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Abstract

We give a dynamical proof of a result due to J. Brémont in [4]. It con-
cerns the problem of maximizing measures for some given observable φ: for
a subshift of finite type, and when φ only depends on a finite number of co-
ordinates, it was proved in [4] that the unique Equilibrium State associated
to βφ converges to some measure when β goes to +∞. This measure has
maximal entropy among the maximizing measures for φ. We give here a dy-
namical proof of this result and we improve it. We prove that for any Hölder
continuous function (not necessarily locally constant), f , the unique Equilib-
rium State associated to f + βφ converges to some measure with maximal
f -pressure among the maximizing measures. Moreover we also identify the
limit measure.
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1 Introduction and statement of results.

1.1 Presentation.

In this article we deal with the so-called ground state in physic. In mathematic
it concerns the problem of maximizing measures for some given observable. Let
(Ω, ϕ) be some dynamical system, φ be some function from Ω to IR and µ be some
Equilibrium State associated to φ. With a physical point of view, the probability
measure µ means that some equilibrium has been reached for the system. When
the temperature decreases to zero, the equilibrium state changes: at the limit, some
transitions disappear and some independent clusters appear.
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Recently, J. Brémont published a result in [4] on this topic; he proved that when
(Ω, ϕ) is a semi-infinite mixing subshift of finite type, and when φ is locally constant,
and if µ̂βφ denotes the unique Equilibrium State associated to βφ (and β ∈ IR),
then the family µ̂βφ converges as β goes to +∞ to some limit measure µ̂. Here the
parameter β denotes the inverse of the temperature (this parameter was denoted
by t in [4]). It is known that this limit measure must be a maximizing measure
for φ, i.e.

∫
φ dµ̂ is maximal among the ϕ-invariant probabilities. Moreover µ̂ has

maximal entropy among the maximizing measures.
Brémont’s proof is based on a general statement of Analytic Geometry, hence the
theorem can be seen as a general result for matrices and not only a result in ergodic
theory. However, for a dynamical point of view, the proof does not explain the
phenomenon. The first goal of our article is to give a dynamical proof of Brémont’s
result.
If the function φ is constant, then every invariant measure is a maximizing measure.
However, the question becomes more difficult as soon as φ is not constant. For
the Uniformly Hyperbolic case, and when φ is Hölder continuous, it is known that
there exists some invariant compact set IKφ such that a probability measure µ is a
maximizing measure for φ if and only if its support is included in IKφ (see [15] and
[7]). Hence, knowing this compact set IKφ gives information about the maximizing
measures for φ. However, the general structure for IKφ is not actually known; this
implies that even the general Hölder case is difficult. It has been proved (see [10]
and [2]) that for the symbolic case, and when φ is locally constant, IKφ is a subshift
of finite type. When IKφ is irreducible, there exists a unique measure with maximal
entropy. Hence, in that case, the limit measure is well identified. However, it
can happen that IKφ is not irreducible, and it has thus more than one measure
with maximal entropy. This corresponds to the independent clusters we mentioned
above. In that case Brémont’s result doesn’t give any information to identify the
limit measure.
In our article we noticeably extend Brémont’s result: for any Hölder continuous
function f , we prove that µ̂f+βφ converges to some limit measure in IKφ. This limit
measure is an Equilibrium State associated to the potential f (which was ≡ 0 in [4])
for the subshift IKφ; moreover the limit measure is well identified as some special
barycenter between all the ergodic Equilibrium States associated to f in IKφ.

1.2 Statement of results.

Throughout, (Σ, σ) will denote an aperiodic subshift of finite type; φ will be some
locally constant function from Σ to IR. We also pick some Hölder continuous function
f (which has not to be locally constant), and we denote by µ̂β the only Equilibrium
State for Σ associated to f + βφ. As we said above, IKφ is the σ-invariant compact
set such that a probability µ is maximizing for φ if and only if its support is included
in IKφ. Then our result is the following:

Theorem. The family of measures µ̂β converges to some measure µ̂∞ in IKφ when β
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goes to +∞. Moreover µ̂∞ is an Equilibrium State in IKφ associated to the potential
f . If µ̂1, . . . µ̂q are the q ergodic Equilibrium States associated to f in IKφ, there exist
q real numbers c1, . . . , cq in [0, 1] which can be explicitly computed such that

lim
β→+∞

µ̂β =
∑

ciµ̂
i.

A more precise statement for the ci will be given later (see section 4, Theorem’
page ??). Indeed, it would have been very long to exactly explain which irreducible
components in IKφ contribute the the limit measure, and how do they do.
Nevertheless, we have to put the notion of “explicit” in perspective: in our case IKφ

is quite simple to determine; thus the irreducible components (see section 2) are not
so difficult to identify, and then, we can also identify the irreducible components
which will have positive limit measure (see section 4 and theorem’ page ??).But the
exact values for the ci’s seem difficult to compute, even if we can theoretically prove
their existence.
Our proof is based on the classical tools in Dynamical Systems and Ergodic Theory.
It may appear very technical, but it explains why the µ̂β’s converge. The key point
is the induction. For every β and for every set A with positive µ̂β-measure we have

µ̂β(A) =
1∫

rA dνβ

,

where νβ is the conditional measure
µ̂β(. ∩ A)

µ̂β(A)
and rA is the first return time in A.

The idea is just to identify which A can have positive measure at the limit, and to
prove that for these A there is convergence.
Actually, we do not know if induction is really needed for a dynamical proof of the
Theorem. However we think it makes things easier.
On one hand, induction allows us to control the Gibbs constant. The unique Equi-
librium State is also defined as the unique invariant probability measure such that

e−C ≤ µ̂β(Cn(x))

eSn(f)(x)−βSn(φ)(x)−nPβ
≤ eC

for some constants C and Pβ and for every n and every x (where Cn(x) is a n-
cylinder, see section 2). But the constant C deeply depends on β, and goes +∞ as
β goes to +∞. Induction and the method which was introduced in [13] allow us to
get some control on the constant C when we only consider the induced Dynamical
System.
On the other hand, periodicity plays an important role in the problem of maximizing
measures. Even if the Birkhoff average of the function φ can fluctuate along a
periodic orbit, it is fixed at each complete-period. Then induction allows us to
control what happens at each period without controlling what happens “during” a
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period.
We also want to mention that our method has some chances to be extend to the
general case of φ Hölder-continuous and not locally constant. For this general case,
the first problem would be to know the structure of IKφ. However if one can prove
that IKφ has some nice structure, we believe that our method could be used, as soon
as we can identify which A can have positive measure at the limit.

In [4] it is also proved that the number of maximizing measures is finite when φ
describes the set of functions which only depend on a fixed number of coordinates.
This fact can also be checked in our proof:

Corollary. There are only finitely many maximizing measures with maximal f -
pressure when φ describes the functions constant on every 1-cylinders1.

Outline of the article. In section 2 we precise some vocabulary and hypotheses we
can make for the functions φ and f . In section 3 we recall some ideas from [13]
which where improved in [11] about induction and reduced dynamical systems. In
section 4 we explain how IKφ looks, and explain which irreducible components have
necessarily null limit measure. In section 5 we define two parameters, the transition
cost and the isolation rate, which determine which components have positive limit
measure. In section 6 we finish to prove the Theorem and we prove the corollary on
the finiteness.

2 Notations, hypotheses and spectral decomposi-

tion for subshifts.

2.1 Notations.

The set of vertices of the defining graph of (Σ, σ) is {1, . . . , N} with N ≥ 2. We
denote by A = (aij) the N ×N -transition (aperiodic) matrix associated to Σ;
namely points in Σ are sequences x = {xn}n∈ZZ such that for every n, xn belongs to
{1, . . . , N} and

axnxn+1 = 1.

• In Σ, the cylinder [ik, . . . , ik+n] will denote the set of points x ∈ Σ such that
xj = ij (for every k ≤ j ≤ k + n). Such a cylinder will also be called a word (of
length n + 1) or equivalently a (k, k + n)-cylinder. If x is in Σ, the set Cn(x) will
denote the cylinder [i0, . . . , in−1] such that xj = ij (for every 0 ≤ j ≤ n− 1. It will
also be called the n- cylinder containing x.
• In Σ we define the map [ ; ] in the usual way: let x = (xn) and y = (yn) be two
points in Σ such that x0 = y0. Then, [x; y] denotes the point (zn) such that zn = xn

for every n ≥ 0 and zn = yn for every n ≤ 0.
• Let x = [x0, . . . , xp] and y = [y0, . . . , yq] be two finite words such that xp = y0.

1see section 2 for the definition of the 1-cylinder
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Then [y, x] denotes the finite word [x0, . . . , xp, y1, . . . , yq]. This operation is called
the concatenation of the two words x and y. Notice that our concatenation is not
the usual one. As we are in a subshift (and not in the full-shift) some transitions are
forbidden. That is why we ask for the last letter of the word x to be the first one
of the word y ; when we concatenate these two words, this “double” letter appears
only on time.
• We introduce a new operation on words, called a looping. Let x = [x0, . . . , xp]
and y = [y0, . . . , yq] be two finite words such that xi = y0 = yq. Then we introduce
the word y in x in the following way :

[x0, . . . , xi−1, y0, . . . , yq, xi+1, . . . , xp].

For any 1-cylinder [i], and for any x in [i] we set W u(x)
def
= [[i];x] and W s(x)

def
=

[x; [i]]. These sets are respectively called the unstable local leaf and the stable local
leaf of x. Namely points in the unstable local leaf of x have the same symbols
backward, and points in the stable local leaf have the same symbols forward.

For any Hölder continuous function θ on Σ, Pθ will denote the topological pres-
sure of the Dynamical System (Σ, σ) associated to the potential θ. It will also be
called the θ-pressure of Σ. In the same way if µ is some σ-invariant probability the
term hµ(σ)+

∫
θ dµ will be called the θ-pressure of the measure µ. Thus, the unique

Equilibrium State in Σ associated to the potential θ is also the unique σ-invariant
probability with maximal θ-pressure. For simplicity, Pβ and β ∈ IR will denote
Pf+βφ.

2.2 Hypotheses for φ

The function φ is locally constant in the compact set Σ, which means that it only
depends on a finite number of coordinates. Hence, there exists some integers p and
p− such that φ is constant on every (p−, p− + p)-cylinders. However, up to the fact
that we use a higher-block representation of Σ (see [14]), every function which only
depends on a finite number of coordinates in the Symbolic Space can be viewed as
a function which only depends on one coordinate. Therefore, we will assume that φ
is constant on every 1-cylinders. Notice that we can make this assumption without
lost of generality.
Moreover if C is some real number, a σ-invariant measure µ is a maximizing measure
for φ if and only if it is a maximizing measure for the function φ + C. Therefore,
we also can assume that φ is a positive function on Σ.
From now on till the end of the paper, φ is a positive function which is
constant on every 1-cylinder.

2.3 Hypothesis for f

We assume that f does not depend on the past. Namely we assume that if x =
(xi)i∈ZZ ∈ Σ and y = (yi)i∈ZZ ∈ S satisfy xi = yi for all i ≥ 0, then f(x) = f(y).
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This assumption for f is free. Indeed for any Hölder continuous function, there
exists some cohomologous function with this property. Equilibrium state for one
function is also an equilibrium state for the other. In the following (section 3) some
function ω will be introduced (for the general case). We let the reader check (see [3]
for instance) that the function ω is strongly related to the cohomologous function
associated to f .However in the 2 last sections, there are long strong and complicated
estimations and computations. We thus prefer to make things as simple as possible.
This is the reason of this hypothesis.

2.4 Spectral decomposition.

We recall some properties of the spectral decomposition for symbolic dynamic. These
properties where proved in [1], and are given as exercises in [12] on page 55. This
spectral decomposition will be used in section 4.
Let B be a n × n transition matrix, i.e. a matrix whose entries are only 0 or 1.
We assume that B has at least one 1 in each row and in each column. We denote
by ΣB the set of bi-infinite sequences y = (yi) such that for every i byi,yi+1

= 1,
and by σ the shift on ΣB. A symbol i is said to be essential if there exists some
periodic point in [i]; two essential symbols i and j are said to be equivalent if there
exists in ΣB some word which has two times the symbol i and one time between
the two i the symbol j (these symbols are not necessary consecutive). Any point in
the ω-limit set of (ΣB, σ) contains only essential symbols, and the set of essential
symbols splits into disjoint subsets of mutually equivalent symbols. Therefore, the
ω-limit set splits in disjoint σ-invariant subsets, Σω

k (k = 1, . . . , K for some integer
K), and in each subset there exists some dense positive semiorbit. Moreover, each
Σω

k can be decomposed in closed disjoint M(k) subsets (for some integer M(k))

Σω
k = Σω

k,1 t . . . t Σω
k,M(k),

such that σ(Σω
k,i) = Σω

k,i+1 (with the convention that M(k) + 1 = 1) and the restric-

tion of σM(k) to each Σω
k,i is topologically mixing.

The sets Σω
k are called the irreducible components of ΣB. The topological pressure

of ΣB associated to some potential θ is thus the maximal of all the θ-pressures of
the irreducible components of ΣB. Any invariant measure such that its θ-pressure is
equal to the maximal of the θ-pressures of the components is an Equilibrium States
for ΣB. Moreover there exists only one ergodic (=extremal) Equilibrium State in
each irreducible component with maximal θ-pressure.

3 Inductions and local equilibrium states.

In this section, we briefly recall some relevant results from [13] and [11] that we are
going to use. Then we start to define and to study some good reduced systems. The
main idea is the following : if A is a subset in Σ, using the first return time map,
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A can be seen as a section in a flow. Then, scaling the return time by some real
parameter S we define a family of flows. For each such a flow we construct some
Equilibrium State; this gives a one-parameter family of measures. Among these
measures, one (and only one) gives the global Equilibrium State. Notice that in the
following the result and the tools are important for the proof of the Theorem.

3.1 Reduced Dynamical Systems.

We pick some 1-cylinders [i1], . . . [il] and in each cylinder we pick some unstable local

leaf, Fj := [[ij];xj] for some point xj in [ij]. We set F := tjFj and A
def
= t[ij]. The

map [.;xj] is a projection from [ij] onto Fj that we denote by πF . We denote by g
the first return map in A by iterations of σ, and gF is the map πF ◦ g. This defines
a new dynamical System (F, gF ). Let θ be some Hölder continuous function on Σ.
For x in Fj and for any x′ in [ij] such that πF (x′) = x, we set

ω(x, x′) =
+∞∑
k=0

θ ◦ σk(x)− θ ◦ σk(x′) .

The map θ is Hölder continuous, and so, by contraction on the stable local leaves,
the previous series converges. For x in F we set ω(x) = ω(gF (x), g(x)), and we
denote by rA(x) its first return time. Then we set

Θ(x) =

rA(x)−1∑
k=0

θ ◦ σk(x) + ω(x) .

This function is defined on a set of full measure with respect to any invariant mea-
sure. The inverses branches of gF define the family of so-called n-sets: for x in F
we set

Kn(x)
def
= σ−rn

A(x)(W u(gn(x)),

where rn
A(x) denotes the nth-return time into A. For a given point in F , the n-sets

are well-defined except for the points in F which do not return infinitely many times
in A. But these points will have null-measure for all the measures we are going to
consider. Hence, every n-set is a compact set and the collection of the n-sets defines
a partition of F (up to the points which come back less than n times), which refines
the partition in (n − 1)-sets. We define the set of preimages of some point x in F
by gn

F , denoted by Pren(x).

Remark 1. An important property is that all the points in the same Fj have the
same “number” of preimages. Namely, if x and y are in the same Fj every n-set

which contains some x′, such that gn
F (x′)

def
= πF ◦ σrn

A(x′)(x′) = x, must also contain
some y′ such that gn

F (y′) = πF ◦ σrn
A(x′)(y′) = y (and rn

A(x′) = rn
A(y′)).
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We define the Ruelle-Perron-Frobenius operator for any x

LS(T )(x) =
∑

y∈Pre1(x)

eΘ(y)−rA(y)ST (y) ,

where S is a real parameter and T is a continuous function from F to IR. When A
is a single 1-cylinder it is proved in [13] that there exists some critical value for S,
such that

LS(1IF )(x) < +∞ for every S > Sc and for every x ∈ F . (1)

Sc is of course defined as the smallest real number with this property. Always in
that case, the Markov property and the hyperbolic structure give the next important
lemma:

Lemma 3.1. There exists a positive constant Cθ which does not depend on S such
that for all x, y ∈ F , S > Sc and integer n

1

Cθ

Ln
S(1IF )(x) ≤ Ln

S(1IF )(y) ≤ CθLn
S(1IF )(x).

However, the Hölder properties of θ prove that in the general case (when A is a
union of several cylinders) a similar result than lemma 3.1 holds but for each Fj.

Lemma 3.2. There exists a positive constant Cθ which does not depend on S such
that for every Fj for every x, y ∈ Fj, and for every S > Sc and integer n

1

Cθ

Ln
S(1IF )(x) ≤ Ln

S(1IF )(y) ≤ CθLn
S(1IF )(x).

The independence on S of the constants Cθ in lemma (3.1) and (3.2) results from
remark 1: for x and y in the same Fi (or simply in F when A is a single 1-cylinder)
we associate to each preimage of x a unique preimage of y in the same 1-set. Two
such preimages have the same return time rA,which “remove” the dependence on S.
Then, we simply use the Hölder continuity of θ to get the constant Cθ.

There also exists some critical values Sc(j) such that for every j, LS(1IF ) con-
verges for every points in Fj if and only if it converges for one point in Fj. Moreover,
in [11] and when A is a single cylinder, an explicit value is given for Sc . For the
general case it is also proved that all the Sc(j) are equal, which allows us to talk
about Sc even in the general case:
Let B be the matrix A where the rows and the lines associated to the cylinders which
compose A have been removed. Then Sc is the topological pressure associated to
the potential θ for the subshift of finite type (ΣB, σ). An important point is that
this topological pressure is strictly smaller than the topological pressure of (Σ, σ)
(see [6] or [9]).

Then we can produce local Equilibrium States:
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Proposition 3.3. There exist some measure mS on F , some positive real number
λS and some positive continuous function HS on F such that

1. L∗S(mS) = λSmS;

2. λS =
def
=

∫
LS(1IF ) dmS;

3. LS(HS) = λS.HS.

See [13] for the proof. We recall that HS is defined by the formula:

HS
def
= lim

n→+∞

1

n

∑
0≤k<n

1

λn
S

Ln
S(1IF ).

Remark 2. When A is a single 1-cylinder, lemma 3.1 and the constructions of mS

and HS prove that for every x in the chosen unstable leaf F

e−Cθ ≤ HS(x) ≤ eCθ , (2)

for some positive real constant Cθ which does only depend on θ. Moreover there
exists some C ′

θ which does not depend on S such that for every S, ||HS||Höl ≤ C ′
θ,

where ||HS||Höl denotes the Hölder norm for the Hölder coefficient of θ.

Let us set dνS
def
= HSdmS. The measure νS is gF -invariant. Moreover we have

Lemma 3.4. The measure νS is ergodic. Moreover, λS is a simple eigenvalue for
LS.

Proof. Let us pick some Fi ⊂ F . The mixing properties of σ proves that Fi must
have positive νS-measure: there exists at least one Fj with positive νS-measure and
there exists at least one set K(i, j) ⊂ Fi whose image by some iterate of gF is exactly
Fj. Now the measure νS is conformal in the sense that

νS(K(i, j)) =

∫
Fj

HS(g−n
F (x))

HS(x)
eSn(Θ)(g−n

F (x))−rn
A(g−n

F (x))−n log λSdmS, (3)

where n is the integer such that gn
F (K(i, j)) = Fj (bijectively).

The measure νS is gF -invariant, thus almost every point in Fi returns infinitely many
times into Fi by iteration of gF . Let us denote by Gi this first return map from Fi

into Fi. The conditional measure νi
S

def
= νS(.∩Fi)

νS(Fi)
is Gi-invariant and conformal in the

same sense than (3) (with Fj = Fi and gn
F = Gi). Therefore, the density theorem

proves that νi
S is exact, hence mixing and ergodic.

Now, any gF -invariant Borel set with positive νS-measure has positive νi
S-measure;

its intersection with Fi is Gi-invariant, and have thus full νi
S-measure. Hence, any

gF -invariant Borel set with positive νS-measure has full νS-measure.



3. Inductions and local equilibrium states. 10

Let us assume that H is some Hölder continuous function on F such that LS(H) =
λS.H. Let Fj be fixed, and let LS,j be the Ruelle-Perron-Frobenius operator for Fj

(namely with F := Fj). Then, writing LS(H)(x) = λSH(x) for some x in Fj, we
can use the global equality LS(H) ≡ H in a recursive way to transform the sum
LS(H)(x) in a sum which only uses n-sets in Fj. Hence we get

L̃S,j(H)(x) = λ̃SH(x),

for some new Ruelle-Perron-Frobenius operator on Fj. But such an operator has a
simple dominating eigenvalue (due to the mixing property of the associated Gibbs
measure). This finally proves that λS is a simple eigenvalue for LS.

The measure νS is the unique Equilibrium State for (F, gF ) associated to Θ(·)−
S.rA(·). The natural extension of νS, denoted by ν ′S is the unique Equilibrium State
associated to the potential

rA(x)−1∑
k=0

θ ◦ σk(x)− S.rA(x)

for the Dynamical System (A, g). Moreover, there exists some positive constant C1

(which can depend on S) such that for every x in A and for every integer n,

e−C1 ≤ ν ′S(π−1
F (Kn(πF (x))))

e
Srn

A
(x)(θ)(x)−rn

A(x)S−n log λS
≤ eC1 (4)

By definition of the natural extension, the numerator of the middle term in (4) is
simply νS(Kn(πF (x))).

Lemma 3.5. The constant C1 does not depend on S as soon as A is a single 1-
cylinder (and of course for a given θ).

Proof. Let Kn(x) be any n-set (where x is a point in F ). Then by definition we
have gn

F (Kn(x)) = F . Hence we get:

νS(Kn(x)) =

∫
1IKn(x) dνS

=

∫
1IKn(x)HS dmS.

Then (2) gives e−Cθ ≤ νS(Kn(x))∫
1IKn(x) dmS

≤ eCθ . Now L∗S(mS) = λS.mS gives∫
1IKn(x) dmS =

1

λn
S

∫
Ln

S(1IKn(x)) dmS.

But every y in F admits a unique preimage by gn
F in Kn(x). Notice that ω is upper

bounded by some function which only depends on θ. Moreover, for every y in F ,

Ln
S(1IKn(x))(y) = e

Srn
A

(x)(θ)(y
′)+ω(y′)−rn

A(x)S
,

where y′ is the preimage of y by gn
F . Thus C1 depends only on θ.
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It is proved in [13] that for every S > Sc, IEeνS
[rA] < +∞. This is a simple

consequence of lemma 3.2 (with n = 1) and of the fact that λS =
∫
LS(1IF ) dνS.

Therefore the measure ν ′S can be opened out: there exists a σ-invariant and ergodic
probability measure µS on Ω such that

µS(. ∩ A)

µS(A)
= ν ′S(.).

Let PS denote the θ-pressure of this measure µS. Then we have

PS = hµS
(f) +

∫
θ dµS = S + µS(A) log(λS). (5)

A very important point for the following, is that for S = Pθ, λS = 1 and µS is the
unique Equilibrium State in Σ associated to θ.

3.2 Some other properties for the operators LS.

As we said before, it is proved in [11] that Sc is the topological pressure of the
System with the hole A, that is, the dynamical system in Σ of all points which do
never belong to A. It is also proved that for S = Sc, LS(1I) diverges (for every x).
Moreover we have

Lemma 3.6. The map ψ : S 7→ log(λS) is strictly convex and analytic on a complex
neighborhood of ]Sc,+∞[). Moreover there exists some p such that for every S in the
complex neighborhood where ψ is analytic, LS has p simple dominating eigenvalues.
We also have

lim
S→Sc

ψ′(S)

ψ(S)
= −∞.

Proof. Analyticity and strict convexity are proved in [11]. First, λS is a simple
eigenvalue. Copying the proof of proposition 4.11 in [5] we prove that the operator

LS has p(S) simple eigenvalues. These eigenvalues are equal to λS.e
2iπk
p(S) , where

k = 0, . . . , p(S) − 1. Hence, LS is a quasi compact operator with simple isolated
dominating eigenvalues; analyticity (in some complex neighborhood of ]Sc,+∞[) is
thus obtained via the perturbation Theorem from [8] (see Th III.8).
Now, the continuity of the map S 7→ p(S) on the connected set ]Sc,+∞[ means that
it must be constant.
Strict convexity result from the uniqueness of the analytic continuation of analytic
function and from the fact that λS diverges as S goes to Sc.

It remains to prove the last point, lim
S→Sc

ψ′(S)

ψ(S)
= −∞. Let us assume that there

exists l > 0 and some decreasing sequence (xn) which converges to Sc such that
ψ′(xn) ≥ −lψ(xn). Let a be such that 0 < a − Sc <

1
2l

. Then we must have for
Sc < xn < a,

−ψ(a) + (xn − a)ψ′(xn)

ψ′(xn)
≥ 1

l
.
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Letting n→ +∞ in this inequality, we arrive to some contradiction.

Lemma 3.7. The map ψ satisfies ψ′(S) = − 1
µS(A)

.

See [11] for a proof. Another useful fact is proved in [11]: for the integer p which
was defined in lemma 3.6 we have

LS(1IF )np(x) = λnp
S 1IF (x) + λnp

S Ψn(1IF )(x), (6)

where Ψ is some operator with spectral radius strictly smaller than 1. This fact will
be used later. Finally, we give some consequence for the map S 7→ λS:

Lemma 3.8. The map S 7→ λS is a decreasing bijection from ]Sc,+∞[ onto ]0,+∞[.

3.3 Applications and consequences for good θ.

Let P be any real number. We use the previous work with θ := f − Pφ. An
important point here is that φ is constant on every 1-cylinders, and so the constant
which appeared and which where only depending on θ are now only depending on
f . Moreover the map ω(x, x′) =

∑+∞
k=0 f ◦ σk(x)− f ◦ σk(x′) is null because f does

not depend on the future. We again set Θ(x) =

rA(x)−1∑
k=0

f ◦σk(x). The new definition

of the operator LS is:

LS,P (T )(x) =
∑

y∈Pre1(x)

eΘ(y)−r1
A(y)S−P.SrA(y)(φ)(y)T (y).

Hence, as soon as LS,P (1IF ) converges, proposition 3.3 is still valid, except that we
have measures mS,P and νS,P , an eigenvalue λS,P and a function HS,P . In the same
way, lemma 3.4 and equality (6) also hold, except that we always have to add P in
subscript to indicate the dependence in P .

Proposition 3.9. There exist two convex and decreasing functions S 7→ P (S) and
S 7→ Pl(S) such that

• For every S and P , LS,P (1IF ) converges if and only if P > Pl(S).

• For every S, the λS,P (S) = 1.

• The map S 7→ P (S) is real-analytic.

Proof. We first see that for a given P , the operator LS,P is well defined (i.e. LS,P (1IF )
converges) for sufficiently large S in IR. Namely LS,P is well defined as soon as
S > Pf−Pφ(ΣA), where ΣA is the set of points in Σ which never enter in A under
the action of σ, and Pf−Pφ(ΣA) is the topological pressure of the Dynamical System
(ΣA, σ) associated to the potential f − Pφ. It is clear that P 7→ Pf−Pφ(ΣA) is de-
creasing, and it is also well known that such a map is convex. Now, Pl is exactly the
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inverse of the map P 7→ Pf−Pφ(ΣA) = SC(P ). Therefore, Pl is a decreasing convex
map.
We now assume that for a given P , S is always bigger than Pf−Pφ(ΣA) or equiva-
lently, that for a given S, P is always bigger than Pl(S).
Now, we let the reader check that the map P 7→ LS,P is analytic; we can again
use the perturbation theorem (see again [8]) to conclude that the map P 7→ λS,P is
analytic in some complex neighborhood of its real interval of definition. Moreover,
for a given S, we have

lim
P→+∞

λS,P = 0 and lim
P→Pl(S)

λS,P = +∞.

Now, the revisited (6) proves that

∂ log λS,P

∂P
= − 1∫

φ dνS,P

.

Thus the map P 7→ λS,P is decreasing and continuous; there exists some unique
value P = P (S) such that λS,P (S) = 1. Moreover the implicit mapping theorem
for holomorphic functions in several complex variables (see [17]) proves that the
function S 7→ P (S) is analytic.
Let us consider some fixed S. By definition of P (S), we have P > P (S) if and only if
λS,P < 1. Let us pick some S ′ 6= S and α ∈]0, 1[. For convenience we set P = P (S)
and P ′ = P (S ′). We want to prove that P (αS+(1−α)S ′) ≤ αP +(1−α)P ′, which
amounts to prove that

λαS+(1−α)S′,αP+(1−α)P ′ ≤ 1. (7)

Let x be in F and n be some integer. Let us set S ′′ = αS + (1 − α)S ′ and P ′′ =
αP + (1− α)P ′. Then we have:

Ln
S′′,P ′′(1IF )(x) =

∑
y∈Pren(x)

e
Sn(Θ)(y)−S′′rn

A(y)−P ′′Srn
A

(y)(φ)(y)

=
∑

y∈Pren(x)

e
αSn(Θ)(y)−αSrn

A(y)−αPSrn
A

(y)(φ)(y)
e
(1−α)Sn(Θ)(y)−(1−α)S′rn

A(y)−(1−α)P ′Srn
A

(y)(φ)(y)

≤

 ∑
y∈Pren(x)

e
Sn(Θ)(y)−Srn

A(y)−PSrn
A

(y)(φ)(y)

α ∑
y∈Pren(x)

e
Sn(Θ)(y)−S′rn

A(y)−P ′Srn
A

(y)(φ)(y)

1−α

,

where the last inequality follows from Hölder Inequality. The Birkhoff sum Sn(Θ)
denotes the Birkhoff sum for the map gF . Notice that Srn

A(y)(φ) is the Birkhoff sum
for the map σ. Now exchanging n by np, and using equality (6) revisited, we can
deduce

log λS′′,P ′′ ≤ 0,
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which means that (7) holds.
The fact that the function S 7→ P (S) is decreasing follows from

dP (S)

dS
= −

∂ log λS,P

∂S
∂ log λS,P

∂P

=
−1∫
φ dµ̃S

(8)

where µ̃S is the opened-out σ-invariant measure associated to νS,P (S).

We can now use all our machinery to recognize the measures µ̂β:

Proposition 3.10. The only Equilibrium State associated to f +βφ, µ̂β, is also the
opened-out measure µ̃S when β = −P (S).

Proof. We first recall that any open set have positive Gibbs measure (for every
potential). Let µ be some σ-invariant measure. We assume µ(A) > 0. Then we can

define the conditional measure ν :=
µ(. ∩ A)

µ(A)
. This measure is g-invariant. For any

β we have

hµ(σ) +

∫
f dµ+ β

∫
φ dµ = µ(A)

(
hν(g) +

∫
SrA

(f) dν + β

∫
SrA

(φ) dν

)
.

For t = −P (S), the previous equality gives

hµ(σ)−S+

∫
f dµ−P (S)

∫
φ dµ = µ(A)

(
hν(g) +

∫
SrA

(f)− P (S)SrA
(φ)− S.rA dν

)
.

Now, νS,P (S) is the only Equilibrium State for (F, gF ) associated to SrA
(f)−P (S)SrA

(φ)−
rA.S. This proves that the term in the right side of the previous equality is lower
than µ(A) log λS,P (S) = 0, with equality if and only if πF (ν) = νS,P (S).

4 Components without limit measure

In this section we first briefly recall the structure of the compact set IKφ. Then we
precise the asymptotic behavior for S 7→ P (S) and S 7→ Pl(S). Hence we prove
that every accumulation point for µ̂β must be one Equilibrium State in IKφ. Finally,
we give a necessarily condition on the irreducible components to have positive limit
measure.

4.1 Structure for IKφ.

We first introduce the notion of minimal orbit:

Definition 4.1. A periodic point x in Σ will is said to be minimal (or equivalently
to have minimal period) if no 1-cylinder contains more than one element of the orbit
of x.
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From [16], p.57, we have sup
µ

∫
φdµ = sup

x∈Σ
lim sup
n→+∞

1

n

n−1∑
j=0

φ ◦ σj(x). We denote by

ρ(φ) this supremum. Because the periodic points are dense in Ω, we also have

ρ(φ) = sup
x∈Σ and n∈IN∗, σn(x)=x

1

n

n−1∑
j=0

φ ◦ σj(x).

Now, each periodic orbit can be decomposed in “loops” of minimal orbits. Moreover,
φ is constant on each 1-cylinder, thus ρ(φ) is also equal to the maximum of the
Birkhoff averages on the set of minimal periodic orbits. Let us pick all the minimal
periodic orbits x with period n = n(x) such that

1

n
(φ(x) + . . .+ φ ◦ σn−1(x)) = ρ(φ).

Each such a x gives a finite word x (of length n+1). This finite set of words is
called a generating set for the compact set IKφ that we are going to define. Now,
the set IK′

φ is the set of bi-infinite words that we can construct in a recursive way
by concatenation and looping of all the words of the generating set; the set IKφ is
the closure of IK′

φ.
We can decompose IKφ in irreducible components, as it is explained in section 2.

Lemma 4.2. Let i be any symbol such that [i] ∩ IKφ 6= ∅. Then i is essential.
Moreover IKφ equals its ω-limit set.

Proof. There exists some point x in IKφ ∩ [i]. Thus, by construction of IKφ, there
exists some periodic point whose associated word contains i. Hence i is essential.
Again by construction of IKφ, periodic points are dense in IKφ. The ω-limit set of
IKφ is a compact set which contains the periodic points.

Remark 3. An important consequence is that two different irreducible components
in IKφ cannot share any symbol. For the same reason, this also holds for two different
components in the same transitive component. For the rest of the proof, we will say
that a symbol appears in IKφ(l) if the 1-cylinder [i] has an non-empty intersection
with the irreducible component IKφ(l) of IKφ.

4.2 Asymptotic behavior for S 7→ P (S) and S 7→ Pl(S).

As it is done in the previous section, we pick some A = t[ij] and define Fj and
LS,P and so on, as above. We notice that the function φ is upper bounded by some
constant κ, which means that the derivative S 7→ P ′(S) is increasing and upper
bounded by −1

κ
. Then it converges to some limit −τ < 0 as S goes to +∞.

Lemma 4.3. There exists some decreasing function χ such that P (S) = −τS+χ(S)

and lim
S→+∞

χ(S)

S
= 0.
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Proof. The only difficult point is the second one. As the function χ decreases, it is
upper bounded and we have

lim sup
S→+∞

χ(S)

S
≤ 0.

Now, for any ε > 0, there exists some increasing function θ̂ defined for sufficiently
large S such that P (S) = −(τ + ε)S + θ̂(S) which proves that for every ε > 0 and
for every sufficiently large S we have χ(S) ≥ −εS +K, for some constant K. This
yields

∀ε > 0, lim inf
S→+∞

χ(S)

S
≥ −ε.

One of the difficulties now, is to identify τ . This is the goal of the next proposi-
tion:

Proposition 4.4. With the previous definitions,
1

τ
= ρ(φ).

Proof. The definition of τ and (8) give
1

τ
= lim

S→+∞

∫
φ dµ̃S ≤ ρ(φ).

Let y ∈ Fi be in Fix(gn
F ). Then we have

mS,P (S)(Fi) =

∫
1IFi

dmS,P (S)

=

∫
Ln

S,P (S)(1IFi
) dmS,P (S) =

∑
j

∫
Fj

Ln
S,P (S)(1IFi

) dmS,P (S)

≥ e−CφeSrn
A(y)(f)(y)− (rn

A(y)− τ.Srn
A(y)(φ)(y))S − Srn

A(y)(φ)(y).χ(S)mS(Fi).

(9)

Hence (9) proves that the function S 7→ e
Srn

A
(y)(φ)(y)S

 
τ− rn

A(y)

Srn
A

(y)(φ)(y)
−χ(S)

S

!
is upper

bounded, which forces τ to be lower than
rn
A(y)

Srn
A(y)(φ)(y)

for every n-periodic point y

(remember that φ is positive) in F . Now the mixing property yields

inf
y∈Per(F )

{
rn
A(y)

Srn
A(y)(φ)(y)

}
=

1

ρ(φ)
.

Lemma 4.5. There exist a real number τ̃ ≥ τ and some decreasing function χ̃ such

that Pl(S) = −τ̃S + χ̃(S) and lim
S→+∞

χ̃(S)

S
= 0.



4. Components without limit measure 17

Proof. The existence of τ̃ and χ̃ also follows from the convexity of the map t 7→
Pf+βφ(ΣA). The inequality τ̃ ≥ τ follows from the fact that S 7→ P (S) is above
S 7→ Pl(S).

The value of τ̃ deeply depends on A. We will see later, that for “good” A, it will
be equal to τ .

4.3 Support of the accumulation points for µ̂β.

The goal of this subsection is to prove that any accumulation point for the family µ̂β

must some Equilibrium State associated to f in IKφ. Let A := [i] be some 1-cylinder
such that the symbol i does not appear in IKφ. Then, relation (4) (p. 10) holds for
some constant C1 which does not depend on S (see lemma 3.5).

Lemma 4.6. With the previous notations, lim
t→+∞

µ̂β([i]) = 0.

Proof. Let us assume that there exists some accumulation point for the family (µ̂β)
such that the result does not hold. Let us denote by µ̂ this accumulation point.
Then µ̂-almost every point in [i] returns infinitely many times in [i] by the iteration
of σ. Let x be such a point; we also assume that x is a density point in [i]. Let
F := [[i], x]. Then (4) (with θ = f−P (S)φ) holds for every S and proposition (3.10)
proves that for some subfamily of S (going to +∞) the numerator of the term in

the middle converges to
µ(π−1

F (K1(x)))

µ(A)
(every 1-set is a cylinder, hence its indicator

map is continuous). However, no periodic orbit which belongs to [i] can be in IKφ.
Therefore −(rA(x) − τSrA(x)(φ))S − SrA

(x)(φ)χ(S) goes to −∞ as S goes to +∞,
which yield some contradiction.

Let us now assume that A := [i] is such that i appears in IKφ but in some irre-
ducible component with small f -pressure (i.e. a component such that the topological
pressure associated to f is strictly smaller than the topological pressure associated
to f in IKφ). Let IKφ(1) be some irreducible component in IKφ with maximal f -
pressure and let µ̂1 be the unique Equilibrium State in IKφ(1) associated to f . We
denote by P this topological pressure. Then IKφ(1) belongs to the hole ΣA, and
for every β, the topological pressure of ΣA associated to f + βφ is larger than

hbµ1 +

∫
f dµ̂1 +

β

τ
= P +

β

τ
. Then, using notations from the proof of proposition

3.9, we must have

Sc(P ) ≥ −P
τ

+ P .

But S 7→ Pl(S) is the inverse map of P 7→ Sc(P ), which proves that τ̃ ≤ τ .

Remark 4. Notice that χ̃ and χ converge when S goes to +∞ (as decreasing and
bounded from below functions) and their limits are bigger than τ × P .
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Lemma 4.7. Let [i] be some 1-cylinder such that [i] ∩ IKφ 6= ∅ and the irreducible
component of IKφ which intersects [i] has a topological pressure associated to f
strictly lower than P. Then, lim

t→+∞
µ̂β([i]) = 0.

Proof. Let IKφ([i]) be the component of IKφ which intersects with [i]. Then, we
have just seen limS χ(S) ≥ τ.P . Let us pick some accumulation point µ for µβ such
that µ([i]) > 0. The measure µ can be seen as the opened-out measure of some
accumulation point for ν ′S. Therefore, letting S go to +∞ in the revisited equation
(4) we get for every x in IKφ ∩ [i],

e−C1 .e
Srn

A
(x)(f)(x)−rn

A(x).P ′
.µ([i]) ≤ µ(Crn

A(x)(x)) ≤ eC1 .e
Srn

A
(x)(f)(x)−rn

A(x).P ′
.µ([i]), (10)

where P ′ = 1
τ
× limS χ(S). Notice that this implies that the projection onto F of

conditional measure µ[i]
def
= µ(.∩[i])

µ([i])
is exact for gF , thus mixing and thus ergodic. Re-

member that µ is the opened-out measure of the natural extension of µ[i]. Therefore
µ is also ergodic.

For every x in IKφ ∩ [i] we have∣∣∣∣ 1

rn
A(x)

Srn
A(x)(f)(x)− 1

rn
A(x)

log(µ(Crn
A(x)(x)))− P ′

∣∣∣∣ ≤ C1 − log(µ[i])

rn
A(x)

.

But for µ-a.e x, 1
n
Sn(f)(x) converges to

∫
f dµ, and − 1

n
log µ(Cn(x)) converges to

hµ. Now µ([i]) is positive, hence the previous convergencies hold for µ-a.e. x in
[i]. Therefore µ admits P ′ for f -pressure. Now, P ′ is larger than the topological
pressure of IKφ thus strictly larger than the topological pressure in IKφ([i]). This
yields to a contradiction.

Remark 5. The same calculation proves that every accumulation point for µβ is
some barycenter of the ergodic Equilibriums States of IKφ associated to f .

Indeed, only the irreducible components with maximal f -pressure can have pos-
itive limit measure. But restricted to each such an irreducible component, the
conditional limit measure must have a f -pressure larger than P . Hence it must be
the unique Equilibrium State associated to f . We summarize it in the following
way:

Proposition 4.8. Any accumulation point for µβ is the barycenter of the ergodic
Equilibrium States associated to f . Moreover, for every [i] such that IKφ ∩ [i] 6= ∅
and the irreducible component in IKφ which intersects [i] has maximal f -pressure,
we have

lim
S
χ(S) = τP ,

where χ is defined as above.
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5 Components with possible limit measure

We have just proved that only the irreducible components in IKφ with maximal f -
pressure can have positive limit measure (for any accumulation point of µ̂β). We
now want to precise how much they will count in the limit measure. The goal of
this section is to introduce the important parameter, called the isolation rate of the
components which will determine which component have positive limit measure. If
there is only one irreducible component in IKφ with maximal f -pressure, then µ̂β

converges to the unique Equilibrium State of IKφ when β goes to +∞. In that case,
the Theorem is proved (and is obvious). Therefore, and for the rest of the proof, we
denote by IKφ(1), . . . , IKφ(q) the q > 1 irreducible components in IKφ with maximal
f -pressure.
We also recall that P denotes the f -pressure of IKφ.

5.1 The function χ and the transition costs

We have proved that for every 1-cylinder [i] which intersects some irreducible compo-
nent with maximal f -pressure, the limit of the function χ (which a priori depends
on [i]) is independent of the choice of the cylinder. In fact we have some better
result:

Lemma 5.1. The function χ is independent of the choice of IKφ(l) and of the choice
of the 1-cylinder which intersects IKφ(l).

Proof. Pick two different 1-cylinders which intersect two different irreducible com-
ponents of IKφ with maximal f -pressure. Pick two unstable leaves Fi and Fj, set
A := [i] t [j] and F := Fi t Fj. Pick some real number β; then we can identify µ̂β

to some µ̃S,P (S) for some S (and for the map induced in F ). We denote by νS the
associated equilibrium State for (F, gF ). The main idea in the proof is to see the first
return map (and projection onto Fi) as the first return map in [i] by iterations of σ
or by iterations of gF . In the first case the measure µ̂β gives a measure associated
to the operator LSi,[i] for some real Si. In the second case, Fi is a subset of F with
positive νS-measure. Copying the method that we recalled in section 3, but with

gF instead of σ, the conditional measure νi
S

def
=

νS(. ∩ Fi)

νS(Fi)
can be found as some

measure associated to the Transfer Operator L̂Ui,[i] but for another function θ (the
parameter Ui (which depends on S) plays the same role than S when we defined the
local Ruelle-Perron-Frobenius operator in section 3). Namely this operator is

L̂Ui,[i](T )(y) =
∑

x∈dpre(y)

eSri(x)(f)(x)−ri(x).S−Sri(x)(φ)(x)P (S)−ri,F (x)Ui(S)T (x),

where Ui is chosen such that this operator has 1 for spectral radius, and p̂re(y)
denote the set of preimages of y by the first return in Fi by iterations of gF . As



5. Components with possible limit measure 20

any iteration of gF equals πF composed with some iteration of σ, the set p̂re(y) is
exactly the set of preimages of y by the map gFi

(first return in [i] by iterations of
σ and projection onto Fi). In the previous formula, ri(.) denotes the first return
time in [i] by iteration of σ, and ri,F (.) denotes the first return time map in Fi by
iterations of gF .

Each adjoint operator admits a unique eigenvector; these two eigenvectors are
measures on Fi which are both equivalent to the gFi

-invariant measure νi
S. Notice

that the associated Radon-Nikodym derivative is the eigenvector of each operator.
Therefore we obtain for almost every point x,

e−ri(x).S−Sri(x)(φ)(x)P (S)−ri,F (x)Ui(S) � e−ri(x).Si−Sri(x)(φ)(x)Pi(Si), (11)

where � means that the equality holds up to some multiplicative constant. Notice
that due to the form of the functions we consider, the multiplicative constant does
no depend on S or Ui (see lemma 3.5). More precisely (11) holds for every n-set for
the map gFi

and for every n.
Now, by proposition 3.10 we must have

−Pi(Si) = τ.S − χ(S) = β = τ.Si − χi(Si) = −P (S). (12)

As [i] and [j] are in different irreducible components, any minimal-periodic orbit
which joins [i] and [j] has a transition cost greater than α. We pick any such
periodic orbit. We can make a looping with this loop to glue on [j] any minimal
periodic orbit in the irreducible component IKφ([j]) which contains [j]. We can
repeat this looping as many times as wanted, it will not add any transition cost, by
definition (and construction) of IKφ. For such an orbit, there is an affine relation
between ri,F and ri:
when ri,F = n + 2, with n any integer, ri = n.L + R, when R is the length of the
minimal loop between [i] and [j] we are considering and L is the length of the loop
in IKφ([j]). Then (11) and (12) yield to

∀ n ∈ IN, (n+ 2)Ui =
nL+R

τ
(χ(S)− χi(Si)). (13)

Now, remember that Ui is chosen such that the associated transfer Operator has
1 for spectral radius. Then, copying proposition 3.9, the theorem of the implicit
function gives for the derivative of the map S 7→ Ui:

dUi

dS
= −

−
∫

Fi
ri dν

i
S −

∫
Fi
Sri

(φ)dνi
S.

dP (S)
dS

−
∫

Fi
ri,FdνS

≡ 0.

This means that the function Ui is constant. Letting n goes to +∞ in (13) and
then letting S go to +∞, we also have Si → +∞ and thus proposition 4.8 yields to
Ui ≡ 0. If [i] and [j] meet the same irreducible component we choose any [i′] which
intersects some other irreducible component. This finishes the proof.



5. Components with possible limit measure 21

It makes now sense to talk about χ(S) without specifying which A is used.

Definition 5.2. Let us pick some n-periodic orbit {x, . . . σn−1(x)}, in Σ. The peri-
odic orbit will also be called the loop x. We denote by ρx the term n − τ.Sn(φ)(x).
We call it the transition cost of the loop.
We denote by L the set of minimal loops which are not contained in any IKφ(l).

Remark 6. If {x, . . . σn−1(x)} is loop in L, its Birkhoff average is strictly smaller
than ρ(φ). Then ρx is positive. We denote by α the minimal transition cost among
all the loops in L.

Now remember that every periodic orbit can be decomposed in minimal loops
and that φ is constant on every 1-cylinder. Thus, the transition cost for any periodic
orbit can simply be defined as the sum of the transition cost for the minimal loops
which compose the considered periodic orbit. With this definition, any periodic
orbit in IKφ has a transition cost equal to 0.

If y is a periodic point which does not belong to any IKφ(l), it defines some loop
in L. For the rest of the proof we will blur the point y and the associated loop in L.

Definition 5.3. Let {y, . . . , σn−1(y)} be a loop in L. We denote by pl(y) the number
of 1 ≤ k ≤ n−1 such that C1[σ

k(y)] intersects IKφ(m), with m 6= l, and C2[σ
k−1(y)]

does not intersect with IKφ(m). We denote by al(y) the term

e−ρy .S

(χ(S)− τ.P)pl(y)
,

where ρy is the transition cost of the loop

5.2 The isolation rate

Let us pick some 1-cylinder [i] which intersects some IKφ(l). Let us set A := [i]. In

A we pick some F of unstable leaf. We denote by L̃T,[i] the Ruelle-Perron-Frobenius
operator on F defined as in section 3 but where we only consider preimages y whose
associated (rA(y)+1)-cylinder is a word which appears in IKφ(l); T is the parameter
which was designed by S in section 3. By definition of the Ruelle-Perron-Frobenius
operator we have

LS(T )(x) =
∑

y∈Pre1(x)∩πF (IKφ(l))

eΘ(y)−rA(y).S−P (S).SrA(y)(φ)(y)T (y) +

∑
y∈Pre1(x)\πF (IKφ(l))

eΘ(y)−rA(y).S−P (S).SrA(y)(φ)(y)T (y).

Remember that for any y in Pre1(x)∩πF (IKφ(l)), the word of length rA(y) associated
to y is a word in IKφ(l). Then for such a y we have SrA(y)(φ)(y) = rA(y)ρ(φ).
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Exchanging −P (S) by its value, the first term in the right side of the previous
equality is exactly

L̃χ(S)
τ

,[i]
(T )(x) =

∑
y∈Pre1(x)∩πF (IKφ(l))

eΘ(y)−rA(y).
χ(S)

τ T (y).

We denote by ΨS,[i](T )(x) the second term. Then we have

LS(T )(x) = L̃χ(S)
τ

,[i]
(T )(x) + ΨS,[i](T )(x). (14)

We can now state one important result:

Proposition 5.4. There exists some power series Gl(S) with non-negative coeffi-
cients in all the eC′

f pl(y)al(y), where C ′
f is a constant which depends only on f , such

that
||ΨS,[i](T )|| ≤ ||T ||Gl(S), (15)

and each term in Gl(S) contains at least one al(y), where y is a minimal loops which
intersects [i].

Corollary 5.5. If for all y al(y) → 0 as S goes to +∞, then LS converges to L̃P,[i]

and the eigenvector HS converges to the unique eigenvector (up to some multiplica-

tive constant) associated to 1 for L̃P,[i].

Notice that the operators L̃T,[i] act on the continuous functions defined on the
whole unstable leaf F because it uses the preimages. Thus it makes sense to talk
about the limit of the functions HS as an eigenvector for the operator L̃P,[i].

Proof. (of proposition 5.4) We obviously have |T (x)| ≤ ||T || = ||CT ||.1IF (x). There-
fore we only want to give some upper bound for ΨS,[i](1IF )(x). Moreover, the Hölder
regularity of f and the fact that φ is constant on every 1-cylinders yields to

e−Cf ||ΨS,[i](1IF )|| ≤ ΨS,[i](1IF )(x) ≤ eCf ||ΨS,[i](1IF )||,

for some constant Cf which does only depend on f . Therefore we only have to
compute ΨS,[i](1IF )(x) for a given x in F .

Computing ΨS,[i](1IF )(x), we have to estimate and to sum expressions

eΘ(y)−rA(y).S−P (S).SrA(y)(φ)(y)

where y is a typical point in Pre1(x) \ πF (IKφ(l)). Let us consider some typical y as
above and such that ri(y) = n. The n-cylinder associated to y gives a word w which
is the same than some n-periodic point in [i]. Moreover this word can be decomposed
in minimal loops. Among these loops, some are in L and some are associated to
points in IKφ. We associated to y its basic loop, which is the loop obtained when
we remove all the subloops in w which are ”in” irreducible components. This basic
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loop is composed by several minimal loops in L. Among them, only one contains
the letter i because we are studying the first return in [i]. The strategy to get (15)
is to count all the contributions in function on their basic loop.

Let z be some preimage of x, and let y be its basic loop. The word associated to
z is the word associated to y where we eventually glue via a looping some turns in
some irreducible components IKφ(m) (with m 6= l). Due to the Hölder regularity of
f and to the fat that φ is constant on every 1-cylinder, all the Birkhoff sums along
the piece of orbits where σs(z) and σs(y) are in the same 1 cylinder are equal, up to
the constant Cf . Let y1, . . . , yt be the minimal loops which compose y; then when
we decompose the Birkhoff sums for z in parts close to y, the constant Cf appears
at most pl(y1) + . . .+ pl(yt) times.

• Let us first assume, for simplicity, that y is a minimal loop and pl(y) = 1.
For simplicity we also assume that the loop y does not meet IKφ(l) in another 1-
cylinder than [i] (see Figure 1) and intersects IKφ(m).

Figure 1: counting orbits

The contribution of the basic loop is

eSna+nr (f)(y)−ρy .S−χ(S).Sna+nr (φ)(y).

The loop starts from F , needs a time na to reach IKφ(m) and then goes back to F ,
needing a time nr. Notice that χ(S) goes to τP as S goes to +∞; then, the speed
of convergence for the contribution of the loop is essentially given by e−ρy .S. Now,
we can glue on {y, . . . , σna(y), σna+1(y), . . . , σna+nr−1(y)} some loop in IKφ(m) via
the looping principle. This loop can be as long as possible. Therefore, we will have
loops with contributions

eSna (f)(z)+Sk(f)◦σna (z)+Snr (f)◦σna+k(z)−ρy .S−χ(S)Sk(φ)(σna (z))−χ(S).Sna+nr (φ)(y).

To get this contribution, remember that φ is constant on every 1-cylinder. The
term eSna (f)(z) equals eSna (f)(y) up to e±Cf ; in the same way eSnr (f)◦σna+k(z) equals

eSnr (f)◦σna (y) up to e±Cf . Remember that the Birkhoff sum Sk(σ
na(z)) equals

k

τ
because it concerns the piece of orbit in IKφ(m) (we only consider complete loops).

Then, summing over all the k, the global contribution of all the loops whose
basic loop is y, and which meet only on time IKφ(m) (but turn a long time into it)
is

K(y).e−ρy .

+∞∑
k=0

Zk(m)e−k
χ(S)

τ ,

whereK(y) ≤ e2Cf .eSna+nr (f)(y)−τP.Sna+nr (φ)(y) and Zn(m) denotes the sum
∑

σn(y)=y, y∈IKφ(m)

eSn(f)(y).
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Now, Zn(m) equals enP , here again up to some multiplicative constant (this is a
standard computation for uniformly hyperbolic dynamical systems). Up to the fact
that we change Cf , we can assume that this constant is e±Cf . For S large, χ(S) is
close to τ.P and thus

+∞∑
n=0

Zn(m)e−n
χ(S)

τ ∼ 1

χ(S)− τP
.

Therefore, the contribution of the orbits we are considering is upper bounded by

K.e3Cf eSna+nr (f)(y)−τP.Sna+nr (φ)(y).e−ρy
1

χ(S)− τP
,

for some universal constant K. Notice that e−ρy
1

χ(S)− τP
exactly is al(y).

Notice also that the contribution of all the orbits whose basic loop is y is also

lower bounded by K ′.e−3Cf eSna+nr (f)(y)−τP.Sna+nr (φ)(y).e−ρy
1

χ(S)− τP
.

• Let us now still assume that y is a minimal loop but pl(y) ≥ 2.
The loop can meet several others irreducible components or one other component
but several times. We can again copy the previous case, except that we can now
turn as long as wanted in the several others IKφ(m) (or several series in the same
IKφ(m)). Now, the basic loop is minimal, then it has a maximal length. Therefore,
we can copy the previous case, and adapt it. This times, exactly pl(y) power series∑

k Zk(m).e−k.χ(S)/τ will appear. This give a global contribution for this loop upper
bounded by

K.e3pl(y)Cf eSri (f)(y)−τP.Sri (φ)(y)al(y),

for some universal constant K.
Notice that the definition of pl(y) implies that even if the loop y meets consec-

utively two times the same IKφ(m), no loop in this IKφ(m) contains this word (of
length 2). Hence we can differentiate loops starting from the first cylinder and loops
starting from the second cylinder.

Notice again that the contribution is lower bounded by someK ′.e−3pl(y)Cf eSri (f)(y)−τP.Sri (φ)(y)al(y)
• Let us now still assume that y is a minimal loop, but it meets IKφ(l) at least

two times. For such a basic loop, we could glue via the looping principle subloops
which turns a very long time in IKφ(l) without meeting [i]. The computation of the
global contribution of such loops is on the same kind than the second case; however
the difference is that one term Z ′

k(l) will only concern k-periodic orbits in IKφ(l)\ [i].
This quantity equals ekP ′ , up to some constant. But P ′ < P and then

1

1− e−χ(S)/τ+P ′

admits a finite limit as S goes to +∞. Therefore the added turns in IKφ(l) (but
without meeting [i]) only introduce some new multiplicative constant but does not
add new al(y

′).
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• If y is a minimal loop with pl(y) = 0 and it does not meet IKφ(l) several
times, there is no way to add extra-terms to this loops without changing the global
transition cost.

• recursivity:
If y is not a minimal loop, we can do such a work on all the minimal loops which
compose y. All the contributions will multiply themselves together, which produces
the power series in all the eCf pl(y)al(y) where we set C ′

f := 3Cf . This is a power
series with non-negative terms. Moreover for each minimal loop which intersects [i],
y, al(y) appears in the sum with valuation 1.

Remark 7. It is not clear that the power series Gl(S) converges. Nevertheless, we
always get lower bounds, exchanging Cf with −Cf and taking lower bound for the

comparison between
1

1− e−χ(S)/τ+P and
1

χ(S)− τP
instead of upper bound. As

ΨS,[i]1I is upper bounded, it proves that this new power series converges. Thus it
has a positive radius of convergence. Therefore the power series G(S) also have a
positive radius of convergence. Now an important point will be to prove that all
the al(y) go to 0 as S goes to +∞, which will prove the convergence for the power
series Gl(S) for large enough S.

5.2.1 The main tool.

We can now introduce the main tool to determine which components have positive
limit measure. The first step is to get some lower and upper bound for ΨS,[i](ri) in
the same way than (15).

Proposition 5.6. Let us set A
def
=

∣∣∣∣∫
F

r[i] dνS −
∫

F

L̃χ(S)
τ

,[i]
(r[i]HS) dνS

∣∣∣∣. Then, there

exist two power series such that∑
~n∈IN#L

a~n
1

(χ(S)− τ.P)ql(~n)

∏
y∈L

(al(y))
~ny ≤ A ≤

∑
~n∈IN#L

b~n
1

(χ(S)− τ.P)ql(~n)

∏
y∈L

(al(y))
~ny ,

(16)
where ~ny is the coordinate of ~n associated to the loop y in L, ql(~n) = 1 if there exists
some y such that ~ny ≥ 1 and pl(y) ≥ 1, and ql(~n) = 0 otherwise. Moreover, the a~n

and the b~n are non-negative, and a~n = 0 if and only if b~n = 0.

Proof. The first return time is constant on every 1 sets, and mS is L∗S-invariant.
Therefore we get∫

F

ri dνS =

∫
F

ri.HS dmS =

∫
F

LS,P (S)(riHS) dmS,

where LS(riHS) has the same expression than for any continuous function.
Then we use (14) to get some estimate like (15): the term A in (16) equals∫
ΨS,[i](riHS) dmS which is positive as a positive sum. We thus use (2) (p.9) to



5. Components with possible limit measure 26

give some upper and lower bound for HS. Therefore it amounts on giving estimates

for

∫
ΨS,[i](ri) dmS. Copying the proof of (15), we decompose the sum on the sum

of the contributions of the basic loops. To get an upper bound for A, it is thus

sufficient to sum upper bounds for the terms in

∫
ΨS,[i](ri) dmS or equivalently for

just one ΨS,[i](ri)(x) (up to some eCf ). To get lower bound for A it is sufficient to

give lower bounds for the terms in

∫
ΨS,[i](ri) dmS. But notice that is a sum of

positive terms, and thus 0 is an obvious lower bound for each term.
• Let us assume that the basic loop y is minimal and satisfies pl(y) = 1. We

have to compute the sum over k of∫
(na+k+nr)e

Sna (f)(z)+Sk(f)◦σna (z)+Snr (f)◦σna+k(z)−ρy .S−χ(S)Sk(φ)(σna (z))−χ(S).Sna+nr (φ)(y) dνS(x),

where z is the preimage of the considered point x whose piece of orbits admits y
as basic loop and turns for a time k in IKφ(m). The arguments are the same as
before, except that we have to care about the coefficient na + k + nr in front of the
exponential.

However y is a minimal loop, and so na +nr is upper bounded by N . Therefore,
when we sum over k, the global contribution C1(y) of∫

(na+nr)e
Sna (f)(z)+Sk(f)◦σna (z)+Snr (f)◦σna+k(z)−ρy .S−χ(S)Sk(φ)(σna (z))−χ(S).Sna+nr (φ)(y) dνS(x),

is upper bounded by K.e3Cf .al(y), as it was proved above. It is also lower bounded
by K ′e−3Cf .al(y).

Now, summing over k the global contribution C2(y) of∫
keSna (f)(z)+Sk(f)◦σna (z)+Snr (f)◦σna+k(z)−ρy .S−χ(S)Sk(φ)(σna (z))−χ(S).Sna+nr (φ)(y) dνS(x),

has order e−ρy .S
∑

k

kZm(k).e−χ(S)/τ . Here ”order” means equal up to some multi-

plicative constant e±2Cf . Hence, the global contribution has order
al(y)

(χ(S)− τ.P)
.

As χ(S)− τ.P goes to zero as S goes to +∞, C2(y)/C1(y) goes to +∞ as S goes to
+∞. This proves that the global contribution of all the preimages which have y as

basic loop has order
al(y)

(χ(S)− τP)
.

• Let us assume that y is a minimal loop but pl(y) ≥ 2. Let IKφ(mt) 1 ≤ t ≤ r
be the r visited irreducible components (ordered by the order of visits). Then the
global contribution is proportional to

e−ρy .S.

+∞∑
k=0

∑
k1+...+kr=k

(k + l(y))
∏

t

Zmt(kt)e
−kχ(S)/τ ,
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where Zmt(kt) is the number of kt-periodic points in IKφ(mt) and l(y) is the length
of the basic loop y. Now, the sum

+∞∑
k=0

∑
k1+...+kr=k

k
∏

t

Zmt(kt)e
−kχ(S)/τ

is proportional to
1

(χ(S)− τ.P)pl(y)+1
, and the sum

+∞∑
k=0

∑
k1+...+kr=k

l(y)
∏

t

Zmt(kt)e
−kχ(S)/τ

is proportional to
1

(χ(S)− τ.P)pl(y)
. This proves that the global contribution of all

these loops is ”proportional” to
al(y)

(χ(S)− τ.P)
.

• Let us assume that y is a minimal loop but it meets IKφ(l) several times. Then
the situation is the same than the previous case, except that when mt = l, we have

Zl(kt) � ek.P ′ .

As P ′ < P , if pl(y) = 0 (the loop does not meet any other IKφ(m)), then the global
contribution is proportional to al(y). If pl(y) > 0, the sum without the excursions
in IKφ(l) \ [i] is smaller than the sum with the excursion. However, the convergence
of the series

∑
es(P ′−P) proves that the sum with the excursions is upper bounded

by
1

(1− eP ′−P)d
multiplied by the sum without the excursions (in IKφ(l)\ [i]), where

d is the number of possible excursions. Therefore in the global sum, we can remove
the terms with the excursions, in the lower bound and in the upper bound for A.

• If y is a minimal loop with pl(y) = 0 and which does not meet IKφ(l) several
times, then we upper bound its length by N and lower bound it by 1.

• Recursivity. Let y be any basic loop which is not a minimal loop. Then it
can be decomposed in finitely many minimal loops. As in the proof of (15) the
individual contributions multiply themselves to produce the power series. However,

it is important to notice that the extra term
1

χ(S)− τ.P
appears if and only if we

are computing a term

+∞∑
k=0

∑
k1+...+kr=k

k.
∏

t

Zmt(kt)e
−kχ(S)/τ ,

with mt 6= l, where the IKφ(mt) are the visited irreducible components by the basic

loop. This proves that the extra term
1

χ(S)− τ.P
appears if and only if ~ny ≥ 1 for

some y ∈ L satisfying pl(y) ≥= 1.
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The last point to check is that a~n = 0 if and only if b~n = 0. But notice that b~n
has been chosen by taking some upper bound for the contributions of the minimal
loops which compose the ”loop” ~n. The term a~n is obtained by taking lower bounds
for the minimal loops which compose ~n. However, for minimal loops, the different
cases has been studied, and the coefficient for the lower bound in al(y) equals 0 if
and only if the coefficient for the upper bounded equals 0. This finishes the proof
of the proposition.

Remark 8. We have a~n = 0 as soon as ny ≥ 2 for any basic (and minimal) loop y
which intersects [i]. Indeed, we are considering the first return in [i]!

Lemma 5.7. There exists some constant C = Cf which does not depend on S such

that if
∑

~n a~n

∏
|Xy|~ny converges, then

∑
~n b~n

∏(
e−C |Xy|

)~ny
also converges.

Proof. This simply follows from the definition of a~n and b~n: there exists some con-
stant which only depend on f such that

e−|~n|C ≤ a~n

b~n
≤ 1,

where |~n| =
∑

y ~ny.

The terms of the two power series in (16) which contains some
1

χ(S)− τ.P
are

on the form
e−β.S

(χ(S)− τ.P)γ
=

(
e−β/γ.S

χ(S)− τ.P

)γ

,

where γ is an integer and β is the transition cost of the basic loop. Namely γ is the
number of visited irreducible components different from IKφ(l), plus eventually 1 if
this number is positive. Notice that the other terms are on the form e−δ.S for some
positive δ and comes from loops which does not meet any IKφ(m) with m 6= l. As S
goes to +∞ the contribution of these terms goes to 0.

Definition 5.8. We keep the previous notations. The number I(l)
def
= inf

β

γ
is well

defined. It is called the isolation rate of the irreducible component IKφ(l).

We can now explain which irreducible components with maximal f -pressure can
have positive limit measure:

Proposition 5.9. Only irreducible components with maximal isolation rate can have
positive limit measure.

Proof. Let us assume that IKφ(1) has not a maximal isolation rate; let us assume that
for some subsequence of S (or equivalently of β) IKφ(1) has positive limit measure.
For simplicity we will write S → +∞ instead of taking the limit along the good
subsequence. We use the notations from above.
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• We claim that the term A in (16) is upper bounded (as S → +∞), thus the
right side term is upper bounded.

Indeed, the first term in A is 1/µβ([i]) which converges to some positive limit.
The function HS is bounded above and below from 0 by some constant which does
not depend on S (see 2). Moreover the critical ”Tc” for the operator L̃T,[i] is P ′, the
f -pressure of IKφ(1)\ [i]. We still have P ′ < P , and χ(S) decrease to τ.P . Therefore,

for every x in F , L̃χ(S)
τ

,[i]
(r[i]) is upper bounded by

eCf L̃P,[i](ri)(x) ≤ e2Cf
1

µ1([i])
.

As mS is a probability measure, we get the result.
• The fact that the term A in (16) is upper bounded implies that the lower bound

in (16) is also upper bounded. But this lower bound is a countable sum of term on
the form (

e−I(1).S−ε.S

χ(S)− τ.P

)n

,

where ε is non-negative. By definition of I(l), for every positive ε, a term
e−(I(1)+ε′).S

χ(S)− τ.P
appears (to some power) at least one time in the sum, with some 0 < ε′ < ε. This

term is thus upper bound. Therefore, every term on the form

(
e−I(1).S−ε.S

χ(S)− τ.P

)n

with

ε > 0 goes to 0 as S goes to +∞.
• Let us now assume that IKφ(2) has a maximal isolation rate. Let us pick some

1-cylinder [j] which intersects IKφ(2); let F be some unstable leaf in [j]. Then we
can write a revisited (16) with a middle term

A′ =

∣∣∣∣∫
F
r[j] dν

′
S −

∫
F
L̃χ(S)

τ
,[j]

(r[j]HS,j) dν
′
S

∣∣∣∣ .
We also have terms a′~n and b′~n instead of a~n and b~n. But χ(S) does not depend

on the 1-cylinder and then
e−I(2).S

χ(S)− τ.P
goes to 0 as S → +∞. Therefore, all the

terms
(a2(y))

~ny

(χ(S)− τ.P)q2(y)
uniformly go to zero as S goes to +∞. Hence lemma 5.7

implies that the power series with the b′~n goes to 0. Thus, the term A′ goes to 0.

Now corollary 5.5 proves that the term

∫
F
L̃χ(S)

τ
,[j]

(r[j]HS,j) dν
′
S converges to

1

µ2([j])
.

Doing the same for every [j] which intersects IKφ(2), we get that IKφ(1) has positive
limit measure and that the limit measure for IKφ(2) equals 1. Therefore, the total
limit measure is strictly larger than 1. This yields to a contradiction.
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6 End of the proofs

6.1 Existence of the limit.

We can now finish the proof of the Theorem. We recall that proposition 5.9 proves
that if there is only one irreducible component in IKφ with maximal f -pressure
and maxima isolation rate, then µ̂β converges to the unique Equilibrium State of
this irreducible component IKφ when β goes to +∞. In that case, the Theorem
is proved (and is obvious). Therefore, and for the rest of the proof, we denote by
IKφ(1), . . . , IKφ(q) the q > 1 irreducible components in IKφ with maximal f -pressure
and with maximal isolation rate.

We already know any accumulation point µ of µβ satisfies

µ =
∑

j

cjµj,

where µj is the unique equilibrium state associated to f in IKφ(j). As any 1-cylinder
meets at most only one irreducible component, the previous equality gives

µ([i]) = cjµj([i]),

for any 1-cylinder [i] which intersects IKφ(j). But µj([i]) is well-determined. Thus, it
is sufficient to prove that for any 1-cylinder µβ([i]) converges to prove the Theorem.

Let I be the maximal isolation rate. Our goal is to give an expression of any
accumulation point of µβ([i]) in function of the associated accumulation point for

e−I.S

χ(S − τ.P)

Proposition 6.1. Let I be the maximal isolation rate. Let [i] and l be such that
the irreducible component IKφ(l) intersects [i] and has maximal isolation rate. Then
there exists some Ll ∈ IR+ ∪ {+∞} and some non-negative increasing function
Fl : [0,+∞[→ IR+ ∪ {+∞} satisfying Fl(x) = +∞ as soon as x > Ll (when it

makes sense) and Fl(0) = 0, such that for every accumulation point for
e−I.S

χ(S)− τP
,

L, we have

lim
β
µβ([i]) =

µ̂l([i])

1 + µ̂l([i])Fl(L)
,

where Fl(L) belongs to R+ ∪{+∞} and where limβ means following the family of S
which gives the accumulation point L.

Before proving this proposition, we explain how we can deduce the Theorem
from this result. We must have for every β∑

i

µβ([i]) = 1,



6. End of the proofs 31

because µβ is a probability measure. Keeping only the irreducible components which
have maximal f -pressure and maximal isolation rate we must thus have

1 =
∑
l,i

µ̂l([i])

1 + µ̂l([i])Fl(L)
. (17)

The fact that each function is increasing and non-negative implies that there are
only finitely many possible values for L such that (17) effectively holds. But L is

an accumulation point for the continuous function S 7→ e−I.S

χ(S)− τP
; therefore the

set of accumulation points for this function is a non-empty interval which contains
only finitely many points. It is thus reduced to a single point; this proves that

e−I.S

χ(S)− τP
converges to the unique possible L, and then that µβ([i]) has a unique

possible accumulation point. Hence, it converges.
The rest of this subsection is devoted to the proof of proposition 6.1. The goal

is to obtain some relation like (16) but with an exact equality. Let us assume that
IKφ(1) has a maximal isolation rate; let us pick some [i] which intersects IKφ(1). We
want to compute

∫
F
LS,P (S)(1ICri.HS) dmS for each 1-set C in F , where F is some

fixed unstable leaf in [i]. Notice that this first return time is constant on this 1-set.
Hence we associate to each 1-set a unique piece of orbit (ie its word). As above,
some of these words are “in” IKφ(1), some others are pieces of orbits which leave [i]
reach some other irreducible component (and may be several) and then return in
[i]. Orbits in IKφ(1) produce the second term in the left side term in (16). Hence
we only consider pieces of orbits on the second form.

6.1.1 Counting loops

The main point is to compute which orbits produce the I. If a, b, c, d, e are positive

real numbers, the function x 7→ d+ ax

e+ xc+ 1
increases (in x) if

a

c
>

d

e+ 1
, decreases

(in x) if
a

c
<

d

e+ 1
and is constant if

a

c
=

d

e+ 1
. This also holds if e = 0. Therefore

three possibilities can occur:

1. I =
d

e+ 1
,with e > 0 , where there exists some basic and minimal loop y

starting from [i] which satisfies al(y) =
e−d.S

(χ(S)− τ.P)e
.

2. I =
a

c
, with c > 0, where there exists some minimal loop y with empty

intersection with [i] which satisfies al(y) =
e−a.S

(χ(S)− τ.P)c
.
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3. I =
d

e+ 1
=
a

c
, where there exist two minimal loops y and z which satisfy

al(y) =
e−d.S

(χ(S)− τ.P)e
and al(z) =

e−a.S

(χ(S)− τ.P)c
, the loop y intersects [i] but

the loop z have an empty intersection with [i] and both loops intersects the
same 1-cylinder. In that case e can equal 0.

Notice that the three cases can occur in the same time. Moreover the last possibility
can occur in a more complicated way, where the loop y meets several loops ”z” or
even the same loop several times. However the principle is the following :

1. the term e−I.S due to the considered loop appears exactly one time in the
power series and all the other terms are on the form e−(I+ε).S.

2. The term e−I.S due to the considered loop never appears, but the more a basic
loop uses z, the more the associated contribution is closed to e−I.S.

3. The term e−I.S due to the considered loop appear infinitely many often in the
power series.

6.1.2 Proof in the first case

Namely we are considering that I is only produced by basic and minimal loops y

such that I =
d

e+ 1
,with e > 0 and a1(y) =

e−d.S

(χ(S)− τ.P)e
. The fact that e is

positive means that the loop y meets some IKφ(l) with l 6= 1.
•Let us first consider a loop y which meets only one other irreducible component

IKφ(2), and only one time. The contribution of al the loops with basic loop y is the
sum over k of∫

(na+k+nr)e
Sna (f)(z)+Sk(f)◦σa(z)+Snr (f)◦σna+k(z)−ρy .S−k

χ(S)
τ
−χ(S)Sna+nr (φ)(y)HS(ξ) dνS(ξ),

where na is the time that the point y needs to reach IKφ(2) and nr is the time
that σna(y) needs to reach [i] and z is the associated preimage of ξ. Here the loop
is exactly y, . . . , σna+nr−1(y). Let us denote by [j] the 1-cylinder which contains
σna(y). Let Fj be any unstable leaf in [j]. The map σa := πFj

◦ σna is a bijection
from the projection on F of the (0, na)-cylinder which contains y onto Fj. We denote
by F (2) the projection on F of the (0, na)-cylinder which contains y. Notice that
this cylinder is a disjoint union of 1-sets. In the same way, there is a bijection σr

from the projection on Fj of the (0, nr)-cylinder which contains σna(y) onto F .
Therefore any loop z whose basic loop is y and which have an excursion of length k
in IKφ(2) is a point which belongs to F (2) and such that σnr+na+k(z) = σr(z

′) where
z′ = πFj

(σna+k(z)).
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Figure 2: computing orbits

However, the estimations done in the proof of proposition 5.6 proves that the
global contribution of the terms in∫

(na + nr)e
Sna (f)(z)+Sk(f)◦σa(z)+Snr◦σna+k(z)−ρy .S−k

χ(S)
τ
−χ(S)Sna+nr (φ)(y)HS(ξ) dνS(ξ),

is negligible in front of the contribution due to terms in∫
keSna (f)(z)+Sk(f)◦σa(z)+Snr◦σna+k(z)−ρy .S−k

χ(S)
τ
−χ(S)Sna+nr (φ)(y)HS(ξ) dνS(ξ).

We now use the fact that L̃P,[j] has a spectral gap. Considering the semi-infinite
subshift of finite type IKφ(2)

+ instead of the bi-infinite subshift IKφ(2) means that we
choose some unstable leaf in each 1-cylinder which intersects IKφ(2) and we consider
the projection onto these unstable leaves. We can do it such that we choose Fj in

[j]. Then, we denote by L̂P,2 the Ruelle-Perron-Frobenius associated to f in the
semi-infinite subshift of finite type IKφ(2)+. This operator has a unique dominating
eigenvalue, which is eP . It has thus a spectral gap, which ensures the exponential
convergence of the iterations of this operator. Hence, lemma 1.12 in [3] applied to
1I[j] yields that there exists some constant 0 < λ(2) < P such that for every ξ in Fj

and for every continuous function T on Fj∣∣∣∣L̂k
P,2(T )(ξ)−

∫
T dν̃2ekPH2(ξ)

∣∣∣∣ ≤ ||T ||∞ekλ(2), (18)

where ν̃2 is equivalent to the projection onto IKφ(2)
+ of the measure µ2 (namely ν̃2

is the eigenvector for L∗P,2 associated to P) and H2 is the normalized eigenvector for
LP,2. Notice that the Markov property means that (18) effectively holds for every
ξ in Fj, even if the point does not belong to IKφ(2)

+ ; as it was said after corollary
5.5, it make sense to talk about H2 in the whole Fj and not only in Fj ∩ IKφ(2)+.

Applying (18) with T := eSna (f)◦σ−1
a and multiplying by eSnr (f)(.)−ρy .SHS ◦ σr(.),

we get

∣∣∣∣∣∑
z

eSna+k+nr (f)(z)−ρy .SHS(ξ)−
(∫

eSna (f)◦σ−1
a dν̃2

)
ekP−ρy .SeSnr (f)◦σ−1

r (ξ)H2 ◦ σ−1
r (ξ)HS(ξ)

∣∣∣∣∣ ≤

||eSna (f)◦σ−1
a ||∞ekλ(2)−ρy .SeSnr (f)◦σ−1

r (ξ)HS(ξ), (19)

where ξ is any point in F , and the sum is over the points z such that their basic
loop is y and r[i](z) = na + k + nr and gF (z) = ξ. Therefore (19) yields to
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∣∣∣∣∣k∑
z

eSna+k+nr (f)(z)−ρy .S−k
χ(S)

τ
−Sna+nr (φ)(y)χ(S)HS(ξ)−(∫

eSna (f)◦σ−1
a dν̃2

)
ke−k(

χ(S)
τ
−P)−ρy .S−Sna+nr (φ)(y)χ(S)eSnr (f)◦σ−1

r (ξ)H2 ◦ σ−1
r (ξ)HS(ξ)

∣∣∣∣ ≤

||eSna (f)◦σ−1
a −Sna+nr (φ)(y)χ(S)||∞ke−k(

χ(S)
τ
−λ(2))−ρy .SHS(ξ)eSnr (f)◦σ−1

r (ξ). (20)

Remember that χ(S) → τP when S goes to +∞, and that λ(2) < P . Thus,
integrating (20) and summing over k we get∑

(k + na + nr)

∫
eSna (f)(z)+Sk(f)◦σa(z)+Snr (f)◦σna+k(z)−ρy .S−k

χ(S)
τ
−χ(S)Sna+nr (φ)(y)HS(ξ) dνS(ξ) =(∫

eSna (f)◦σ−1
a dν̃2

)
.e−Sna+nr (φ)(y)χ(S)

(∫
eSnr (f)◦σ−1

r (ξ)H2 ◦ σ−1
r (ξ)HS(ξ) dνS

)
e−(

χ(S)
τ
−P)−ρy .S

(1− e−(
χ(S)

τ
−P))2

+o(S),

(21)

with lim+∞ o(S) = 0. Notice that

e−C(na+nr).e−ρy .Se−Sna+nr (φ)(y)χ(S) ≤ o(S) ≤ eC(na+nr).e−ρy .Se−Sna+nr (φ)(y)χ(S),

where C does only depend on f . This can be easily checked by using upper or lower
bounds for f .

Notice that
∫
eSna (f)◦σ−1

a dν̃2 does not depend on S, that e−Sna+nr (φ)(y)χ(S) con-
verges when S goes to +∞. Remember that νS is a probability measure on F and
that HS is upper bounded by some constant which does not depend on S. Now we
have

e−(
χ(S)

τ
−P)−ρy .S

(1− e−(
χ(S)

τ
−P))2

=
τ 2e−ρy .S

(χ(S)− τ.P)2
+ o(S),

when S goes to +∞. Therefore the contribution of all the loops whose basic loop is

y exactly equals Ay(S).
al(y)

χ(S)− τ.P
+ o0(S), with

Ay(S) = τ 2.

(∫
eSna (f)◦σ−1

a dν̃2

)
.e−Sna+nr (φ)(y)χ(S).

(∫
eSnr (f)◦σ−1

r (ξ)H2 ◦ σ−1
r (ξ)HS(ξ) dνS

)
,

and o0(S) ≈ a1(y). Also remember that
al(y)

χ(S − τ.P)
=

(
e−I.S

χ(S)− τ.P

)2

.

• If the loop y meets several other irreducible component, the same kind of
computation can be made. We let the reader check that if IKφ(l1), . . . , IKφ(lt) are
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the ordered visited irreducible components, then the global contribution of all the

loops whose basic loop is y equals Ay(S).
al(y)

χ(S)− τ.P
+ o1(S), with

Ay(S) = τ pl(y)+1.

(∫
eSn0,1 (f)◦σ−1

0,1 dν̃l1

)
.e−Sn(φ)(y)χ(S).

t−1∏
k=1

(∫
eSnk,k+1

(f)◦σ−1
k,k+1(ξ)Hk ◦ σ−1

k,k+1 dν̃
lk+1

)
(∫

eSnt,t+1 (f)◦σ−1
t,t+1(ξ)Hk ◦ σ−1

t,t+1HS(ξ) dνS

)
+ o(S),

(22)

where n is the length of the loop y, nk,k+1 is the time the loop y needs to go from
IKφ(lk) to IKφ(lk+1), with the convention l0 = 1 = lt+1, Hk are functions which do
not depend on S and ◦σk,k+1 is the bijection from the subset in unstable leaf in the
1-cylinder which intersects IKφ(lk) to unstable leaf in the 1-cylinder which intersects
IKφ(lk+1) as before σa and σr: namely, if t = 1 σ0,1 = σa and s1,2 = σr.
This claim is proved by induction. It was proved for t = 1 above; the case
t = 2 is obtained in the same way, but we have to multiply the formula (18) by
eSn1,2 (f)(.)−ρy .SH2◦σ1,2(.), to apply the operator and then to multiply by eSn2,3 (f)(.)−ρy .SHS◦
σ2,3(.), and so on for the other t. The term o1(S) has order eC(na+nr).al(y). Here
again C does only depend on f . The term o1(S) is thus much smaller than the first
one for large enough S. More precisely we have

e−C(na+nr).al(y)e
−Sna+nr (φ)(y).χ(S) ≤ o1(S) ≤ eC(na+nr).al(y)e

−Sna+nr (φ)(y).χ(S).

Remark 9. Notice that when compute the sum over k, we have to compute the
sum over all the k1 + . . .+kp1(y) = k. This produces some np1(y)−1

(p1(y)−1)!
. Then computing∑

np1(y)en(P−χ(S)/τ) we produce some p1(y)! ; both terms are balanced.

In the previous calculation we have computed the dominating terms. Relation
(16) proves that all the contribution of all the other terms goes to zero when S goes
to +∞. Moreover, each dominating term is associated to some ”small” perturba-
tion: there are the correcting terms ”o0(S)” and ”o1(S)”. However each dominating
term due to a loop y only introduces finitely many perturbations, which have order

(a1(y))
p1(y) (compared to

a1(y)

χ(S)− τ.P
which is the order of the dominating term).

Therefore, if only basic and minimal loops produce the term I, then the term I
only appears finitely many times in the global sum. There are only finitely many
dominating terms in the global contribution, thus finitely many perturbations, which
are effectively much smaller than the dominating terms (remember that χ(S) →
τ.P). In that case we have∣∣∣∣∫

F

r[i] dνS −
∫

F

L̃χ(S)
τ

,[i]
(r[i]HS) dνS

∣∣∣∣ = F1,S(
e−I.S

χ(S)− τ.P
)(1 + o(S)), (23)
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where F1,S(.) is a polynomial with positive coefficient, and o(S) goes to 0 when S goes
to +∞. Namely, the coefficients of F1,S(.) are the terms Ay(S), where y describes
the (finite) set of minimal basic loops which produce the I. Remember that HS is
uniformly bounded (see (2)). This proves that all the coefficient are positive (the
null coefficient have no contribution !). Now, we re considering families of S such
that limβ µβ([i]) exists. As all the HS are equicontinuous (see remark 2)), we always
can assume that the HS converge for some subfamily as Hölder continuous functions.
This proves that the coefficients of F1,S converge to positive coefficients. Hence we
set L1 := +∞

Let L < +∞ be any accumulation point for
e−I.S

χ(S)− τ.P
. For every basic loop,

y such that q1(y) = 1 we have

0 ≤ a1(y) ≤ (χ(S)− τ.P)q1(y)

(
e−I.S

χ(S)− τ.P

)p1(y)+1

,

which yields to limS a1(y) = 0. This also holds for every basic and minimal loop
y such that q1(y) = 0 because in that case a1(y) = e−ρy .S. Therefore corollary 5.5
holds, which yield to the fact that HS converge to ”H1”. This proves that the limit
F1 does not depend on L. It is a polynomial with positive coefficient. Moreover the
limit does not depend on [i] but only on IKφ(1), because for any [i′] which intersects
IKφ(1), there exists loop in IKφ(1) which joins [i′] and [i]. Therefore, for any [i′] and
for any loop y for [i], we can construct one loop y′ for [i′] by doing the looping of
the loop y with the loop which joins [i′] and [i].

Now, again corollary 5.5 yields to the fact that the second term in the left side

of (23) converges to
1

µ1([i])
. Hence (23) is equivalent to

lim
β

1

µβ([i])
=

1

µ1([i])
+ F1(L),

where L is any (finite) accumulation point for
e−I.S

χ(S)− τ.P
.

Notice that the polynomial F1 has a positive valuation, because for every basic
loop y introduces a contribution proportional to Lp1(y)+1. This proves proposition
6.1 in that case.

6.1.3 Proof in the second or the third case

We are now considering a basic loop y which can be decomposed in two parts. Some
loop which intersects [i], namely y′ and some minimal loop z which intersects the
irreducible component which produces the I (see fig. 3). The loop y is obtained by
concatenating several times the loop z, and doing a looping with this result and the
loop y′. We denote by yN the loop obtained when we concatenate N times the loop
z.
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Figure 3: Second case

• Let us first assuming that the minimal loop y′ does not meet any IKφ(l). Let
us denote by [i′] the 1-cylinder where we do the looping with z and y′. We fix some
integer N and compute all the contributions due to the loop yN .

We can copy (and adapt) what has been done before. Let us fix k1, . . . , kN

integers such that k1 + . . .+kN = k. We claim that the sum over all the possibilities

of

∫
eSn(f)(ξ)+β.Sn(φ)(ξ)−nSHS(ζ)dνS(ζ), where ξ is a preimage of ζ, is

e−Sp+Nt(φ)(yN )χ(S)
∑∫

P1(k1)(ζ) . . . PN(kN)(ζ)HS(ζ)dνS(ζ)e−(ρy′ .Nρz)S, (24)

where Pi(ki)(ζ) is a polynomial in ki of degree p1(z)− 1,
∑
ki = k, p is the length

of y′, t is the length of z, and ξ is the associated preimage of the point ζ. The claim
is proved by using (18) by induction ; in the loop z (to obtain a relation closed to
(22) it produces Pi(ki)(ζ). More precisely the polynomial Pi(ki) equals

α(p1(z), ki)e
ki(P−χ(S)/τ)Ai + Ti(ζ)e

ki(P−χ(S)/τ) +Qi(ζ),

where α(p1(z), ki) is the number of possibilities such that t1 + . . . tp1(z) = ki (where
the tl are integers). The term Ai is the product of integrals like in (22), but for the
considered loop. Notice that except for P1 and PN , all the Ai are equal. For A1 there
is the first part of the orbit, namely the loop y′ till the 1-cylinder [i′] and for PN

there is the last part of the loop y′ from [i′] back to [i]. The terms Ti(ζ) and Qi(ζ)
are the correcting terms, which can be upper and lower bounded by using (18). This
bounds do not depend on ζ. A bound for the term |Ti| is obtained by using (18),
and when we take at least one time in all the possibilities some dominating term
in etlP (still with t1 + . . . tp1(z) = ki). It is thus a polynomial of degree p1(z) − 2
in ki. Except for 1 and N , this polynomial does not depend on i. The term Qi(ζ)
is obtained when we never take any dominating term is the previous sum. Thus,
|Qi(ζ)| is lower than α(p1(z), ki)e

ki(λ−χ(S)/τ)Ci for some λ < P and some constant
Ci. Here again, except for 1 and N , al the Ci are equal.

Upper bound for the contribution Taking such upper bounds, we get for upper
bound the term

e−Sp+Nt(φ)(yN )χ(S)e−(ρy′ .Nρz)S∏
i

(α(p1(z), ki)e
ki(P−χ(S)/τ)Ai +Bi(ki)e

ki(P−χ(S)/τ) + α(p1(z), ki)e
ki(λ−χ(S)/τ)Ci),

(25)

where Bi(ki).e
ki(P−χ(S) is the upper bound for Ti(ζ). Notice that the first part of

this term does not depend on k. Multiplying by k, and summing over k, we exactly
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get for the ”product”

∂

∂u

∏
i

(∑
n

(α(p1(z), n)Ai +Bi(n) + α(p1(z), n)Cie
−n(P−λ))enu

)
|u=P−χ(S)/τ

. (26)

Now, remember that Bi is a polynomial in n with degree p1(z) − 2 and that the

dominating term for u(p1(z), n) is
np1(z)−1

(p1(z)− 1)!
. Then we have

∑
n

(α(p1(z), n)Ai+Bi(n)+α(p1(z), n)Cie
−n(P−λ))en.(P−χ(S)/τ) =

Ai + oi(S)

(1− eP−χ(S)/τ )p1(z)
,

where oi(S) → 0 as S goes to +∞. In the same way we have

∂

∂u

∑
n

(α(p1(z), n)Ai+Bi(n)+α(p1(z), n)Cie
−n(P−λ))enu

|u=P−χ(S)/τ = p1(z)
Ai + o′i(S)

(1− eP−χ(S)/τ )p1(z)+1
,

where o′i(S) also goes to 0 as S → +∞. Hence the global contribution of the loops
yN is upper bounded by

e−Sp(φ)(y′)−ρy′ .S

1− eP−χ(S)/τ

∑
N

Np1(z)e
−NSt(φ)(z)

(
e
− ρz

p1(z)
.S

1− eP−χ(S)/τ

)Np1(z) N∏
i=1

(Ai + o”i(S))

+

e−Sp(φ)(y′)−ρy′ .S

1− eP−χ(S)/τ

∑
N

(Nt+ p)e−NSt(φ)(z)

(
e
− ρz

p1(z)
.S

1− eP−χ(S)/τ

)Np1(z)−1 N∏
i=1

(Ai + o”i(S))

 ,(27)

where o”i(S) →S→+∞ 0. The first term is due to the sum over the length of the
excursions (which was denoted by k above) and the second term is due to the rest
of the length of the loops yN , namely the length of y′, p and N times the length of
z, t. However this second term is infinitely many smaller than the first one, when
S goes to +∞. Now remember that except for A1 and AN , all the Ai are equal.
Moreover ρz/p1(z) = I. Therefore the radius of convergence of this power series in(

e−CI.S

1− eCP−χ(S)/τ

)
is L1(z)

def
= eSt(φ)(z)/A.

Lower bound To get a lower bound, we would like to exchange Bi(ki) and Ci by
−Bi(ki) and −Ci. However this does not work so directly. Indeed, Bi(ki) and Ci

are dominated terms for large enough ki. In may happen that for small ki there
are no possible excursion with length ki in any irreducible component ! However
the bounds works for large enough ki. Therefore we get a lower bound like (26),
exchanging Bi(n) and Ci with −Bi(n) and −Ci but for large enough n. Namely we
have

∂

∂u

∏
i

(∑
n≥ni

(α(p1(z), n)Ai −Bi(n)− α(p1(z), n)Cie
−n(P−λ))enu

)
|u=P−χ(S)/τ

.
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Here again ni does not depend on i for every 2 ≤ i ≤ N − 1. We can thus do the
same work as before ; the global contribution of the loops yN is lower bounded by

e−Sp(φ)(y′)−ρy′ .S

1− eP−χ(S)/τ

∑
N

Np1(z)e
−NSt(φ)(z)

(
e
− ρz

p1(z)
.S

1− eP−χ(S)/τ

)Np1(z) N∏
i=1

(Ai + o′′′i (S))

 ,

(28)
where o′′′i (S) →S→+∞ 0.This power series has the same radius of convergence than
the upper bound.

We can now finish the proof in that case. We thus assume that all the orbits
which produce I are either on the first form, or on the second form, but with the

assumption that every such loop is on the form on yN . We set L1
def
= min

(L1(z))
1

p1(z)

τ
,

where the minimum is taken over all the z which produce I.

We claim that lim sup
S

e−I.S

χ(S − τ.P)
is lower than L1. Indeed, if this does not

holds, there are infinitely many S such that one of the power series diverges (and
equals +∞ as the sum of positive numbers). This would implies that µβ([i]) = 0 for
infinitely many β. However we know that for every Gibbs measure ν, every cylinder
has positive measure. This produces a contradiction.

As we still have

a1(y) ≤ (χ(S)− τ.P)

(
e−I.S

χ(S)− τ.P

)p1(y)+1

,

for any minimal loop y such that q1(y) = 1, and a1(y) = e−ρy .S if q1(y) = 0, then
a1(y) converges to 0 for any y, as S goes to +∞. Here again we can use corollary
5.5 to get that HS converges to some fixed function H1 which does not depend on
S. We now can copy the end of the proof in the first case. Notice that we now
have power series, but all of them have positive valuation and positive coefficients.
However we can precise how do these power series influence the limit:

1. If ρy′/(p1(y
′) + 1) is strictly larger than I (the case where I never appears

in the power series), then the global contribution due to this loop z is null

because
e−ρy′ .S

1− eP−χ(S)/τ
goes to 0 when S goes to +∞.

2. If ρy′/(p1(y
′) + 1) = I, this introduces some (τL)p1(y′) in front of the previous

power series.

Notice that the case ρy′/(p1(y
′) + 1) < I can not occur, otherwise the loop y would

not produce any I.

Remark 10. We can also get an explicit and simpler expression for the contribution
of the loops yN . Indeed the power series is a geometric power series (up to some
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terms), which converges to
p1(z)(τ.X)p1(z)

1− Ae−St(φ)(z)χ(S)(τ.X)p1(z)

Aa.Ar

A2

τ.e−Sp(φ)(y′)χ(S)−ρy′ .S

χ(S)− τ.P
,

where X =
e−I.S

χ(S)− τ.P
; A is the product of integrals which appear along the loop

z:

A =

g∏
k=1

(∫
eSnk,k+1

(f)◦σ−1
k,k+1(ξ)Hk ◦ σ−1

k,k+1 dν̃
lk+1

)
,

as in (22). Aa and Ar are the same term than A, except that the first integrals for
Aa ”starts” from [i] and the last integral for Ar returns to [i]. Remember that in
that integral, HS has disappear because it uniformly converges to some function H1.

• Other cases for the loop y can happen. The loop y′ can meet other irreducible
components. In that case we have to consider the possible excursions in irreducible
components during the loop y′. Summing over all the possibilities, the same argu-
ment just introduces the polynomial Ay′L

p1(y′) (before the derivative).
The loop y′ can also meet several loops ”z” which produce the I. Here two

possibilities appear. The order for these loops z is fixed. Then the global power
series is the product of the powers series due to each ”zg”. Notice that the length
of y′ is upper bounded because it is a minimal loop, and two extra-loops za and zb

cannot share any symbol, otherwise we could combine them in any order we want.
The second possibility occurs when we can combine the loops in ay order we want
(up to some starting and finishing constraints). It happens when the loops zg share
some symbol. However we recall that the loops zg are minimal loops and thus there
are only finitely many such loops. If z1, . . . , zg are g such loops that we can combine
in any order, we let the reader check that the power series which appears in that
case is the derivative of the power series

∑
n

((
A1

e−I.S

1− eP−χ(S)/τ

)p1(z1)

+ . . .+

(
Ag

e−I.S

1− eP−χ(S)/τ

)p1(zg)
)n

,

where the dominating power series for zj is
∑(

Aj
e−I.S

1−eP−χ(S)/τ

)n

. As there are only

finitely possible Aj, this proves that the radius of convergence of such a power series
is positive;

6.2 About finiteness.

As we said in the introduction, this method can also prove the finiteness of the num-
ber of the possible limit measures. Remember that every locally constant function φ
can be seen as constant on every 1-cylinder, up to some higher block representation.
Then the corollary concerns all the locally-constant functions.

Proof. For such a φ, IKφ is constructed from the minimal periodic orbits. There
are finitely many minimal periodic orbits, thus there are only finitely many ways to
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associate them. Therefore there are only finitely possible “IKφ’s”. But each possible
IKφ admits finitely many ergodic Equilibrium States. This proves that there are
only finitely many possible ergodic. The last point to check is that there are only
finitely many possible barycenters of these ergodic Equilibrium States. This results
from our construction:
Using the formula given along the way (for instance in remark 10 or (22)), we let
the reader check that as soon as the minimal loops which produce the I has been
chosen, the relation (17) can be written in the following way:

1 =
∑

i

ai(τ.L.e
−I.P)ri

1− ci(τ.L.e−I.P)pi
, (29)

where the sum is done over the loops which produce the I and ai, ci, ri and pi do
only depend on the loop. Indeed the main point to understand is that for such a
loop z, and with the notations from above, I = (t− St(φ)(z)τ)/p1(z), which yields
to the fact that St(φ)(z)χ(S) converges to P .(t− p1(z).I) as S goes to +∞. Notice
that p1(z) does not depend on ”φ” as soon as the irreducible components and the
loops have been chosen. In the same way, if e−ρy′ .S/χ(S) − τ.P does not converge
to 0, it means that it converges to L, and so on.

Therefore we claim that, as soon as the irreducible components which have pos-
itive limit measure have been chosen (finitely many choices) and as soon as the
loops which produce the I have been chosen (finitely many choices), to solve (17) is
equivalent to solve

1 =
∑

i

aiX
ri

1− ciXpi
. (30)

Such an equation admits only one solution X0. Now each µ([k]) is
∑

i
aiX

ri
0

1−ciX
pi
0

where

we only consider the terms due to this 1-cylinder.
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