). Hence, knowing this compact set IK, gives information about the maximizing
measures for ¢. However, the general structure for IK, is not actually known; this
implies that even the general Holder case is difficult. It has been proved (see [10]
and [2]) that for the symbolic case, and when ¢ is locally constant, IK, is a subshift
of finite type. When IK, is irreducible, there exists a unique measure with maximal
entropy. Hence, in that case, the limit measure is well identified. However, it
can happen that IK, is not irreducible, and it has thus more than one measure
with maximal entropy. This corresponds to the independent clusters we mentioned
above. In that case Brémont’s result doesn’t give any information to identify the
limit measure.

In our article we noticeably extend Brémont’s result: for any Holder continuous
function f, we prove that [y, g, converges to some limit measure in IK,. This limit
measure is an Equilibrium State associated to the potential f (which was = 0 in [4])
for the subshift IK4; moreover the limit measure is well identified as some special
barycenter between all the ergodic Equilibrium States associated to f in K.

1.2 Statement of results.

Throughout, (3, 0) will denote an aperiodic subshift of finite type; ¢ will be some
locally constant function from ¥ to IR. We also pick some Hélder continuous function
f (which has not to be locally constant), and we denote by 715 the only Equilibrium
State for X associated to f + B¢. As we said above, IKy is the o-invariant compact
set such that a probability p is maximizing for ¢ if and only if its support is included
in IK4. Then our result is the following:

Theorem. The family of measures [ig converges to some measure Ji in Ky when 3
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goes to +00. Moreover [is is an Equilibrium State in IK, associated to the potential
[ If it ... a9 are the q ergodic Equilibrium States associated to f in IKy, there exist

q real numbers ci,. .., cq in [0, 1] which can be explicitly computed such that
lim fig = il

A more precise statement for the ¢; will be given later (see section 4, Theorem’
page ?7). Indeed, it would have been very long to exactly explain which irreducible
components in K, contribute the the limit measure, and how do they do.
Nevertheless, we have to put the notion of “explicit” in perspective: in our case IK,
is quite simple to determine; thus the irreducible components (see section 2) are not
so difficult to identify, and then, we can also identify the irreducible components
which will have positive limit measure (see section 4 and theorem’ page ??).But the
exact values for the ¢;’s seem difficult to compute, even if we can theoretically prove
their existence.

Our proof is based on the classical tools in Dynamical Systems and Ergodic Theory.
It may appear very technical, but it explains why the 7ig’s converge. The key point
is the induction. For every [ and for every set A with positive Jig-measure we have

1
lg(A) = ——-—
Mﬁ( ) fTAdV57

pg(-NA)

where v is the conditional measure and 74 is the first return time in A.

1i(A)
The idea is just to identify which A can have positive measure at the limit, and to

prove that for these A there is convergence.

Actually, we do not know if induction is really needed for a dynamical proof of the
Theorem. However we think it makes things easier.

On one hand, induction allows us to control the Gibbs constant. The unique Equi-
librium State is also defined as the unique invariant probability measure such that

¢ fis(Cn()) c
¢S SD@-Bs. @ -npy =€

for some constants C' and Ps and for every n and every = (where C,(z) is a n-
cylinder, see section 2). But the constant C' deeply depends on (3, and goes +oo as
B goes to +00. Induction and the method which was introduced in [13] allow us to
get some control on the constant C' when we only consider the induced Dynamical
System.

On the other hand, periodicity plays an important role in the problem of maximizing
measures. Even if the Birkhoff average of the function ¢ can fluctuate along a
periodic orbit, it is fixed at each complete-period. Then induction allows us to
control what happens at each period without controlling what happens “during” a
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period.
We also want to mention that our method has some chances to be extend to the
general case of ¢ Holder-continuous and not locally constant. For this general case,
the first problem would be to know the structure of IK,. However if one can prove
that IKy4 has some nice structure, we believe that our method could be used, as soon
as we can identify which A can have positive measure at the limit.

In [4] it is also proved that the number of maximizing measures is finite when ¢
describes the set of functions which only depend on a fixed number of coordinates.
This fact can also be checked in our proof:

Corollary. There are only finitely many mazximizing measures with maximal f-
pressure when ¢ describes the functions constant on every 1-cylinders'.

Outline of the article. In section 2 we precise some vocabulary and hypotheses we
can make for the functions ¢ and f. In section 3 we recall some ideas from [13]
which where improved in [11] about induction and reduced dynamical systems. In
section 4 we explain how IK, looks, and explain which irreducible components have
necessarily null limit measure. In section 5 we define two parameters, the transition
cost and the isolation rate, which determine which components have positive limit
measure. In section 6 we finish to prove the Theorem and we prove the corollary on
the finiteness.

2 Notations, hypotheses and spectral decomposi-
tion for subshifts.

2.1 Notations.

The set of vertices of the defining graph of (X,0) is {1,..., N} with N > 2. We
denote by A = (a;;) the N x N-transition (aperiodic) matrix associated to
namely points in ¥ are sequences = {x, ez such that for every n, z,, belongs to
{1,...,N} and

Agpzny, = 1.

e In X, the cylinder [iy, ..., ix,] will denote the set of points x € X such that
xj; = 1; (for every k < j < k+n). Such a cylinder will also be called a word (of
length n + 1) or equivalently a (k, k + n)-cylinder. If x is in 3, the set C),(x) will
denote the cylinder [i, ..., %,—1] such that z; = 7; (for every 0 < j <n —1. It will
also be called the n- cylinder containing x.

e In ¥ we define the map [ ; | in the usual way: let x = (x,,) and y = (y,) be two
points in ¥ such that xy = yo. Then, [z;y] denotes the point (z,) such that z, = x,
for every n > 0 and z, =y, for every n < 0.

o Let x = [xg,...,7p] and y = [yo,...,¥y,] be two finite words such that z, = yp.

Isee section 2 for the definition of the 1-cylinder
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Then [y, z] denotes the finite word [z, ..., Zp, y1,...,y,]. This operation is called
the concatenation of the two words z and y. Notice that our concatenation is not
the usual one. As we are in a subshift (and not in the full-shift) some transitions are
forbidden. That is why we ask for the last letter of the word x to be the first one
of the word y ; when we concatenate these two words, this “double” letter appears
only on time.

e We introduce a new operation on words, called a looping. Let x = [y, ..., 2]
and y = [yo, . .., y,| be two finite words such that z; = yo = y,. Then we introduce

the word y in z in the following way :

[Io, ey Li—1,Y0y - - - ,yq,$i+1, Ce ,ZEp].

For any 1-cylinder [i], and for any = in [i| we set W"(x) et [[i]; ] and W*(x) =

[z; [i]]. These sets are respectively called the unstable local leaf and the stable local
leaf of x. Namely points in the unstable local leaf of x have the same symbols
backward, and points in the stable local leaf have the same symbols forward.

For any Holder continuous function 6 on X, Py will denote the topological pres-
sure of the Dynamical System (X, o) associated to the potential . It will also be
called the #-pressure of 3. In the same way if u is some o-invariant probability the
term h, (o) + [ 6 dp will be called the f-pressure of the measure p. Thus, the unique
Equilibrium State in ¥ associated to the potential # is also the unique o-invariant
probability with maximal f-pressure. For simplicity, Ps and # € IR will denote

Prips-

2.2 Hypotheses for ¢

The function ¢ is locally constant in the compact set ¥, which means that it only
depends on a finite number of coordinates. Hence, there exists some integers p and
p_ such that ¢ is constant on every (p_, p_ + p)-cylinders. However, up to the fact
that we use a higher-block representation of ¥ (see [14]), every function which only
depends on a finite number of coordinates in the Symbolic Space can be viewed as
a function which only depends on one coordinate. Therefore, we will assume that ¢
is constant on every 1-cylinders. Notice that we can make this assumption without
lost of generality:.

Moreover if C' is some real number, a o-invariant measure y is a maximizing measure
for ¢ if and only if it is a maximizing measure for the function ¢ + C'. Therefore,
we also can assume that ¢ is a positive function on X.

From now on till the end of the paper, ¢ is a positive function which is
constant on every l-cylinder.

2.3 Hypothesis for f

We assume that f does not depend on the past. Namely we assume that if z =
(:)iem € ¥ and y = (y;)iem € S satisfy x; = y; for all i > 0, then f(z) = f(y).



3. Inductions and local equilibrium states. 6

This assumption for f is free. Indeed for any Holder continuous function, there
exists some cohomologous function with this property. Equilibrium state for one
function is also an equilibrium state for the other. In the following (section 3) some
function w will be introduced (for the general case). We let the reader check (see [3]
for instance) that the function w is strongly related to the cohomologous function
associated to f.However in the 2 last sections, there are long strong and complicated
estimations and computations. We thus prefer to make things as simple as possible.
This is the reason of this hypothesis.

2.4 Spectral decomposition.

We recall some properties of the spectral decomposition for symbolic dynamic. These
properties where proved in [1], and are given as exercises in [12] on page 55. This
spectral decomposition will be used in section 4.

Let B be a n X n transition matrix, 7.e. a matrix whose entries are only 0 or 1.
We assume that B has at least one 1 in each row and in each column. We denote
by Xp the set of bi-infinite sequences y = (y;) such that for every i by, ..., = 1,
and by o the shift on ¥5. A symbol i is said to be essential if there exists some
periodic point in [i]; two essential symbols i and j are said to be equivalent if there
exists in X g some word which has two times the symbol 7 and one time between
the two ¢ the symbol j (these symbols are not necessary consecutive). Any point in
the w-limit set of (X p,0) contains only essential symbols, and the set of essential
symbols splits into disjoint subsets of mutually equivalent symbols. Therefore, the
w-limit set splits in disjoint o-invariant subsets, 3¢ (k = 1,..., K for some integer
K), and in each subset there exists some dense positive semiorbit. Moreover, each
¥¢ can be decomposed in closed disjoint M (k) subsets (for some integer M (k))

L]:: %,1UUEL];)7M(k),

such that o(X¢,) = X ;.| (with the convention that M (k) +1 = 1) and the restric-
tion of M) to each 3% ; 1s topologically mixing.

The sets XY are called the irreducible components of . The topological pressure
of X p associated to some potential 6 is thus the maximal of all the #-pressures of
the irreducible components of ¥ 5. Any invariant measure such that its f-pressure is
equal to the maximal of the f-pressures of the components is an Equilibrium States
for ¥ 5. Moreover there exists only one ergodic (=extremal) Equilibrium State in
each irreducible component with maximal #-pressure.

3 Inductions and local equilibrium states.

In this section, we briefly recall some relevant results from [13] and [11] that we are
going to use. Then we start to define and to study some good reduced systems. The
main idea is the following : if A is a subset in X, using the first return time map,
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A can be seen as a section in a flow. Then, scaling the return time by some real
parameter S we define a family of flows. For each such a flow we construct some
Equilibrium State; this gives a one-parameter family of measures. Among these
measures, one (and only one) gives the global Equilibrium State. Notice that in the
following the result and the tools are important for the proof of the Theorem.

3.1 Reduced Dynamical Systems.

We pick some 1-cylinders [i1], .. . [i;] and in each cylinder we pick some unstable local
leaf, F; := [[i;]; x;] for some point z; in [i;]. We set F':= U,;F; and A «f Ufi;]. The
map [.;z;] is a projection from [;] onto F; that we denote by mr. We denote by ¢
the first return map in A by iterations of o, and gr is the map 7 o g. This defines
a new dynamical System (F, gr). Let 6 be some Hoélder continuous function on .
For x in Fj and for any 2’ in [i;] such that mp(2') = x, we set

+o0
w(z,z') = 29 oc®(z) —fod(al) .
k=0

The map 6 is Holder continuous, and so, by contraction on the stable local leaves,
the previous series converges. For x in F' we set w(x) = w(gr(x),g(x)), and we
denote by r4(z) its first return time. Then we set

ra(z)—1

O(z)= Y  fook(z)+w().

This function is defined on a set of full measure with respect to any invariant mea-
sure. The inverses branches of gz define the family of so-called n-sets: for z in F
we set

Ko(z) < o7 3@ W (g (2)),

where 7% () denotes the n'*-return time into A. For a given point in F, the n-sets
are well-defined except for the points in ' which do not return infinitely many times
in A. But these points will have null-measure for all the measures we are going to
consider. Hence, every n-set is a compact set and the collection of the n-sets defines
a partition of F' (up to the points which come back less than n times), which refines
the partition in (n — 1)-sets. We define the set of preimages of some point x in F
by g}, denoted by Pre,(z).

Remark 1. An important property is that all the points in the same F} have the
same ‘number” of preimages. Namely, if # and y are in the same Fj every n-set
which contains some z’; such that g(z’) Yoo oA (2') = z, must also contain
some y' such that g2 (y') = 7p 0 oA (y) = y (and 7% (z') = r%(y)).
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We define the Ruelle-Perron-Frobenius operator for any x

Ls(T)(x)= Y OWTAWST(y)

yEPrey(z)

where S is a real parameter and 7T is a continuous function from F to IR. When A
is a single 1-cylinder it is proved in [13] that there exists some critical value for S,
such that

Ls(Ip)(x) < 400 for every S > S, and for every x € F'. (1)

S, is of course defined as the smallest real number with this property. Always in
that case, the Markov property and the hyperbolic structure give the next important
lemma:

Lemma 3.1. There exists a positive constant Cy which does not depend on S such
that for all x,y € F, S > S. and integer n

1

o L5(Ir)(2) < L5(1r)(y) < CoLs(Ir)(w).
0

However, the Holder properties of 6 prove that in the general case (when A is a
union of several cylinders) a similar result than lemma 3.1 holds but for each F}.

Lemma 3.2. There exists a positive constant Cy which does not depend on S such
that for every F; for every x,y € Fj, and for every S > S. and integer n

1

& C5(10)(x) < L3(1) (1) < CoLy(1r) @)
0

The independence on S of the constants Cp in lemma (3.1) and (3.2) results from
remark 1: for z and y in the same F; (or simply in ' when A is a single 1-cylinder)
we associate to each preimage of x a unique preimage of y in the same 1-set. Two
such preimages have the same return time r4,which “remove” the dependence on S.
Then, we simply use the Holder continuity of 6 to get the constant Cp.

There also exists some critical values S.(j) such that for every j, Ls(1r) con-
verges for every points in Fj if and only if it converges for one point in F;. Moreover,
in [11] and when A is a single cylinder, an explicit value is given for S, . For the
general case it is also proved that all the S.(j) are equal, which allows us to talk
about S, even in the general case:
Let B be the matrix A where the rows and the lines associated to the cylinders which
compose A have been removed. Then S, is the topological pressure associated to
the potential 6 for the subshift of finite type (Xp,0). An important point is that
this topological pressure is strictly smaller than the topological pressure of (X, o)
(see [6] or [9]).

Then we can produce local Equilibrium States:
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Proposition 3.3. There exist some measure ms on F', some positive real number
As and some positive continuous function Hg on F such that

1. ,Cg(ms) = )\Smg;

def

9 Ag =2 / Lo(Tp) dmy:

3. Ls(Hs) = As.Hsg.

See [13] for the proof. We recall that Hg is defined by the formula:

e 1 1
Hs lim = 3 T L8(1r).

n—-+oo N,
0<k<n ~S

Remark 2. When A is a single 1-cylinder, lemma 3.1 and the constructions of mg
and Hg prove that for every x in the chosen unstable leaf F’

e”% < Hg(x) < e, (2)

for some positive real constant Cy which does only depend on 6. Moreover there
exists some Cj which does not depend on S such that for every S, ||Hs||ma < Cj,
where ||Hg||ps denotes the Hélder norm for the Holder coefficient of 6.

def . . .
Let us set dvs = Hgdmg. The measure vg is gp-invariant. Moreover we have

Lemma 3.4. The measure vs is ergodic. Moreover, \g is a simple eigenvalue for

Ls.

Proof. Let us pick some F; C F. The mixing properties of ¢ proves that F; must
have positive vs-measure: there exists at least one F; with positive vg-measure and
there exists at least one set K (i, j) C F; whose image by some iterate of g is exactly
F;. Now the measure vg is conformal in the sense that

H -n —n n(.—n
s(K(0.3) = | %ﬁemem (@) @) -nlogAs gy )
J

where n is the integer such that g (K (i, 7)) = F; (bijectively).
The measure vg is gp-invariant, thus almost every point in F; returns infinitely many

times into F; by iteration of gr. Let us denote by G; this first return map from F;
into F;. The conditional measure qu = st('(r;,g) is G;-invariant and conformal in the
same sense than (3) (with F; = F; and g = G;). Therefore, the density theorem
proves that v} is exact, hence mixing and ergodic.

Now, any gp-invariant Borel set with positive vg-measure has positive vs-measure;
its intersection with Fj is G'-invariant, and have thus full v4-measure. Hence, any

gr-invariant Borel set with positive vg-measure has full vg-measure.
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Let us assume that H is some Holder continuous function on F such that Ls(H) =
Ag.H. Let Fj be fixed, and let Lg; be the Ruelle-Perron-Frobenius operator for Fj
(namely with F' := F}). Then, writing Ls(H)(x) = AgH(x) for some z in F}, we
can use the global equality Ls(H) = H in a recursive way to transform the sum
Ls(H)(z) in a sum which only uses n-sets in F;. Hence we get

Ls;(H)(z) = \sH(2),

for some new Ruelle-Perron-Frobenius operator on Fj;. But such an operator has a
simple dominating eigenvalue (due to the mixing property of the associated Gibbs
measure). This finally proves that Ag is a simple eigenvalue for Lg. m

The measure vg is the unique Equilibrium State for (F, gr) associated to O(-) —
S.r4(+). The natural extension of vg, denoted by v is the unique Equilibrium State
associated to the potential

ra(z)—1

D 0od*(x) - Sra(x)

for the Dynamical System (A, g). Moreover, there exists some positive constant C
(which can depend on S) such that for every z in A and for every integer n,

o R Ealme @) _ o, "
- esrz(z)(e)(x)_rz(m)‘s—n10g>\S -

By definition of the natural extension, the numerator of the middle term in (4) is
simply vg (K, (mr(x))).

Lemma 3.5. The constant Cy does not depend on S as soon as A is a single 1-
cylinder (and of course for a given ).

Proof. Let K,(x) be any n-set (where z is a point in F'). Then by definition we
have g%(K,(x)) = F. Hence we get:

vs(Kn(x)) = /]IKn(x) dvs
= /]IKn(x)Hgdms.
K,
Then (2) gives e < _vs(Bal@)) < e%. Now Li(mg) = Ag.myg gives

1
/ Iy, (@) dms = I / L(Ix, () dms.

But every y in F' admits a unique preimage by gf in K, (x). Notice that w is upper
bounded by some function which only depends on 6. Moreover, for every y in F,

i S (2)(0) (Y ) Fw(y')—r% () S
LTk, @) (y) = 74 ) () (W) +w(y)—r (z)

Y

where 3 is the preimage of y by g%. Thus C; depends only on 6. O
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It is proved in [13] that for every S > S, Ey,[ra] < 4oo. This is a simple
consequence of lemma 3.2 (with n = 1) and of the fact that \g = [ Lg(1Ir) dvs.
Therefore the measure v can be opened out: there exists a o-invariant and ergodic
probability measure pg on €2 such that

NS(' ﬂA) o
s vg(.).

Let Ps denote the #-pressure of this measure pg. Then we have

Ps = hy(f) + / Odus = S + ps(A) log(As): (5)

A very important point for the following, is that for S = Py, A¢ = 1 and pug is the
unique Equilibrium State in 3 associated to 6.

3.2 Some other properties for the operators Lg.

As we said before, it is proved in [11] that S. is the topological pressure of the
System with the hole A, that is, the dynamical system in ¥ of all points which do
never belong to A. It is also proved that for S = S., Ls(1I) diverges (for every x).
Moreover we have

Lemma 3.6. The map ¢ : S — log(\g) is strictly convex and analytic on a complex
neighborhood of |Se, +00[). Moreover there exists some p such that for every S in the
complex neighborhood where 1 is analytic, Lg has p simple dominating eigenvalues.
We also have

W(S) _

dm e

Proof. Analyticity and strict convexity are proved in [11]. First, Ag is a simple
eigenvalue. Copying the proof of proposition 4.11 in [5] we prove that the operator

Ls has p(S) simple eigenvalues. These eigenvalues are equal to )\S.ei%;, where
k=0,....,p(S) — 1. Hence, Lg is a quasi compact operator with simple isolated
dominating eigenvalues; analyticity (in some complex neighborhood of |S., +00|) is
thus obtained via the perturbation Theorem from [8] (see Th IIIL.8).

Now, the continuity of the map S — p(S) on the connected set |S., +0o[ means that
it must be constant.

Strict convexity result from the uniqueness of the analytic continuation of analytic
function and from the fact that Ag diverges as S goes to S..

/
It remains to prove the last point, lim LAG)
28 (S)

exists [ > 0 and some decreasing sequence (z,) which converges to S. such that
Y (x,) > —l(x,). Let a be such that 0 < a — S, < ;. Then we must have for
S, <z, <a,

= —o00. Let us assume that there
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Letting n — 400 in this inequality, we arrive to some contradiction. O

Lemma 3.7. The map v satisfies ¥'(S) = —m.

See [11] for a proof. Another useful fact is proved in [11]: for the integer p which
was defined in lemma 3.6 we have

Ls(Ip)™(x) = Ag"Ip(z) + Ag"V" (1p)(2), (6)

where W is some operator with spectral radius strictly smaller than 1. This fact will
be used later. Finally, we give some consequence for the map S — Ag:

Lemma 3.8. The map S — g is a decreasing bijection from ]S., +o00[ onto |0, +00].

3.3 Applications and consequences for good 6.

Let P be any real number. We use the previous work with 6 := f — P¢. An

important point here is that ¢ is constant on every 1-cylinders, and so the constant

which appeared and which where only depending on # are now only depending on

f. Moreover the map w(z,2') = >, f o o¥(z) — f o o¥(2’) is null because f does
ra(z)—1

not depend on the future. We again set O(z) = Z foo®(x). The new definition

k=0
of the operator Lg is:

Lsp(T)(x) = Z 69(y)*r}4(y)SfP.STA<y)(¢)(y)T(y)'

yEPrey(x)

Hence, as soon as Lg p(1r) converges, proposition 3.3 is still valid, except that we
have measures mg p and vg p, an eigenvalue A\g p and a function Hg p. In the same
way, lemma 3.4 and equality (6) also hold, except that we always have to add P in
subscript to indicate the dependence in P.

Proposition 3.9. There exist two convexr and decreasing functions S — P(S) and
S +— P(S) such that

o For every S and P, Lsp(1r) converges if and only if P > P(S).
e For every S, the Agp(s) = 1.
e The map S +— P(S) is real-analytic.

Proof. We first see that for a given P, the operator Lg p is well defined (i.e. Lgp(1f)
converges) for sufficiently large S in IR. Namely Lgp is well defined as soon as
S > Pr_ps(X4), where ¥4 is the set of points in ¥ which never enter in A under
the action of o, and Pr_py(24) is the topological pressure of the Dynamical System
(X4, 0) associated to the potential f — P¢. It is clear that P +— Pr_py(X4) is de-
creasing, and it is also well known that such a map is convex. Now, P, is exactly the
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inverse of the map P+ Pr_ps(X4) = Sc(P). Therefore, P, is a decreasing convex
map.

We now assume that for a given P, S is always bigger than P;_p,(X4) or equiva-
lently, that for a given S, P is always bigger than P(.S).

Now, we let the reader check that the map P — Lgp is analytic; we can again
use the perturbation theorem (see again [8]) to conclude that the map P — Agp is
analytic in some complex neighborhood of its real interval of definition. Moreover,
for a given S, we have

lim )\57]3 =0 and lim /\S,P = +00.
P—+4oc0 P—P(9)

Now, the revisited (6) proves that

(910g)\g7p__ 1
oP [ ¢dvsp

Thus the map P +— Agp is decreasing and continuous; there exists some unique
value P = P(S) such that Agps) = 1. Moreover the implicit mapping theorem
for holomorphic functions in several complex variables (see [17]) proves that the
function S +— P(S) is analytic.
Let us consider some fixed S. By definition of P(S), we have P > P(S) if and only if
As,p < 1. Let us pick some S" # S and « €]0, 1[. For convenience we set P = P(S)
and P’ = P(S"). We want to prove that P(aS+ (1 —a)S") < aP+ (1 —«)P’, which
amounts to prove that

AaS+(1-a)s",aP+(1-a)p’ < 1. (7)

Let « be in F' and n be some integer. Let us set S” = aS + (1 —«a)S’ and P" =
aP + (1 — «)P'. Then we have:

Lsn pu(Ip)(x) = Z S (@) W) =S (5)=P" S, ) ()W)

yEPren(x)
Z o5n (©)(y)—aSri (y)—aPSmm (4)(6)(y) e(l—a)sn (©)(y)—(1=a) "1 (y) = (1=a) P'Syn () (¢) (y)

yEPren ()
« 11—«
< Z esn(G)(y)—Srﬁ(y)—Psrz(y)(¢)(y) Z eSn(G))(y)—S’rf}, (¥)=P" Sy (4 (9)(y)
yEPrey(x) yEPren(z)

where the last inequality follows from Holder Inequality. The Birkhoff sum S, (©)
denotes the Birkhoff sum for the map gr. Notice that Sy» () is the Birkhoff sum
for the map 0. Now exchanging n by np, and using equality (6) revisited, we can
deduce

log Asvpv < 0,
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which means that (7) holds.
The fact that the function S +— P(S) is decreasing follows from

dlog As. p
dP(S —Za —1
dé ) - _8log§57p = f¢d"’ (8)
P Hs
where ji5 is the opened-out o-invariant measure associated to vg p(s). O

We can now use all our machinery to recognize the measures fig:

Proposition 3.10. The only Equilibrium State associated to f+ B¢, lig, is also the
opened-out measure jig when 3 = —P(S5).

Proof. We first recall that any open set have positive Gibbs measure (for every
potential). Let 1 be some o-invariant measure. We assume p(A) > 0. Then we can

p(-NA)
f(A)

define the conditional measure v := . This measure is g-invariant. For any

£ we have

+ [ anes [odu=na) (hxg) t [sanavs [ 5.0 du) .

For t = —P(5), the previous equality gives

(0)-5+ [ £du=P(S) [ odu = n(a ( @+ [ Sm<f>—P(S)STA@)—S.udu).

Now, vg p(s) is the only Equilibrium State for (F, gr) associated to S,, (f)—=P(S)S,,(¢)—
ra.S. This proves that the term in the right side of the previous equality is lower
than p(A)log Ag ps) = 0, with equality if and only if 7p(v) = vg pes).- ]

4 Components without limit measure

In this section we first briefly recall the structure of the compact set IK,. Then we
precise the asymptotic behavior for S +— P(S) and S +— P(S). Hence we prove
that every accumulation point for i3 must be one Equilibrium State in IK,. Finally,
we give a necessarily condition on the irreducible components to have positive limit
measure.

4.1 Structure for IK,.
We first introduce the notion of minimal orbit:

Definition 4.1. A periodic point x in X will is said to be minimal (or equivalently
to have minimal period) if no 1-cylinder contains more than one element of the orbit

of .
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n—1
1 )
From [16], p.57, we have sup / ¢dp = sup lim sup — Z ¢ oo’ (x). We denote by
® =0

€Y n——+oo M =

p(¢) this supremum. Because the periodic points are dense in €2, we also have

o) = sup LS g0 0i(a).

€Y and neN*, on(z)=a T =0

Now, each periodic orbit can be decomposed in “loops” of minimal orbits. Moreover,
¢ is constant on each l-cylinder, thus p(¢) is also equal to the maximum of the
Birkhoff averages on the set of minimal periodic orbits. Let us pick all the minimal
periodic orbits x with period n = n(z) such that

Lo@) + ...+ do0™ () = (o).

n

Each such a z gives a finite word z (of length n+1). This finite set of words is
called a generating set for the compact set IK4 that we are going to define. Now,
the set ]K; is the set of bi-infinite words that we can construct in a recursive way
by concatenation and looping of all the words of the generating set; the set IK, is
the closure of IKj,.

We can decompose IK, in irreducible components, as it is explained in section 2.

Lemma 4.2. Let i be any symbol such that [i)| NIy # 0. Then i is essential.
Moreover IKy equals its w-limit set.

Proof. There exists some point z in K4 N [é]. Thus, by construction of Ky, there
exists some periodic point whose associated word contains 7. Hence ¢ is essential.
Again by construction of IK,, periodic points are dense in IK,. The w-limit set of
IK, is a compact set which contains the periodic points. O

Remark 3. An important consequence is that two different irreducible components
in IK, cannot share any symbol. For the same reason, this also holds for two different
components in the same transitive component. For the rest of the proof, we will say
that a symbol appears in IK,(!) if the 1-cylinder [i] has an non-empty intersection
with the irreducible component IK, (1) of K.

4.2 Asymptotic behavior for S +— P(S) and S — B(5).

As it is done in the previous section, we pick some A = U[i;] and define F; and
Ls p and so on, as above. We notice that the function ¢ is upper bounded by some
constant x, which means that the derivative S +— P’(S) is increasing and upper
bounded by _71 Then it converges to some limit —7 < 0 as S goes to +oc.

Lemma 4.3. There ezists some decreasing function x such that P(S) = —1S+x(95)
and lim @ = 0.
S—t+00 S
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Proof. The only difficult point is the second one. As the function x decreases, it is
upper bounded and we have

lim sup x(5)

<0.
S—+o00 S

Now, for any € > 0, there exists some increasing function 0 defined for sufficiently
large S such that P(S) = —(7 4+ ¢)S + 6(S) which proves that for every ¢ > 0 and
for every sufficiently large S we have x(S5) > —eS + K, for some constant K. This
yields
Ve >0, lim infM > —¢.
S—+00 S

O

One of the difficulties now, is to identify 7. This is the goal of the next proposi-
tion:

1
Proposition 4.4. With the previous definitions, — = p(¢).
T

1 ~

Proof. The definition of 7 and (8) give — = Slim /qﬁdus < p(9).
T —+00

Let y € F; be in Fiz(g}%). Then we have

mg,ps)(F5) = / I, dms p(s)

= / LY pis) (L) dms ps) = Y /F L p(s) (L) dms p(s)
j J

S () () (¥)S <T—n7'?‘(y)y—X(S)>
Hence (9) proves that the function S +— e * ’ SRS g upper
7,.7'1
bounded, which forces 7 to be lower than #EZ))(Q) for every n-periodic point y
i (y

(remember that ¢ is positive) in F'. Now the mixing property yields

. ri(y) _
- {Srmy)(czﬁ)(y)} ~ ple)
O

Lemma 4.5. There exist a real number T > 7 and some decreasing function X such
e~ . X(S
that P,(S) = —75 + x(S) and SEI:‘,I}OO % =0.

> o CoeOrmw (N Y) = (rily) = 7.8m ) (0)(y))S — Srg(w(cb)(y)-X(S)mS(E)_

(9)
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Proof. The existence of 7 and X also follows from the convexity of the map ¢ —
Prips(X4). The inequality 7 > 7 follows from the fact that S +— P(S) is above
S — B(S). O

The value of 7 deeply depends on A. We will see later, that for “good” A, it will
be equal to 7.

4.3 Support of the accumulation points for jis.

The goal of this subsection is to prove that any accumulation point for the family ji5
must some Equilibrium State associated to f in IK,. Let A := [i] be some 1-cylinder
such that the symbol ¢ does not appear in IK,. Then, relation (4) (p. 10) holds for
some constant C7 which does not depend on S (see lemma 3.5).

Lemma 4.6. With the previous notations, tli+m us([i]) = 0.

Proof. Let us assume that there exists some accumulation point for the family (ji3)
such that the result does not hold. Let us denote by fi this accumulation point.
Then fi-almost every point in [¢] returns infinitely many times in [i] by the iteration
of 0. Let = be such a point; we also assume that z is a density point in [i]. Let
F :=[[i], z]. Then (4) (with # = f— P(S)¢) holds for every S and proposition (3.10)
proves that for some subfamily of S (going to +oc) the numerator of the term in
urp (Ki(2)))
p(A)
map is continuous). However, no periodic orbit which belongs to [i] can be in IKy.
Therefore —(74(x) — 75, ,(2)(¢))S — S, (2)(¢)Xx(S) goes to —oo as S goes to 400,
which yield some contradiction. O]

the middle converges to (every 1-set is a cylinder, hence its indicator

Let us now assume that A := [i] is such that ¢ appears in IK; but in some irre-
ducible component with small f-pressure (i.e. a component such that the topological
pressure associated to f is strictly smaller than the topological pressure associated
to f in IK,). Let IK4(1) be some irreducible component in IK, with maximal f-
pressure and let ' be the unique Equilibrium State in IK,(1) associated to f. We
denote by P this topological pressure. Then IK,(1) belongs to the hole ¥4, and
for every [, the topological pressure of >4 associated to f + [F¢ is larger than

hap + / fdp' + é =P+ é Then, using notations from the proof of proposition
T T
3.9, we must have

—P
Se(P) > —+ P.
But S — P,(5) is the inverse map of P +— S.(P), which proves that 7 < 7.

Remark 4. Notice that X and x converge when S goes to +o0o (as decreasing and
bounded from below functions) and their limits are bigger than 7 x P.
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Lemma 4.7. Let [i] be some 1-cylinder such that [i] NI, # 0 and the irreducible
component of IK, which intersects [i] has a topological pressure associated to f
strictly lower than P. Then, tlil;n us([i]) = 0.

Proof. Let IK,([7]) be the component of Ky which intersects with [i]. Then, we
have just seen limg x(S) > 7.P. Let us pick some accumulation point u for ug such
that p([i]) > 0. The measure u can be seen as the opened-out measure of some
accumulation point for vg. Therefore, letting S go to 400 in the revisited equation
(4) we get for every x in IK, N [i],

_ Spn (p z)—r%(x). P’ . S (p z)—r%(x). P’ .
e~ a@DETROT ([i]) < p(Cryay () < €T DOTADT 5]y - (10)
where P’ = % x limg x(5S). Notice that this implies that the projection onto F' of
def p(.0li)

conditional measure pj; = TR is exact for gp, thus mixing and thus ergodic. Re-

member that j is the opened-out measure of the natural extension of yyi]. Therefore
4 is also ergodic.

For every x in IK4 N [i] we have

1 IR N (o) — | < G los(uld)
rg(w)Srmz)(f)(fr) rz(x)lg(ﬂ(cm(x)( ) - P < )

But for pra.e z, 1S,(f)(x) converges to [ fdu, and —=log u(Cy(z)) converges to
h,. Now p([i]) is positive, hence the previous convergencies hold for p-a.e. x in
[i]. Therefore p admits P’ for f-pressure. Now, P’ is larger than the topological
pressure of IK, thus strictly larger than the topological pressure in IK,([7]). This
yields to a contradiction. O]

Remark 5. The same calculation proves that every accumulation point for pg is
some barycenter of the ergodic Equilibriums States of IK, associated to f.

Indeed, only the irreducible components with maximal f-pressure can have pos-
itive limit measure. But restricted to each such an irreducible component, the
conditional limit measure must have a f-pressure larger than P. Hence it must be
the unique Equilibrium State associated to f. We summarize it in the following
way:

Proposition 4.8. Any accumulation point for pg is the barycenter of the ergodic
Equilibrium States associated to f. Moreover, for every [i] such that I, N [i] # )
and the irreducible component in I, which intersects [i] has mazimal f-pressure,
we have

lign x(S) =T1P,

where x s defined as above.
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5 Components with possible limit measure

We have just proved that only the irreducible components in 1K, with maximal f-
pressure can have positive limit measure (for any accumulation point of ig). We
now want to precise how much they will count in the limit measure. The goal of
this section is to introduce the important parameter, called the isolation rate of the
components which will determine which component have positive limit measure. If
there is only one irreducible component in IK, with maximal f-pressure, then fig
converges to the unique Equilibrium State of IKy when 3 goes to +-00. In that case,
the Theorem is proved (and is obvious). Therefore, and for the rest of the proof, we
denote by IK,(1),...,IK,(¢) the ¢ > 1 irreducible components in IK,; with maximal
f-pressure.

We also recall that P denotes the f-pressure of IKy.

5.1 The function y and the transition costs

We have proved that for every 1-cylinder [i] which intersects some irreducible compo-
nent with maximal f-pressure, the limit of the function x (which a priori depends
on [¢]) is independent of the choice of the cylinder. In fact we have some better
result:

Lemma 5.1. The function x is independent of the choice of IK4(l) and of the choice
of the 1-cylinder which intersects IK4(1).

Proof. Pick two different 1-cylinders which intersect two different irreducible com-
ponents of IK; with maximal f-pressure. Pick two unstable leaves F; and F}, set
A= [i|U]j] and F := F; U Fj. Pick some real number [3; then we can identify jig
to some fig p(s) for some S (and for the map induced in F). We denote by vg the
associated equilibrium State for (F, gr). The main idea in the proof is to see the first
return map (and projection onto F;) as the first return map in [i] by iterations of o
or by iterations of gr. In the first case the measure [ig gives a measure associated
to the operator Lg, [ for some real S;. In the second case, Fj is a subset of I with

positive vg-measure. Copying the method that we recalled in section 3, but with
gr instead of o, the conditional measure v = M

- vs(F)
measure associated to the Transfer Operator Ly, ; but for another function ¢ (the
parameter U; (which depends on S) plays the same role than S when we defined the
local Ruelle-Perron-Frobenius operator in section 3). Namely this operator is

can be found as some

EU- [l]<T>(y) — Z 657«7;<x)(f)(x)—ri(w)ﬂ—sri(x)(¢)($)P(S)—7‘i,F(I)Ui(5)7‘<x>’

zepre(y)

where U; is chosen such that this operator has 1 for spectral radius, and pre(y)
denote the set of preimages of y by the first return in F; by iterations of grp. As
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any iteration of gr equals mr composed with some iteration of o, the set pre(y) is
exactly the set of preimages of y by the map gg, (first return in [¢] by iterations of
o and projection onto Fj). In the previous formula, 7;(.) denotes the first return
time in [7] by iteration of o, and 7; p(.) denotes the first return time map in F; by
iterations of gp.

Each adjoint operator admits a unique eigenvector; these two eigenvectors are
measures on F; which are both equivalent to the gp-invariant measure Vg. Notice
that the associated Radon-Nikodym derivative is the eigenvector of each operator.
Therefore we obtain for almost every point x,

e~ Ti(8):5=5,(2) (£) @) P(S)=ri, p ()Ui(S) - o=7i(®)-Si= Sy, () (0) () Pi(5:) 7 (11)

where < means that the equality holds up to some multiplicative constant. Notice
that due to the form of the functions we consider, the multiplicative constant does
no depend on S or U; (see lemma 3.5). More precisely (11) holds for every n-set for
the map gr, and for every n.

Now, by proposition 3.10 we must have

—F(8;) =7.8 = x(5) = 8 = 1.5 — xi(5;) = —=P(9). (12)

As [i] and [j] are in different irreducible components, any minimal-periodic orbit
which joins [i] and [j] has a transition cost greater than . We pick any such
periodic orbit. We can make a looping with this loop to glue on [j] any minimal
periodic orbit in the irreducible component IK4([j]) which contains [j]. We can
repeat this looping as many times as wanted, it will not add any transition cost, by
definition (and construction) of IK,. For such an orbit, there is an affine relation
between r; p and 7;:

when r; p = n + 2, with n any integer, r; = n.L + R, when R is the length of the
minimal loop between [i] and [j] we are considering and L is the length of the loop
in IK4([j]). Then (11) and (12) yield to

VneN, (n+2)0 = "R (s - (s (13)

T

Now, remember that U; is chosen such that the associated transfer Operator has
1 for spectral radius. Then, copying proposition 3.9, the theorem of the implicit
function gives for the derivative of the map S + U;:

dU; __fFi ry dv _fFi STi(‘Zﬁ)dVg'%ES*S)

- = 0.
ds - sz‘ ri,FdVS

This means that the function U; is constant. Letting n goes to +oo in (13) and
then letting S go to 400, we also have S; — 400 and thus proposition 4.8 yields to
U; = 0. If [i] and [j] meet the same irreducible component we choose any [i'] which
intersects some other irreducible component. This finishes the proof. O
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It makes now sense to talk about x(.S) without specifying which A is used.

Definition 5.2. Let us pick some n-periodic orbit {z,...c" ' (z)}, in 3. The peri-
odic orbit will also be called the loop x. We denote by p, the term n — 7.5,(¢)(x).
We call it the transition cost of the loop.

We denote by L the set of minimal loops which are not contained in any Ky(1).

Remark 6. If {z,...0" (z)} is loop in L, its Birkhoff average is strictly smaller
than p(¢). Then p, is positive. We denote by « the minimal transition cost among
all the loops in L.

Now remember that every periodic orbit can be decomposed in minimal loops
and that ¢ is constant on every 1-cylinder. Thus, the transition cost for any periodic
orbit can simply be defined as the sum of the transition cost for the minimal loops
which compose the considered periodic orbit. With this definition, any periodic
orbit in IK, has a transition cost equal to 0.

If y is a periodic point which does not belong to any IKy4({), it defines some loop
in L. For the rest of the proof we will blur the point y and the associated loop in L.

Definition 5.3. Let {y,..., 0" (y)} be a loop in L. We denote by p,(y) the number
of 1 <k <n—1 such that Cy[o*(y)] intersects IKs(m), with m # 1, and Cy[o* 1 (y)]
does not intersect with I s(m). We denote by a;(y) the term

e P

(X(5) = 7Py’

where py is the transition cost of the loop

5.2 The isolation rate

Let us pick some 1-cylinder [¢] which intersects some IK4(l). Let us set A := [i]. In
A we pick some F of unstable leaf. We denote by ENTM the Ruelle-Perron-Frobenius
operator on F' defined as in section 3 but where we only consider preimages y whose
associated (r4(y)+1)-cylinder is a word which appears in IK4(1); T is the parameter
which was designed by S in section 3. By definition of the Ruelle-Perron-Frobenius
operator we have

ES(T) (:C) = Z 69(1/)—7’/1(y)-S—P(S)-SrA(y)(¢)(y)7’(y) +
yEPrey(z)Nmp (IKy (1))
Z ee(y)—TA(y)ﬁ—P(S)STA(y)(¢)(y)7(y)'

yePrei(x)\mr(Ky (1))

Remember that for any y in Pre;(z)Nmp(IK4(1)), the word of length 74 (y) associated
to y is a word in IK4(l). Then for such a y we have S,,)(¢)(y) = ra(y)p(o).
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Exchanging —P(S) by its value, the first term in the right side of the previous
equality is exactly

~ e
E@M(T)(x) = Z OW=raW)- 2 (),

yePre1(z)Nmr(Ky (1))

We denote by Wg;)(7)(x) the second term. Then we have

L5(T)(x) = Lsr 1y (T)() + Vs (T)(2). (14)

T

We can now state one important result:

Proposition 5.4. There exists some power series Gi(S) with non-negative coeffi-
cients in all the ec}pl(y)al(y), where C' is a constant which depends only on f, such
that

1Wsa (DI < IT11Gi(S), (15)

and each term in G;(S) contains at least one a;(y), where y is a minimal loops which
intersects [i].

Corollary 5.5. If for all y a;(y) — 0 as S goes to +0o, then Lg converges to Zpﬁ]
and the eigenvector Hg converges to the unique eigenvector (up to some multiplica-
tive constant) associated to 1 for Lp ;.

Notice that the operators ETM act on the continuous functions defined on the
whole unstable leaf F' because it uses the preimages. Thus it makes sense to talk
about the limit of the functions Hg as an eigenvector for the operator Lp ;.

Proof. (of proposition 5.4) We obviously have |7 (z)| < ||T|| = ||CT||.1¢(z). There-
fore we only want to give some upper bound for g ;)(1x)(z). Moreover, the Holder
regularity of f and the fact that ¢ is constant on every 1-cylinders yields to

e W y(Tp)|| < Vs p(Tp)(z) < e[| Wgp(Tp)]],

for some constant C'y which does only depend on f. Therefore we only have to
compute Vg )(Ip)(x) for a given x in F.
Computing Vg (1p)(x), we have to estimate and to sum expressions

W) =a(y)-S=P(5)-Sr 4 (4)(#)(y)

where y is a typical point in Pre;(z) \ mp(IK4(l)). Let us consider some typical y as
above and such that 7;(y) = n. The n-cylinder associated to y gives a word w which
is the same than some n-periodic point in [i]. Moreover this word can be decomposed
in minimal loops. Among these loops, some are in L and some are associated to
points in IKy. We associated to y its basic loop, which is the loop obtained when
we remove all the subloops in w which are ”in” irreducible components. This basic
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loop is composed by several minimal loops in L. Among them, only one contains
the letter ¢ because we are studying the first return in [i]. The strategy to get (15)
is to count all the contributions in function on their basic loop.

Let z be some preimage of z, and let y be its basic loop. The word associated to
z is the word associated to y where we eventually glue via a looping some turns in
some irreducible components IK4(m) (with m # [). Due to the Hélder regularity of
f and to the fat that ¢ is constant on every 1-cylinder, all the Birkhoff sums along
the piece of orbits where 0°(z) and o*(y) are in the same 1 cylinder are equal, up to
the constant Cy. Let yi,...,y be the minimal loops which compose y; then when
we decompose the Birkhoff sums for 2z in parts close to y, the constant C'y appears
at most p;(y1) + ... + pi(y:) times.

e Let us first assume, for simplicity, that y is a minimal loop and p;(y) = 1.
For simplicity we also assume that the loop y does not meet IK,(!) in another 1-
cylinder than [i] (see Figure 1) and intersects IK,(m).

Figure 1: counting orbits

The contribution of the basic loop is

eSna+nr (£ @) =py-S=x(5)-Sng+nr (#)(y)

The loop starts from F', needs a time n, to reach IK,(m) and then goes back to F,
needing a time n,. Notice that x(S) goes to 7P as S goes to +o0; then, the speed
of convergence for the contribution of the loop is essentially given by e ?+%. Now,
we can glue on {y,...,0"(y),c™ (y),..., o™ =1 (y)} some loop in Ky4(m) via
the looping principle. This loop can be as long as possible. Therefore, we will have
loops with contributions

e5na (N)(2)+8k(f)oo"a (2)+5n, (oo™ at*(2)—py.S—x(5) Sk (#) (0" (2))—X(S) -Sna-tnr (6) (y)

To get this contribution, remember that ¢ is constant on every 1-cylinder. The

term €5 (D) equals €5 up to eFf: in the same way eSnr (Hoome TE(2) equals

na : k
S (1o W) up to Y. Remember that the Birkhoff sum Si(0"(2)) equals —
-

because it concerns the piece of orbit in IK,(m) (we only consider complete loops).

Then, summing over all the k, the global contribution of all the loops whose
basic loop is y, and which meet only on time IK,(m) (but turn a long time into it)
is

x(S)

+o0
K(y).e_py.ZZk(m)e_k T,
k=0

where K (y) < €267 eSnatnr (NW)=7P-Snatn(9)) and Z,(m) denotes the sum Z

o™ (y)=y, y€Ky(m)
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Now, Z,(m) equals e"”, here again up to some multiplicative constant (this is a
standard computation for uniformly hyperbolic dynamical systems). Up to the fact
that we change C}, we can assume that this constant is e*“s. For S large, x(9) is
close to 7.P and thus

+§Z (m)e’”M _r
il x(S) =P

Therefore, the contribution of the orbits we are considering is upper bounded by

1

K.&3C1 eSnatnr (D) =P Snatnr (D) W) o=py ___~
x(S)—T1P

1
for some universal constant K. Notice that e™”* ——————— exactly is a;(y).
X(5) — 1P

Notice also that the contribution of all the orbits whose basic loop is y is also

lower bounded by K’.e™3¢7 ¢Snatnr (DW=7P-Snatnr ()W) p=pu ___~
X(S) = TP

e Let us now still assume that y is a minimal loop but p;(y) > 2.
The loop can meet several others irreducible components or one other component
but several times. We can again copy the previous case, except that we can now
turn as long as wanted in the several others IK,(m) (or several series in the same
IK;(m)). Now, the basic loop is minimal, then it has a maximal length. Therefore,
we can copy the previous case, and adapt it. This times, exactly p;(y) power series
> Z(m).e #X)/7 will appear. This give a global contribution for this loop upper

bounded by

K.eW)Cs Sri(NW)=TP-5r(8)0) g (),

for some universal constant K.

Notice that the definition of p;(y) implies that even if the loop y meets consec-
utively two times the same IK,(m), no loop in this IK4(m) contains this word (of
length 2). Hence we can differentiate loops starting from the first cylinder and loops
starting from the second cylinder.

Notice again that the contribution is lower bounded by some K”.e =3Pt W)Cs Sri (W) =7P-5r;(9) (W) a;(y)

e Let us now still assume that y is a minimal loop, but it meets IK,(I) at least
two times. For such a basic loop, we could glue via the looping principle subloops
which turns a very long time in IK, (1) without meeting [¢]. The computation of the
global contribution of such loops is on the same kind than the second case; however
the difference is that one term Zj (1) will only concern k-periodic orbits in IK4(7)\ [z].
This quantity equals ewl, up to some constant. But P’ < P and then

1
1 — e x&)/T+P

admits a finite limit as S goes to +o00. Therefore the added turns in IK,(l) (but
without meeting [i]) only introduce some new multiplicative constant but does not
add new a;(y).
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e If y is a minimal loop with p;(y) = 0 and it does not meet IKy4(l) several
times, there is no way to add extra-terms to this loops without changing the global
transition cost.

e recursivity:

If y is not a minimal loop, we can do such a work on all the minimal loops which
compose y. All the contributions will multiply themselves together, which produces

the power series in all the e“/?®q(y) where we set C} := 3Cy. This is a power
series with non-negative terms. Moreover for each minimal loop which intersects [i],
y, a;(y) appears in the sum with valuation 1. O

Remark 7. It is not clear that the power series G;(S) converges. Nevertheless, we
always get lower bounds, exchanging C'; with —Cs and taking lower bound for the
1

comparison between [ oxS)/5P and NGEE2 instead of upper bound. As

Ug i is upper bounded, it proves that this new power series converges. Thus it
has a positive radius of convergence. Therefore the power series G(S) also have a
positive radius of convergence. Now an important point will be to prove that all
the a;(y) go to 0 as S goes to +00, which will prove the convergence for the power
series G;(.5) for large enough S.

5.2.1 The main tool.

We can now introduce the main tool to determine which components have positive
limit measure. The first step is to get some lower and upper bound for ¥g;(r;) in
the same way than (15).

Proposition 5.6. Let us set A et ‘/ ) dvs — / L (s
F F

1]

. Then, there

(T[i] HS) dl/S

exist two power series such that

1 Ty . 1 " .
Z Qi (X(S) _ T_p)qz(ﬁ) H(az(y)) <AL ﬁ;ﬂ bz (X(S) — T.P)ql(ﬁ) H( z(y)) ,

AEIN#L yeLl yeL
(16)

where i, is the coordinate of T associated to the loop y in L, q;(7) = 1 if there exists
some y such that i, > 1 and pi(y) > 1, and ¢ (7)) = 0 otherwise. Moreover, the az
and the bz are non-negative, and az = 0 if and only if bz = 0.

Proof. The first return time is constant on every 1 sets, and mg is L§-invariant.
Therefore we get

/TidVS:/Ti-HSde:/£S,P(S)(TiHS)de,
F F F

where Lg(r;Hg) has the same expression than for any continuous function.
Then we use (14) to get some estimate like (15): the term A in (16) equals

/‘I’s,[z'] (riHg) dmg which is positive as a positive sum. We thus use (2) (p.9) to
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give some upper and lower bound for Hg. Therefore it amounts on giving estimates
for [ Wg(r;) dmg. Copying the proof of (15), we decompose the sum on the sum
of the contributions of the basic loops. To get an upper bound for A, it is thus
sufficient to sum upper bounds for the terms in [ Vg (r;) dmg or equivalently for
just one Wg;(r;)(z) (up to some e“f). To get lower bound for A it is sufficient to

give lower bounds for the terms in / \Ilgj[i](ﬁ) dmg. But notice that is a sum of

positive terms, and thus 0 is an obvious lower bound for each term.
e Let us assume that the basic loop y is minimal and satisfies p;(y) = 1. We
have to compute the sum over k of

/(na+k+nr)65na(f)(z)—i—Sk(f)oana(z)+SnT(f)oana+k(z)—py-S—X(S)Sk(¢)(ana(z))—x(s)-snaJrnr(¢)(y) st'(l‘),

where z is the preimage of the considered point z whose piece of orbits admits y
as basic loop and turns for a time k in IK4(m). The arguments are the same as
before, except that we have to care about the coefficient n, + k + n,. in front of the
exponential.

However y is a minimal loop, and so n, + n, is upper bounded by N. Therefore,
when we sum over k, the global contribution C(y) of

/(na+nr)63na(f)(Z)JrSk(f)OU”“(Z)+Snr(f)00”a+’“(2)py~Sx(S)Sk(¢>)(0”“(2))X(S)-Sna+nr(¢)(y) dvs(z),

is upper bounded by K.e3¢f.q;(y), as it was proved above. It is also lower bounded
by K'e=3¢ .a;(y).
Now, summing over k the global contribution Cy(y) of

/ reSna (G840 (1 4-8np (110074 H-(2) =y S—X(S)51(8) 07 () ~X(S)-Snatne (D) (),

has order e *v-* Z kZp(k).e X)/T  Here "order” means equal up to some multi-

k
__aly)
(x(8) = 7.P)
As x(S) — 7. P goes to zero as S goes to +00, Ca(y)/C1(y) goes to +o00 as S goes to
+o00. This proves that the global contribution of all the preimages which have y as
_aly)
(X(8) = 7P)

e Let us assume that y is a minimal loop but p;(y) > 2. Let IK,(m;) 1 <t <r
be the r visited irreducible components (ordered by the order of visits). Then the
global contribution is proportional to

epysz > (k:+l Hthkt (S

k? 0k1+ +k5r

+20;

plicative constant e Hence, the global contribution has order

basic loop has order
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where Z,, (k) is the number of k;-periodic points in IK4(m¢) and [(y) is the length
of the basic loop y. Now, the sum

DD SIS | ERTR

k 0 k'1+ +k'7"

| t1 1t 1 d th
1S proportiona O s an e sum
prop (X(S) — 7. PPl T

Z > ly)Hth(kae*’“X(S)/’

k 0 kl-‘r +kr

1
(x(5) = 7P

these loops is ”"proportional” to

is proportional to This proves that the global contribution of all

a(y)
(x(5) = 7.P)

e Let us assume that y is a minimal loop but it meets IK4({) several times. Then
the situation is the same than the previous case, except that when m; = [, we have

Zi(ky) =< "7

As P < P, if pj(y) = 0 (the loop does not meet any other IK,(m)), then the global
contribution is proportional to a;(y). If p;(y) > 0, the sum without the excursions
in IK,(7) \ [¢] is smaller than the sum with the excursion. However, the convergence
of the series e*(P'=P) proves that the sum with the excursions is upper bounded

by multiplied by the sum without the excursions (in IK,(1) \ [i]), where

1 — P —P)d
d is(the numbzer of possible excursions. Therefore in the global sum, we can remove
the terms with the excursions, in the lower bound and in the upper bound for A.

e If y is a minimal loop with p;(y) = 0 and which does not meet IKy4(/) several
times, then we upper bound its length by N and lower bound it by 1.

e Recursivity. Let y be any basic loop which is not a minimal loop. Then it
can be decomposed in finitely many minimal loops. As in the proof of (15) the
individual contributions multiply themselves to produce the power series. However,

x(S)—1.P

it is important to notice that the extra term appears if and only if we

are computing a term

+oo
Y k] Zm (ke

k=0 ki+..+ko=k ¢
with m; # [, where the IK,(m;) are the visited irreducible components by the basic

loop. This proves that the extra term appears if and only if 77, > 1 for

x(S)—1.P
some y € L satisfying p;(y) >= 1.
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The last point to check is that a3 = 0 if and only if b3 = 0. But notice that b;
has been chosen by taking some upper bound for the contributions of the minimal
loops which compose the "loop” 7i. The term a; is obtained by taking lower bounds
for the minimal loops which compose 7i. However, for minimal loops, the different
cases has been studied, and the coefficient for the lower bound in a;(y) equals 0 if
and only if the coefficient for the upper bounded equals 0. This finishes the proof
of the proposition. n

Remark 8. We have a; = 0 as soon as n, > 2 for any basic (and minimal) loop y
which intersects [i]. Indeed, we are considering the first return in [é]!

Lemma 5.7. There exists some constant C = Cy which does not depend on S such
that if > ai [T|X,|™ converges, then . bz [] (e7|X,|)™ also converges.

Proof. This simply follows from the definition of a; and bz: there exists some con-
stant which only depend on f such that

—lnlc %
e < —-<1
_ bﬁ — 9
where [7i] = > ii,. O
. : : 1
The terms of the two power series in (16) which contains some —————— are
x(S)—1.P

on the form

e85 e85\
(X(S) — 7. P) (X(S) - 7‘7’) ’
where v is an integer and [ is the transition cost of the basic loop. Namely + is the
number of visited irreducible components different from IK,({), plus eventually 1 if
this number is positive. Notice that the other terms are on the form =% for some
positive § and comes from loops which does not meet any IK,(m) with m # 1. As S
goes to +00 the contribution of these terms goes to 0.

Definition 5.8. We keep the previous notations. The number Z(l) L int é 15 well

defined. It is called the isolation rate of the irreducible component IK,(1).

We can now explain which irreducible components with maximal f-pressure can
have positive limit measure:

Proposition 5.9. Only irreducible components with maximal isolation rate can have
positive limit measure.

Proof. Let us assume that IK,;(1) has not a maximal isolation rate; let us assume that
for some subsequence of S (or equivalently of ) IK,(1) has positive limit measure.
For simplicity we will write S — 400 instead of taking the limit along the good
subsequence. We use the notations from above.
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e We claim that the term A in (16) is upper bounded (as S — +00), thus the
right side term is upper bounded.

Indeed, the first term in A is 1/p4([¢]) which converges to some positive limit.
The function Hg is bounded above and below from 0 by some constant which does
not depend on S (see 2). Moreover the critical "7;” for the operator Ly, is P, the
f-pressure of IK4(1) \ [7]. We still have P’ < P, and x(5) decrease to 7.P. Therefore,

for every x in F, Lys) m(r[i]) is upper bounded by

T

Crp A(r ) (x *
e EP,[Z]( i)(z) < pt([4])

As mg is a probability measure, we get the result.
e The fact that the term A in (16) is upper bounded implies that the lower bound
in (16) is also upper bounded. But this lower bound is a countable sum of term on

the form
e—I(l).S—e.S n
(X(S)—T-P) ’

where ¢ is non-negative. By definition of Z (1), for every positive €, a term

67(1'(1)+€’).S

x(S)—1.P
appears (to some power) at least one time in the sum, with some 0 < ¢’ < ¢. This

—T(1).8—.8 \ "
term is thus upper bound. Therefore, every term on the form | ——— | with
xX(S)—1.P

€ >0 goes to 0 as S goes to +o00.

e Let us now assume that IK,(2) has a maximal isolation rate. Let us pick some
1-cylinder [j] which intersects IK,;(2); let F be some unstable leaf in [j]. Then we
can write a revisited (16) with a middle term

Al = ‘/fﬁj} dvg — /fzxm g (i Hs ) dvs

]

We also have terms a; and b instead of az and b;. But x(S) does not depend
~1(2).8
e

xX(S)—1.P

uniformly go to zero as S goes to +00. Hence lemma 5.7

on the 1-cylinder and then

(az(y))™
(x(S) = 7.P)2W
implies that the power series with the 07, goes to 0. Thus, the term A’ goes to 0.

goes to 0 as S — +o00. Therefore, all the

terms

~ 1

Now corollary 5.5 proves that the term / L s [j](r[j]H s.j) dvg converges to m
FoT 12([7

Doing the same for every [j] which intersects IK,;(2), we get that IK,(1) has positive

limit measure and that the limit measure for IK4(2) equals 1. Therefore, the total

limit measure is strictly larger than 1. This yields to a contradiction. O
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6 End of the proofs

6.1 Existence of the limit.

We can now finish the proof of the Theorem. We recall that proposition 5.9 proves
that if there is only one irreducible component in IK4 with maximal f-pressure
and maxima isolation rate, then jiz converges to the unique Equilibrium State of
this irreducible component K4y when 3 goes to +0o0. In that case, the Theorem
is proved (and is obvious). Therefore, and for the rest of the proof, we denote by
IK4(1),...,IK4(q) the ¢ > 1 irreducible components in IK,; with maximal f-pressure
and with maximal isolation rate.

We already know any accumulation point p of 115 satisfies
p=> i,
J

where 17 is the unique equilibrium state associated to f in IK4(j). As any 1-cylinder
meets at most only one irreducible component, the previous equality gives

p([i]) = & (la)),

for any 1-cylinder [¢] which intersects IKy (7). But p7([i]) is well-determined. Thus, it

is sufficient to prove that for any 1-cylinder ug([i]) converges to prove the Theorem.
Let Z be the maximal isolation rate. Our goal is to give an expression of any

accumulation point of ug([¢]) in function of the associated accumulation point for
oI5

X(S —7.P)

Proposition 6.1. Let Z be the mazimal isolation rate. Let [i| and | be such that
the irreducible component IK4(1) intersects [i] and has mazimal isolation rate. Then
there exists some Ly € IRY U {400} and some non-negative increasing function

Fy : [0,+00[— R" U {+o0} satisfying Fi(x) = +oo as soon as v > L; (when it
~1.8
makes sense) and F(0) = 0, such that for every accumulation point for ——————,
X(S) =P
L, we have
/\l .
. . p([2])
lim 1)) = —— )
el = Ao
where Fi(L) belongs to RT U {400} and where limg means following the family of S
which gives the accumulation point L.

Before proving this proposition, we explain how we can deduce the Theorem
from this result. We must have for every /3

S raallil) = 1,
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because 1143 is a probability measure. Keeping only the irreducible components which
have maximal f-pressure and maximal isolation rate we must thus have

= D 1"

The fact that each function is increasing and non-negative implies that there are
only finitely many possible values for L such that (17) effectively holds. But L is
~1.8

e
an accumulation point for the continuous function S — —————; therefore the
X(S) — 7P

set of accumulation points for this function is a non-empty interval which contains
only finitely many points. It is thus reduced to a single point; this proves that
7.8

e
x(S)—1P
possible accumulation point. Hence, it converges.

The rest of this subsection is devoted to the proof of proposition 6.1. The goal
is to obtain some relation like (16) but with an exact equality. Let us assume that
IK,(1) has a maximal isolation rate; let us pick some [i] which intersects IK4(1). We
want to compute fF Ls.ps)(Ler;.Hg) dmg for each 1-set C'in F, where F' is some
fixed unstable leaf in [i]. Notice that this first return time is constant on this 1-set.
Hence we associate to each 1-set a unique piece of orbit (ie its word). As above,
some of these words are “in” IK,(1), some others are pieces of orbits which leave [i]
reach some other irreducible component (and may be several) and then return in
[i]. Orbits in IK4(1) produce the second term in the left side term in (16). Hence
we only consider pieces of orbits on the second form.

converges to the unique possible L, and then that pg([i]) has a unique

6.1.1 Counting loops

The main point is to compute which orbits produce the Z. If a, b, ¢, d, e are positive

: d+ax . : o @
real numbers, the function © — ————— increases (in x) if — > ——, decreases
e+xc+1 c e+1

(in z) if 2 1 and is constant if & = 1 This also holds if e = 0. Therefore
c e c e

three possibilities can occur:

1.7 = n 1,With e > 0, where there exists some basic and minimal loop ¥y
- () =
starting from [i| which satisfies a;(y) = ——————.
(x(5) = 7.P)°
2. 17 = 2, with ¢ > 0, where there exists some minimal loop y with empty
c
—a.S

(&

(x(S) =7 P)*

intersection with [i| which satisfies a;(y) =
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d a
1T where there exist two minimal loops y and z which satisfy
e c

e—d.S e—a.S

a)(y) = &) P and a;(z) = G =P the loop y intersects [i] but

the loop z have an empty intersection with [i] and both loops intersects the
same l-cylinder. In that case e can equal 0.

Notice that the three cases can occur in the same time. Moreover the last possibility
can occur in a more complicated way, where the loop y meets several loops 72" or

even the same loop several times. However the principle is the following :

1. the term e %% due to the considered loop appears exactly one time in the
(Z+4e).5

power series and all the other terms are on the form e~ >,
2. The term e~Z due to the considered loop never appears, but the more a basic
loop uses z, the more the associated contribution is closed to e+,

3. The term e~%*% due to the considered loop appear infinitely many often in the
power series.

6.1.2 Proof in the first case

Namely we are considering that Z is only produced by basic and minimal loops y

o—d-S
such that 7 =

eil,with e > 0 and a;(y) = NS =P The fact that e is
positive means that the loop y meets some IK,(l) with [ # 1.

eLet us first consider a loop y which meets only one other irreducible component
IK,;(2), and only one time. The contribution of al the loops with basic loop y is the

sum over k of

/ (g ki, )eSma N EFSED00a(@) S (oo™ () =py Sk ME=X(S)Suactnr (W) [ ¢ () dug(€),

where n, is the time that the point y needs to reach IK,;(2) and n, is the time
that 0" (y) needs to reach [i] and z is the associated preimage of £. Here the loop
is exactly y,...,0" ™ 1(y). Let us denote by [j] the 1-cylinder which contains
o (y). Let F; be any unstable leaf in [j]. The map o, := 7, 0 0™ is a bijection
from the projection on F of the (0, n,)-cylinder which contains y onto F;. We denote
by F(2) the projection on F of the (0,n,)-cylinder which contains y. Notice that
this cylinder is a disjoint union of 1-sets. In the same way, there is a bijection o,
from the projection on Fj of the (0, n,)-cylinder which contains o™ (y) onto F.
Therefore any loop z whose basic loop is y and which have an excursion of length k
in IK,(2) is a point which belongs to F(2) and such that o™ *k(2) = g,.(2') where
2 =7 (0" (2)).
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Figure 2: computing orbits

However, the estimations done in the proof of proposition 5.6 proves that the
global contribution of the terms in

/(na + nr)esna(f)(z)+Sk(f)O<7a(z)+SnrOUna-HC(Z)*Py~S*k@*X(S)Sna+nr(d’)(y)HS(g) dvs(€),

is negligible in front of the contribution due to terms in

/ e Sna ()81 (1000 )+, 00™H(2) =y Sk X x($)Smatns ()W) F (£ g (£).

We now use the fact that Ep7[j] has a spectral gap. Considering the semi-infinite
subshift of finite type IK4(2)* instead of the bi-infinite subshift IK,(2) means that we
choose some unstable leaf in each 1-cylinder which intersects IK4(2) and we consider
the projection onto these unstable leaves. We can do it such that we choose Fj in
[7]. Then, we denote by 27’)72 the Ruelle-Perron-Frobenius associated to f in the
semi-infinite subshift of finite type IK,(2)". This operator has a unique dominating
eigenvalue, which is e”. It has thus a spectral gap, which ensures the exponential
convergence of the iterations of this operator. Hence, lemma 1.12 in [3] applied to
I} yields that there exists some constant 0 < A(2) < P such that for every £ in Fj
and for every continuous function 7 on Fj

BT - [ Tare? ule)| < 1Tl| e (18)
where 72 is equivalent to the projection onto IK4(2)" of the measure p? (namely
is the eigenvector for L3, , associated to P) and Hy is the normalized eigenvector for
Lps. Notice that the Markov property means that (18) effectively holds for every
¢ in F}, even if the point does not belong to IK4(2)™ ; as it was said after corollary
5.5, it make sense to talk about Hj in the whole F; and not only in F; N 1K, (2)".

Applying (18) with 7 := eSna(Nooa’ and multiplying by 5 DO=vSHg 0 g.()),
we get

Z eSnatin (NE=pu-S o (¢) — (/ eSna (D)oo’ dﬁz) kP =pu-S gSnr (Do (O o o, (§)Hs(§)| <
||€sna(f)og;1 | ‘Ooem(z)—py.sesm(f)oa:l(é)Hs(g), (19)

where £ is any point in F', and the sum is over the points z such that their basic
loop is y and rp(2) = ng + k +n, and gp(z) = £. Therefore (19) yields to
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k Z ¢Snattnr (D) =py- Sk =Snainr D) WXS) o (£)—

(/ Sna (oo ! d?fz) o~ k(X —7>)—py.s—sna+m(¢>)(y)x(S)€Sm(f)ocn«‘l(&)[_]2 oo H(&)Hg(¢)| <

|5 (No0a " =Suatnr @V DXE)|| e kA =005 [ (£)eSnr (Do (©) (90

Remember that x(S) — 7P when S goes to +oo, and that A(2) < P. Thus,
integrating (20) and summing over k we get

Z(k + ng + 1) /eSna(f)(z)+sk(f)00a(z)+snr(f)Oo'na+k(Z)_,0y-S_kX(TS)_X(S)S’na+nr(¢)(y)HS(€) dvg(€) =

~(X2-P)=py.

(/ gSna(f)ooe” dﬂa) e 5natnr (B)WX(S) (/ eSnr (oo O B o o, (€)Hs(€) dl/s) ° )
(1-— e_(XT‘P)P
+o(9),
(21)

with lim, . 0o(S) = 0. Notice that

e~ Cnatnr) o=py-8o=Snatnr (D) WIX(S) < 0(9) < eCnatnr) o=py-So=Snatnr (@)WIX(S)
where C' does only depend on f. This can be easily checked by using upper or lower
bounds for f.

Notice that feS”a(f)o"‘;l d? does not depend on S, that e Snatnr(@)WX(S) con-
verges when S goes to +00. Remember that vg is a probability measure on F' and
that Hg is upper bounded by some constant which does not depend on S. Now we
have

~(X8_P)—p,.8 20—Py-S

(1— e CE P2 ~ X(S) —7P) +0(9),

when S goes to +00. Therefore the contribution of all the loops whose basic loop is

aly) + 0p(S), with

y exactly equals A, (S >X(S)——T73

A () = T2 (/ oSna(fooa! dez) e~ Sna+nr (9))x(S) (/ eSnr(f)oafl(é)H2 oo L (&) Hs(€) dl/s) :

and 0g(S) ~ a1(y). Also remember thatLy)— i ’
0 ~ai\y). x(S—T.P)_ O .

e If the loop y meets several other irreducible component, the same kind of
computation can be made. We let the reader check that if IKs(l1), ..., K,(l;) are
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the ordered visited irreducible components, then the global contribution of all the

W) L (9), with

loops whose basic loop is y equals Ay(S )X(S)——TP

Ay(S) — )+l (/ 65n0,1(f)°‘707,% dgh) e 5 (@) (Y)x(S) H </ 1 ooy ki (€ Hk o0y k+1 dﬁl’““)

(/ eI i@ By o o7l Hi (€) dus) +0(S),
(22)

where n is the length of the loop y, n k41 is the time the loop y needs to go from
Ky (1) to IKy(lk+1), with the convention ly = 1 = l;41, Hj, are functions which do
not depend on S and ooy, ;41 is the bijection from the subset in unstable leaf in the
1-cylinder which intersects IK,(l)) to unstable leaf in the 1-cylinder which intersects
IK;(l41) as before o, and o,: namely, if t =1 ¢ = 0, and s;5 = 0".

This claim is proved by induction. It was proved for ¢ = 1 above; the case
t = 2 is obtained in the same way, but we have to multiply the formula (18) by
ez (f)(')f”y‘SHgoaLg(.), to apply the operator and then to multiply by e%2.s())=Pv-5 Freo
023(.), and so on for the other t. The term 0,(S) has order e“a+mr) q;(y). Here
again C' does only depend on f. The term o0;(S) is thus much smaller than the first
one for large enough S. More precisely we have

Remark 9. Notice that when compute the sum over k, we have to compute the
nm(y) 1

sum over all the k1 +...+kp, () = k. This produces some (CIOEE Then computing

S nPrW)enP=x(5)/7) we produce some p;(y)! ; both terms are balanced.

In the previous calculation we have computed the dominating terms. Relation
(16) proves that all the contribution of all the other terms goes to zero when S goes
to +o0o. Moreover, each dominating term is associated to some ”small” perturba-
tion: there are the correcting terms "0, (S)” and ”01(S)”. However each dominating
term due to a loop y only introduces finitely many perturbations, which have order

a1(y)
x(S)—1.P

Therefore, if only basic and minimal loops produce the term Z, then the term Z
only appears finitely many times in the global sum. There are only finitely many
dominating terms in the global contribution, thus finitely many perturbations, which
are effectively much smaller than the dominating terms (remember that y(S) —
7.P). In that case we have

(a1(y))"® (compared to which is the order of the dominating term).

efI.S

/FTM dVS — /FE@»[Z](T[Z}HS) dVS = F1’5<X(S)——T73)(1 + O(S)), (23)
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where Fi g(.) is a polynomial with positive coefficient, and o(S) goes to 0 when S goes
to +00. Namely, the coefficients of Fj g(.) are the terms A,(S), where y describes
the (finite) set of minimal basic loops which produce the Z. Remember that Hg is
uniformly bounded (see (2)). This proves that all the coefficient are positive (the
null coefficient have no contribution !). Now, we re considering families of S such
that limg p15([7]) exists. As all the Hg are equicontinuous (see remark 2)), we always
can assume that the Hg converge for some subfamily as Holder continuous functions.
This proves that the coefficients of Fj ¢ converge to positive coefficients. Hence we
set L1 := 400

~1.8
Let L < +o00 be any accumulation point for L For every basic loop,
x(S)—1.P
y such that ¢;(y) = 1 we have
W oI5 p1(y)+1
0< < (x(8) = .P)2W ([ ————— ,
< i) < ((8) - P10 (o)

which yields to limga;(y) = 0. This also holds for every basic and minimal loop
y such that q;(y) = 0 because in that case a;(y) = e *»%. Therefore corollary 5.5
holds, which yield to the fact that Hg converge to ” H,;”. This proves that the limit
F} does not depend on L. It is a polynomial with positive coefficient. Moreover the
limit does not depend on [i] but only on IK,(1), because for any [i'] which intersects
IK,;(1), there exists loop in IK4(1) which joins [¢'] and [¢]. Therefore, for any [i'] and
for any loop y for [i], we can construct one loop ¥’ for [i'] by doing the looping of
the loop y with the loop which joins [¢/] and [i].

Now, again corollary 5.5 yields to the fact that the second term in the left side

1
pt(la)

1
B @~ T

of (23) converges to Hence (23) is equivalent to

-7.8
X(S)—7.P
Notice that the polynomial F} has a positive valuation, because for every basic

loop y introduces a contribution proportional to LP*®+!1 This proves proposition
6.1 in that case.

where L is any (finite) accumulation point for

6.1.3 Proof in the second or the third case

We are now considering a basic loop y which can be decomposed in two parts. Some
loop which intersects [i], namely 3’ and some minimal loop z which intersects the
irreducible component which produces the Z (see fig. 3). The loop y is obtained by
concatenating several times the loop z, and doing a looping with this result and the
loop 3'. We denote by yy the loop obtained when we concatenate N times the loop
z.
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Figure 3: Second case

e Let us first assuming that the minimal loop 3" does not meet any IK, (). Let
us denote by [i'] the 1-cylinder where we do the looping with z and y’. We fix some
integer N and compute all the contributions due to the loop yy.

We can copy (and adapt) what has been done before. Let us fix ky,..., kyx
integers such that k1 +...4+ky = k. We claim that the sum over all the possibilities

of /eS”(f)(g)JrB'S"(d’)@)”SHS(C)dVS(C), where ¢ is a preimage of (, is

eSO amn(s) / Py(k1)(Q) - Pr(kn)(QHs(C)dus(Q)e™ v e, (24)

where P;(k;)(C) is a polynomial in k; of degree pi(z) — 1, > k; = k, p is the length
of ¥/, t is the length of 2z, and ¢ is the associated preimage of the point (. The claim
is proved by using (18) by induction ; in the loop z (to obtain a relation closed to
(22) it produces P;(k;)(¢). More precisely the polynomial P;(k;) equals

a(pl(z), ki)eki(,P7X(S)/T)Ai + ﬂ(g)eki(P*X(S)/T) + Qi((),

where a(p1(2), k;) is the number of possibilities such that ¢; +...t,,(.) = k; (where
the t; are integers). The term A; is the product of integrals like in (22), but for the
considered loop. Notice that except for P; and Py, all the A; are equal. For A; there
is the first part of the orbit, namely the loop % till the 1-cylinder [i'] and for Py
there is the last part of the loop ¢ from [i'] back to [i]. The terms T;(¢) and Q;({)
are the correcting terms, which can be upper and lower bounded by using (18). This
bounds do not depend on ¢. A bound for the term |T;| is obtained by using (18),
and when we take at least one time in all the possibilities some dominating term
in e"? (still with ¢; + ...%,,;) = k;). It is thus a polynomial of degree p;(z) — 2
in k;. Except for 1 and N, this polynomial does not depend on i. The term Q;(()
is obtained when we never take any dominating term is the previous sum. Thus,
|Qi(Q)| is lower than a(p(z), k;)e¥AXE)/TC; for some A < P and some constant
C;. Here again, except for 1 and N, al the C; are equal.

Upper bound for the contribution Taking such upper bounds, we get for upper
bound the term

e+t (@) (Yn)X(S) o =(py-Npz)S

H(Oé(pl(z), ki)eki(P_X(S)/T)Ai + Bi(ki)eki(P—x(s)/T) + a(pi(2), ki)eki()‘_X(S)/T)C’i)’

(25)

where B;(k;).e"P=X(5) is the upper bound for T;(¢). Notice that the first part of
this term does not depend on k. Multiplying by k, and summing over k, we exactly
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get for the ”product”

7 n

a —-n - nu
%H (Z(a<pl(z)vn)Ai + Bi(n) + a(pi(2),n)Cie " P V)e ) - (26)
lu=P-x(S)/7
Now, remember that B; is a polynomial in n with degree p;(z) — 2 and that the
p1(z)—1
dominating term for u(p;(z),n) is L Then we have

(p1(z) = 1)!

> (a(pi(2), n) Ait+Bi(n)+a(pi(2), n)Cie P PXS/7)

n

(1-— eP—x(S)/T)pl(Z)’

where 0;(S) — 0 as S goes to +00. In the same way we have

0 —n(P— nu Ai + O; S
% Z(a(pl (Z>7 n)Az+Bl(n)+a(pl (Z), n)C’Ze ® A))e‘UZP*X(S)/T =D (Z) (1 I @P—X(S)/(T)Z)h(z)-i‘l )

n

where 0}(5) also goes to 0 as S — +o00. Hence the global contribution of the loops
yn is upper bounded by

—Sp(9)(Y')—p,r-S —525-8 Npi(z) N
e “P Y _ B e p .
@ 2 | MmO (m [T +07i(5) | +

N i=1
__pz_ g Npi(2)-1 N
e pri(2)’ )

o Sp (B W) =py-S
1 — P X7

T P x®I" [T +07i(5)) | (27)

i=1

(Nt _i_p)e*NSt((z))(z) (
N

where 07;(S) —5_100 0. The first term is due to the sum over the length of the
excursions (which was denoted by k above) and the second term is due to the rest
of the length of the loops yy, namely the length of ¢/, p and N times the length of
z, t. However this second term is infinitely many smaller than the first one, when
S goes to +0o. Now remember that except for A; and Ay, all the A; are equal.
Moreover p,/pi(z) = Z. Therefore the radius of convergence of this power series in

e 1S : def $4(6)(2)
) B ) S

Lower bound To get a lower bound, we would like to exchange B;(k;) and C; by
—Bi;(k;) and —C;. However this does not work so directly. Indeed, B;(k;) and C;
are dominated terms for large enough k;. In may happen that for small k; there
are no possible excursion with length k; in any irreducible component ! However
the bounds works for large enough k;. Therefore we get a lower bound like (26),
exchanging B;(n) and C; with —B;(n) and —C; but for large enough n. Namely we
have

% 11 (Z (a(pi(2),n)A; — Bi(n) — alpi(z), n)cie—nw—x))enu) |
u=P—X(S)/

A n>n;



6. End of the proofs 39

Here again n; does not depend on i for every 2 < i < N — 1. We can thus do the
same work as before ; the global contribution of the loops yy is lower bounded by

efsp(¢)(y/)*Py/~S e P12

pz_ g Npi(z) N
NS (€O o
1—eﬂwww-%; Npi(z)e (1—&LM$h> IIVL+%<5» :

(28)
where 0/'(S) —g_ 1 0.This power series has the same radius of convergence than
the upper bound.

We can now finish the proof in that case. We thus assume that all the orbits

which produce Z are either on the first form, or on the second form, but with the
1
Li(z))n®
assumption that every such loop is on the form on yy. We set L, “ 1nin &,
-

where the minimum is taken over all the z which produce 7.
-7.5

We claim that hmssup NG
holds, there are infinitely many S such that one of the power series diverges (and
equals +00 as the sum of positive numbers). This would implies that pg([i]) = 0 for
infinitely many 3. However we know that for every Gibbs measure v, every cylinder
has positive measure. This produces a contradiction.

As we still have

is lower than L;. Indeed, if this does not

e

-7.8 p1(y)+1
X@?—fp) ’

ar(y) < (\(S) = 7P) (

for any minimal loop y such that ¢;(y) = 1, and ai(y) = e % if ¢;(y) = 0, then
a1(y) converges to 0 for any y, as S goes to +00. Here again we can use corollary
5.5 to get that Hg converges to some fixed function H; which does not depend on
S. We now can copy the end of the proof in the first case. Notice that we now
have power series, but all of them have positive valuation and positive coefficients.
However we can precise how do these power series influence the limit:

L. If py/(p1(y') + 1) is strictly larger than Z (the case where Z never appears

in the power series), then the global contribution due to this loop z is null
e—py/.S

because ey goes to 0 when S goes to +o0.
—e T

2. If py/(p1(y) + 1) = Z, this introduces some (7L)P1") in front of the previous
power series.

Notice that the case py/(p1(y') + 1) < T can not occur, otherwise the loop y would
not produce any Z.

Remark 10. We can also get an explicit and simpler expression for the contribution
of the loops yy. Indeed the power series is a geometric power series (up to some
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i pi(2)(m. X)) A, A, 1o~ 5@ 0,5
terms), which converges to 1 — Ae=S@EXE) (7. X)) A2 NOEE: 7
~7.8
where X = 6—; A is the product of integrals which appear along the loop
x(S)—1.P

z.
g
A= H (/ ny k+1 foo, k+1( )Hk o Uk k+1 d]/lk+1) ’

as in (22). A, and A, are the same term than A, except that the first integrals for
A, "starts” from [i] and the last integral for A, returns to [i]. Remember that in
that integral, Hg has disappear because it uniformly converges to some function H;.

e Other cases for the loop y can happen. The loop 1’ can meet other irreducible
components. In that case we have to consider the possible excursions in irreducible
components during the loop 3'. Summing over all the possibilities, the same argu-
ment just introduces the polynomial A, LP*%) (before the derivative).

The loop 3/ can also meet several loops 72" which produce the Z. Here two
possibilities appear. The order for these loops z is fixed. Then the global power
series is the product of the powers series due to each ”z,”. Notice that the length
of 4/ is upper bounded because it is a minimal loop, and two extra-loops z, and z,
cannot share any symbol, otherwise we could combine them in any order we want.
The second possibility occurs when we can combine the loops in ay order we want
(up to some starting and finishing constraints). It happens when the loops z, share
some symbol. However we recall that the loops z, are minimal loops and thus there
are only finitely many such loops. If 21, ..., 2, are g such loops that we can combine
in any order, we let the reader check that the power series which appears in that
case is the derivative of the power series

oIS p1(z1) o—T.8 p1(zg)\ "
> <A1—1 — @ /T) o (Ag—l — 5 /T) ,

n

where the dominating power series for z; is > (A“e;%) . As there are only

finitely possible A;, this proves that the radius of convergence of such a power series
is positive;

6.2 About finiteness.

As we said in the introduction, this method can also prove the finiteness of the num-
ber of the possible limit measures. Remember that every locally constant function ¢
can be seen as constant on every 1-cylinder, up to some higher block representation.
Then the corollary concerns all the locally-constant functions.

Proof. For such a ¢, IK, is constructed from the minimal periodic orbits. There
are finitely many minimal periodic orbits, thus there are only finitely many ways to
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associate them. Therefore there are only finitely possible “IK,’s”. But each possible
IK4 admits finitely many ergodic Equilibrium States. This proves that there are
only finitely many possible ergodic. The last point to check is that there are only
finitely many possible barycenters of these ergodic Equilibrium States. This results
from our construction:

Using the formula given along the way (for instance in remark 10 or (22)), we let
the reader check that as soon as the minimal loops which produce the Z has been
chosen, the relation (17) can be written in the following way:

L= Z a;(t.L.e TPy (29)

—~ 1 — ¢;(1.L.e”TP)pi’

where the sum is done over the loops which produce the Z and a;, ¢;, r; and p; do
only depend on the loop. Indeed the main point to understand is that for such a
loop z, and with the notations from above, Z = (t — S;(¢)(2)7)/p1(2), which yields
to the fact that Sy(¢)(2)x(S) converges to P.(t — p1(z).Z) as S goes to +00. Notice
that p;(z) does not depend on ”¢” as soon as the irreducible components and the
loops have been chosen. In the same way, if e v*%/x(S) — 7.P does not converge
to 0, it means that it converges to L, and so on.

Therefore we claim that, as soon as the irreducible components which have pos-
itive limit measure have been chosen (finitely many choices) and as soon as the
loops which produce the Z have been chosen (finitely many choices), to solve (17) is
equivalent to solve

CLini
1= —_—. 30
; 1— CiXpi ( )
Such an equation admits only one solution X,. Now each p([k]) is D, 1iX)‘£pl where
¢ X,

we only consider the terms due to this 1-cylinder.
O
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