
LOCAL PRODUCT STRUCTURE FOR EQUILIBRIUM STATES

RENAUD LEPLAIDEUR

Abstract. The usual way to study the local structure of Equilibrium State of an Axiom-
A diffeomorphism or flow is to use the symbolic dynamic and to push results on the
manifold. A new geometrical method is given. It consists in proving that Equilibrium
States for Hölder-continuous functions are related to other Equilibrium States of some
special sub-systems satisfying a sort of expansiveness. Using different kinds of extensions
the local product structure of Gibbs-measure is proven.

1. Introduction

In [5], Bowen and Marcus define a notion of the transversal to a n-dimensional foliation
G in a metric space X and a notion of a G-invariant measure. They prove that up to a
constant there is a unique G-invariant measure for any Axiom-A diffeomorphism or flow
where G is the strong stable or unstable foliation for any basic set. In [8], for the Axiom-
A flow case (Ω, Φ), Haydn proves the existence of a transversal system of measure {µx}
supported on the local weak unstable manifold which is not invariant along the W ss-
foliation but which admits a Jacobian of the type eωx,x′ , with ωx,x′ =

∫ ∞
0 (F ◦ Φs ◦ ρx,x′ −

F ◦Φs) ds where F is any Hölder continuous function Ω → IR. In his proof, Haydn assumes
that Φs∗µx and µΦs(x) are two equivalent measures and uses the symbolic dynamic just like
in [5]. In [1], Babillot and Ledrappier prove the previous result, plus uniqueness, without
assuming that Φs∗µx and µΦs(x) are absolutly continuous. Unfortunatly, they still use the
symbolic dynamic, which prevents us from extending this to the non-uniform dynamic.
Another proof of this result is given here. As we don’t have uniqueness, it is in one sense
weaker than in [1], but it is more geometrical and doesn’t hide all the real dynamic on the
manifold as the symbolic dynamic does. It should be easier to extend it to the non-uniform
dynamic case.

The proof is based on the definition of a sub-dynamical system which is related to
the “big” one. For this sub-system, we prove existence and uniqueness of Equilibrium
States for good potentials and we connect them to the Equilibrium States for the global
system. As we are looking for measures, we use a Perron-Frobénius operator acting on
continuous functions to define its adjoint acting on the set of probability measures. This
makes the proof more complicated but is necessary. We are then able to recognize among
these states a good candidate for the transversal measures. Moreover, our proof gives the
local product structure of the Gibbs measures and, as a corollary, the pointwise dimension
formula. Theorems are announced and proved for Axiom-A diffeomorphisms but can easily
be extended for Axiom-A flows which are suspended flows.

To be complete, some well-known facts about Axiom-A theory and extensions are re-
called at the end.
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As we intend to later extend these results to the non-uniform hyperbolic case, we have
taken care to use in our proofs only facts about Axiom-A that can be in some way extended
to the general case.

1.1. Acknowledgments. This work was done at Université Paris-Sud (Orsay/ France),
as I was PhD student under direction of Philippe Thieullen. I would like to thank him
for all the helpful advices he gave to me. I also thank J.C. Léger, for having corrected my
english.

2. Background and results

2.1. First definitions. Let M be a compact Riemannian manifold, and let f : M → M
be a C1+α mixing diffeomorphism, with the axiom-A property. We assume that a metric
adapted to f has been choosen such that the following holds (see [4] for such metric)

(1) Periodic points are dense in the set of non-wandering points Ω.
(2) Ω is hyperbolic, meaning that for all x in Ω there is a continuous splitting of the

tangent space TxM with
(a) TxM = Eu

x ⊕ Es
x ;

(b) dfx(Eu
x) = Eu

f(x) and dfx(Es
x) = Es

f(x) ;

(c) there exists λ ∈]1, +∞[ such that for all integer n ≥ 0
‖dfn

x (v)‖ ≤ 1
λn ‖v‖ for all v ∈ Es

x,

‖df−n
x (v)‖ ≤ 1

λn ‖v‖ for all v ∈ Eu
x .

ε0 will denote an expansiveness constant and we will denote respectively W s
ε0

(x) and
W u

ε0
(x) by W s

loc(x) et W u
loc(x). If ε0 is small enough then

[ . , . ] : {(x, y) ∈ Ω × Ω : d(x, y) ≤ ρ} −→ Ω

x 7−→ [x, y]
def
= W s

loc(x) ∩ W u
loc(y)

is well defined for all ρ ≤ ρ0, where ρ0 is sufficiently small. In [4], Bowen shows that there
exists a finite Markov partition with diameter as small as we want, such that each atom
of the partition is a proper rectangle. We pick a proper rectangle R with the Markov
property and with diameter smaller than ε (4ε ≤ ρ0, and 4ε < ε0).
Let us assume that A is an α-Hölder continuous function from Ω to IR. In the set of
invariant probability measures there is one particular measure, called the Equilibrium
State for the potential A. It is denoted by µA, and it is the unique f -invariant measure
which realizes equality in

hµA(f) +

∫
A dµA = sup

{
hν(f) +

∫
A dν

}
,

where the supremum is taken over the set of invariant probability measures. We will
denote PA this supremum.

Let us precise here the definition of a transversal to the stable foliation (see [5]).

Definition 2.1. A transversal to the stable foliation W s(Ω) at x is a compact K contain-
ing x such that there exists a one-to-one map Φ : K × Ds → Ω with Φ(y × Ds) ⊂ W s(y),
Φ(y, 0) = y for any y and Φ(K × Ds) being a neighborhood of x in Ω.

If K is a transversal to the stable foliation, a transversal measure µK on K will be a
finite nonnegative Borel measure on K, and a system of transversal measures will be a
family {µK}Ktransversal of transversal measures on all transversals K. If K and K ′ are
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two transversals, two sets A ⊂ K and A′ ⊂ K ′ will be called W s-conjugate if there is a
one-to-one Borel map πA,A′ : A → A′ such that for all x in A, πA,A′(x) ∈ W s(x).

Definition 2.2. For ω : Ω × Ω → IR, we will say that a system of transversal measures
is ω-absolutely continuous (ω-a.c.) if and only if

(1) for any transversals K and K ′, for any W s-conjugate sets A ⊂ K and A′ ⊂ K ′,
µK′(A′) =

∫
A ω(πA,A′(x), x) dµK(x);

(2) µK(K) > 0 for one K.

2.2. Results. Let x and x′ be two points in Ω such that x′ ∈ W s(x). We set

w(x, x′) =
+∞∑

k=0

A ◦ fk(x′) −A ◦ fk(x).

Theorem 2.3 (A). There exists a unique W s-transversal measure system {µK} such that

(i) {µK} is ew-a.c.;

(ii)
dµf(K)f(x)

df∗µK(x)
= eA(x)−PA.

This transversal system is equivalent on each W u
loc(x) to the conditional measure µA,u

of the Equilibrium State µA with respect to any measurable partition subordinate to the
unstable foliation.

We refer the reader to [11] and [13] for precise definitions about measurable partitions
and subordinate partitions. The proof of theorem A needs the absolute continuity of the
conditional measures of the Equilibrium State. We shall first prove this as well as a result
on the existence of pointwise dimension.

Definition 2.4. Let ν be a probability measure on the metric space X . We define the
upper pointwise dimension (respectively lower) of ν at a point x0 as the real number

δ(x0, ν)
def
= lim sup

ε→0

log ν(B(x0, ε))

log ε

(resp. δ(x0, ν)
def
= lim inf . . . ). If these two numbers are equal, we call their common value

the pointwise dimension of ν at x0 and we denote it by δ(x0, ν).

Theorem 2.5 (A’). The Equilibrium State has local product structure

dµA([y, z]) = ϕx(y, z)dµA,u
x (y) ⊗ dµA,s

x (z)

where µA,u
x and µA,s

x denote the conditional measures of µA with respect to any measurable
partition subordinate to the unstable and the stable foliation; y is any point in W u

loc(x) and
z is any point in W s

loc(x), and ϕx is a non-negative Borel function.

Moreover, µA, µA,u
x and µA,s

x have pointwise dimensions, δ, δu and δs, µA almost every-
where constant, and

δ = δu + δs.

Remark: This last equality δ = δu + δs is a particular case of a general fact in the
non-uniform hyperbolic case that has just been proved in [2].
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3. The dynamical system (F, gF )

3.1. Definitions. Pick R one particular proper rectangle with the Markov property. By
Poincaré’s theorem, we define respectively Rn and R∞ as the set of points in R returning
at least n times in R by the map f and the set of points returning infinitely often. The
first return time map from R to IN is defined by

r(x) =

{
0 if x /∈ R1

k0 if k0 = inf{k ∈ IN s.t. fk(x) ∈ R} < +∞.

Then we define the map g by

g : R −→ R

x 7−→ g(x)
def
= f r(x)(x).

For any integer n, and for any x in Rn, we write rn(x)
def
= rn−1(x) + r(f rn−1(x)(x)).

Definition 3.1. Every W u(x, R) (resp. W s(x, R)), where x ∈ R, is called an unstable
leaf (resp. stable) of R.

If F is an unstable leaf of R, we denote F1
def
= F ∩R1, F∞

def
= F ∩R∞, and ∂F

def
= F ∩∂sR,

where ∂sR is the stable topologic boundary of R.

We also define the stable holonomy onto F by

πF : R −→ F

x 7−→ πF (x)
def
= W s(x, R) ∩ F.

We can easily check that we have:

Lemma 3.2. Every unstable leaf of R is a compact set.

In the whole paper, F will denote an unstable leaf of R \ ∂uR.

We define the map gF : F −→ F by x 7−→ gF (x)
def
= πF ◦ g(x), and we denote by H1

the set F \ F1.
The Markov property of R implies a similar property for the system (F, gF ) on the inverse
branches.

Definition 3.3. We call n-cylinder (n ∈ IN∗) of F every f−rn(x)W u(f rn(x)(x), R) with x

in Rn and f rn(x)(x) ∈ int(W u(f rn(x)(x), R)). The integer n is called order of the cylinder.

Some of the points may be in several cylinders of same order. If we denote by ∂gF the
set

⋃
n∈IN g−n

F (∂F ), we claim that a point, which is in several cylinders of the same order,
must be in ∂gF . We also remark that the Markov property implies that gF (∂F ) ⊂ ∂F .

Cylinders pretend to be the inverse branches, but because of the existence of the sets
H1 and ∂gF , gn

F doesn’t really map any n-cylinder to F . Part of the job will consist in
studying these bad sets H1 and ∂gF . Let us start by giving some definitions.

Definition 3.4. If C is a 1-cylinder of F , we call return time of C the common return
time of every point in C \ ∂gF .

Definition 3.5. Let x ∈ F . We say a point y of F is a 1-preimage of x by gF if and only
if

(i) y ∈ F1 ;
(ii) there exists a 1-cylinder containing y, with return time r(y, C), such that πF ◦

f r(y,C)(y) = x.
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We will denote by Ant(x), the set of 1-preimages of x and by Ant(k, x), the subset of
Ant(x) of points y such that πF ◦ fk(y) = x.
If k ∈ IN∗, we define the set of k-preimages of x by gF , Antk(x), by

Antk(x)
def
= Ant(Antk−1(x)).

Remark. Points in Antk(x) are points in k-cylinders.
Using the mixing property we can easily check that:

Lemma 3.6. For all x in F ,
⋃

n∈IN Antn(x) is dense in F .

3.2. The metric η. The natural metric on F doesn’t separate enough points. For instance
points can be very close in F but in different cylinders. We introduce a quasi-metric, which
is more adapted to the cover by cylinders. To keep control on backward and forward orbits
we look at the half-time we need to be greater than an expansivity constant.

Definition 3.7. Let x and y be in the same unstable leaf of R, we call n(x, y) the greatest
positive integer such that

d(fk(x), fk(y)) ≤ ε ∀k ≤ n(x, y).

We denote by N(x, y) = [12n(x, y)] + 1, where [ x ] is the integer part of the real number x.

Let us now show that the map N( . , . ) is almost constant along the stable foliation.

Lemma 3.8. There exists an integer P (R) such that for all x and y in F and all x′ and
y′ verifying x′ ∈ W s(x, R), y′ ∈ W s(y, R), and x′ ∈ W u(y′, R), then

N(x, y) − P (R) ≤ N(x′, y′) ≤ N(x, y) + P (R).

Proof. Let p ∈ IN such that d(fp(x′), fp(y′)) < ε and d(fp+1(x′), fp+1(y′)) > ε. Con-
traction on stable manifolds leads to d(fp(x), fp(x′)) < ε and d(fp(y), fp(y′)) < ε, which
implies d(fp(x), fp(y′)) < 2 ε. The γ-hölder continuous property of [., .] proves that

(d(fp(y′), fp(x′)))
1
γ ≤ d(fp(y), fp(x)) ≤ (d(fp(y′), fp(x′)))γ .

We know that there exists λ′ such that d(fp(y′), fp(x′)) > ε/λ′ since p = n(x′, y′), and it

is sufficient to have λq(ε/λ′)
1
γ > ε to get d(fp+q(x), fp+q(y)) > ε. This gives

n(x, y) ≤ n(x′, y′) +
(γ − 1) log ε + log λ′

γ log λ
.

The other inequality follows from the same computation by exchanging (x, y) and (x′, y′).

A quasi-metric on F is defined by the following.

Definition 3.9. let x and y be in F , we define

η(x, y)
def
=

1

λαγN(x,y)
.

Remark. There exists a universal constant C such that dα(x, y) ≤ Cη(x, y).
Associated to this quasi-metric a set of Hölder continuous functions is defined.

Definition 3.10. We denote by C0
η(F ) the set of continuous functions from F to IR such

that

Cφ
def
= sup

x,y

x 6=y

|φ(x) − φ(y)|

η(x, y)
< +∞.

We define a norm ‖ . ‖η : C0
η(F ) → IR+ by φ 7→ Cφ + ‖φ‖∞.
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Then we have.

Proposition 3.11.
(
C0

η(F ), ‖ . ‖η

)
is a Banach space.

3.3. New Potential. We want to see (Ω, f) as an extension of (F, gF ) and the measure
µA as an extension of an Equilibrium State for (F, gF ). To that aim, we have to exhibit
a new potential, related to A but taking care of the fact that we are iterating gF and not
f . We define functions B′ and ω on F \ (H1 ∪ ∂gF ) by

B′(x)
def
=

r(x)−1∑

k=0

A ◦ fk(x)

and ω(x)
def
=

+∞∑

k=0

A ◦ fk+r(x)(x) −A ◦ fk ◦ πF ◦ f r(x)(x).

The function B defined by B(x)
def
= B′(x)+ω(x) provides a new potential on F \(H1∪∂gF ).

Using B means we are iterating g and not f , and ω introduce the drift coming from the
iteration of gF and not g. Baire’s theorem shows that ∂gF has empty interior, and B′,
ω and B can be extended by continuity in every cylinder to F \ H1. As points in ∂gF
can be in several 1-cylinders, we will write B(x, Ci), ω(x, Ci) and B(x, Ci) where Ci is a
1-cylinder containing x ∈ F \ H1.

Lemma 3.12. Let x and y be two points in F and x′ and y′ two 1-preimages of x and y
from the same 1-cylinder, Ci. There exists a universal constant C such that

|ω(x′, Ci) − ω(y′, Ci)| ≤ Cη(x, y).

Proof. Let r be the return time of the cylinder Ci and N = N(x, y). We have

ω(x′, Ci) − ω(y′, Ci) =
N∑

k=0

A ◦ fk+r(x′) −A ◦ fk+r(y′)

−
N∑

k=0

A ◦ fk ◦ πF ◦ f r(x′) −A ◦ fk ◦ πF ◦ f r(y′)

+

+∞∑

k=N+1

A ◦ fk+r(x′) −A ◦ fk ◦ πF ◦ f r(x′)

−
+∞∑

k=N+1

A ◦ fk+r(y′) −A ◦ fk ◦ πF ◦ f r(y′)(1)

• upper bound of the first term: Using Lemma (3.8), we check that this term is less than∑N ′+p
k=0 |A◦fk+r(x′)−A◦fk+r(y′)|. The Hölder property of A and the expanding property

imply that
N ′∑

k=0

|A ◦ fk+r(x′) −A ◦ fk+r(y′)| ≤
C

λαN ′ .

Lemma (3.8) yields again

N ′∑

k=0

|A ◦ fk+r(x′) −A ◦ fk+r(y′)| ≤ Cη(x, y).
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On the other hand, d(f(z1), f(z2)) is less than C d(z1, z2) with C = |||df |||. This implies
that

N ′+p∑

k=N ′+1

|A ◦ fk+r(x′) −A ◦ fk+r(y′)| ≤ C(d(fN ′+r(x′), fN ′+r(y′)))α,

and finally, we obtain
∣∣∣∣∣

N∑

k=0

A ◦ fk+r(x′) −A ◦ fk+r(y′)

∣∣∣∣∣ ≤ Cη(x, y)

where C is a universal constant.
• upper bound of second term: Just like the previous term, except we don’t need to use
Lemma (3.8).
• upper bound of third and fourth terms: This is a direct consequence of contraction along
the stable leaves and the fact that A is Hölder continuous.

Remark. Using the contraction along stable leaves, we have |ω(x)| ≤ Cdiam(R) for all x
in R1 and for all 1-cylinder containing x.

If x is a point in Rn \ ∂gF , Sn(B)(x) will denote
∑n−1

k=0 B(gk
F (x), Ck

i ), where Ck
i is the

1-cylinder containing gk
F (x). If it belongs to ∂gF , then Sn(B)(x) will denote the same

expression in which we have just exchanged gk
F by the projection onto F by πF of good

iterates of f (corresponding to the kth return time of the n-cylinder). We have

Lemma 3.13. Let n ∈ IN, x and y be two points in F , (x′, y′) ∈ Antn(x)×Antn(y) such
that x′ and y′ are in the same n-cylinder; then there exists a universal constant C such
that

|Sn(B)(x′) − Sn(B)(y′)| ≤ Cη(x, y).

Proof. Pick n ∈ IN and x and y two points in F . Since the interior of ∂F is empty, we
assume that neither x nor y are in ∂F . This guarantees that for any x′ ∈ Antn(x) and
y′ ∈ Antn(y) neither x′ nor y′ are in ∂gF .
We can show by induction that

Sn(B)(x′) =

rn(x′)−1∑

k=0

A ◦ fk(x′) + ω(gn−1(x′)),

hence |Sn(B)(x′) − Sn(B)(y′)| ≤

rn(x′)−1∑

k=0

|A ◦ fk(x′) −A ◦ fk(y′)|

+|ω(gn−1(x′)) − ω(gn−1(y′))|.

Lemma (3.12) shows that |ω(gn−1(x′)) − ω(gn−1(y′))| ≤ Cη(x, y), where C is a universal
constant. Thus the expanding property and the Hölder continuity of A and πF finally
lead to

rn(x′)−1∑

k=0

|A ◦ fk(x′) −A ◦ fk(y′)| ≤ C η(x, y).

If x or y is in ∂F , we use continuity.
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4. Existence of Gibbs measures for (F, gF )

4.1. The Perron-Frobénius operator. Let S ∈ IR, we define BS by BS(x, Ci)
def
=

B(x, Ci) − S r, and a family of operators LS .

Definition 4.1. For S ∈ IR, we denote by LS the operator defined by

LS : φ ∈ C0(F ) 7−→ LS(φ) : F −→ IR

x 7−→ LS(φ)(x)
def
=

∑

y∈Ant(x)

eBS(y,Cy)φ(y).

We claim that if LS(1IF )(x) < +∞ for some x then LS′(1IF )(y) < +∞ for all y in F
and all S′ ≥ S. This allow us to define Critical-Convergence-Value of these operators.

Definition 4.2. We will call Critical-Convergence-Value of LS, denoted by Ss, the infin-
imum in IR of the set of S′ such that

∀S > S′ ∀x ∈ F LS(1IF )(x) < +∞.

Proposition 4.3. The Critical-Convergence-Value of LS is less than or equal to the topo-
logical pressure of (Ω, f) for the potential A.

Proof. Let us pick an x in F , then LS(1IF )(x) =
∑+∞

n=1

(∑
y∈Ant(n,x) eB(y,Cy)

)
e−n S . It

is sufficient to look for the convergence radius of this power series. If y and y′ are two
points in Ant(n, x), then they must be (ε, n)-separated, because they are in the same local
unstable manifold at time 0 and in the same local stable manifold at time n. This means
that Ant(n, x) is an (ε, n)-separated set of points, which is not maximal, and

lim sup
n→+∞

1

n
log


 ∑

y∈Ant(n,x)

eB(y,Cy)


 ≤ PA.

Cauchy’s criterion implies that SS ≤ PA.

Remark. We will see later that for S = PA the series converges.

From now till the end, we will assume that S > Ss.
We will denote by MS the real number supx∈F |LS(1I)(x)|.

Proposition 4.4. LS is a bounded operator from (C0(F ), ‖ ‖∞) to itself.

Proof. Pick ϕ in C0(F ), we have

|LS(ϕ)(x) − LS(ϕ)(y)| ≤
+∞∑

k=1

∑

x′∈Ant(k,x)

y′∈Ant(k,y)

|eBS(x′)ϕ(x′) − eBS(y′)ϕ(y′)|

≤
+∞∑

k=1

∑

x′∈Ant(k,x)

y′∈Ant(k,y)

eBS(x′)|ϕ(x′) − ϕ(y′)|

+ ‖ϕ‖∞

+∞∑

k=1

∑

x′∈Ant(k,x)

y′∈Ant(k,y)

|eBS(x′) − eBS(y′)|

Using the fact that ϕ is uniformly continuous on the compact set F , and using Lemma
(3.13), we easily check that LS(ϕ) ∈ C0(F ). Thus ‖LS(ϕ)‖∞ ≤ MS‖ϕ‖∞.
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4.2. Definition of µS. LS is a bounded operator from the space of continuous functions
on a compact set to itself. It admits an adjoint operator, denoted by L∗

S , acting on the
set of probability measures (denoted by MF ) and defined in the following way

L∗
S(µ).ϕ

def
=

∫
LS(ϕ)dµ.

Schauder-Tychonoff’s theorem implies the existence of an eigenvalue for this adjoint op-
erator

Proposition 4.5. There exists a probability measure µS and a real number λS ∈ IR∗
+ such

that

L∗
S(µS) = λS µS .

Definition 4.6. Every element of MF which is a fixed point of L̃∗
S

def
= 1

λS
L∗

S will be called

the Gibbs measure associated to the potential BS.

Proposition 4.7. For any Gibbs-measure µS, the set H of points in F that return only
finitely often in R by the map f has zero measure.

Proof. Let n ∈ IN, and Hn−1
1 denotes the set of points that return only n − 1 times in R

by the map f , and Kn−1 be a compact set in Hn−1
1 . Let δ > 0, there is an integer N such

that for all x in F
+∞∑

k=N

∑

y∈Antn(x)

rn(Cn(y))=k

eSn(BS)(y,Cn(y)) < δλn
S

where Cn(y) denotes an n-cylinder containing y, and rn(Cn(y)) denotes the n-th return
time. Fn

δ = ∪rn(Cn(y))≤NCn(y) is compact. By Urysohn’s Lemma (see [14]), there exists
some continuous function ϕδ,n, such that ϕδ,n(x) = 1, ,for all x ∈ Kn−1, 0 ≤ ϕδ,n ≤ 1, and
ϕδ,n(x) = 0, ,for all x ∈ Fn

δ . Then

µS(Kn) ≤
1

λn
S

∫
Ln

S(ϕδ,n)dµS ≤ δ,

hence µS(H) = 0.

4.3. Hypothesis of Ionescu-Tulcea and Marinescu’s theorem hold. We want to
check that Ionescu-Tulcea and Marinescu’s theorem’s hypothesis (see C.1 in appendix) hold

for the operator L̃S . The small space will be (C0
η (F ), ‖ ‖η) and the large one (C0(F ), ‖ ‖∞).

Complex valued functions are considered here as ϕ = ϕr + iϕi.
(i) holds: Let (ϕn)n∈IN be a sequence of functions in C0

η(F ), converging to ϕ in (C0(F ), ‖ ‖∞).
Let C be a constant such that for all n, ‖ϕn‖η ≤ C. Pick δ > 0 and N such that for all
n ≥ N ,

‖ϕn − ϕ‖∞ ≤ δ

If x and y are two points in F and n is an integer greater than N , then

|ϕ(x) − ϕ(y)| ≤ 2 δ + |ϕn(x) − ϕn(y)|

≤ 2 δ + (C − ‖ϕn‖∞)η(x, y)

≤ 2 δ + (C − ‖ϕ‖∞ + δ)η(x, y)

which shows that ϕ ∈ C0
η(F ) and ‖ϕ‖η ≤ C.
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(ii) and (iv) hold: Pick ϕ ∈ C0
η(F ) and denote by Cϕ the real number

sup
x 6=y

|ϕ(x) − ϕ(y)|

η(x, y)
.

Let x and y be in F , and n an integer, we obtain by Lemma (3.13)

|L̃S
n
(ϕ)(x) − L̃S

n
(ϕ)(y)| ≤

Cϕ

λn
S

∑

x′∈Antn(x)

y′∈Antn(y)

eSn(BS)(x′,Cn(x′,y′))η(x′, y′)

+
1

λn
S

‖ϕ‖∞
∑

x′∈Antn(x)

y′∈Antn(y)

eSn(BS)(y′,Cn(x′,y′))|eCBη(x,y) − 1|.

Lemma 3.8 proves that N(x′, y′) ≈ N(x, y) + rn(Cn(x′,y′))
2 .

So there exists a universal constant C such that

|L̃S
n
(ϕ)(x) − L̃S

n
(ϕ)(y)| ≤ Cϕ η(x, y)

( C

λn
S

∑

x′∈Antn(x)

eSn(BS)(x′)

λ
αγ
2

rn(x′)

)

+ η(x, y)‖ϕ‖∞


 C

λn
S

∑

y′∈Antn(y)

eSn(BS)(y′)


 .(2)

For n = 1 we get from (2) that L̃S(ϕ) ∈ C0
η(F ) and that L̃S is bounded for ‖ ‖η.

Sn(BS) is continuous on each n-cylinder which is a compact set. It is bounded from above
and we have by Lemma (3.13) that

λn
S =

∫
LS1IF dµS ≥

∑

Cn−cylinder

e−C exp(sup
Cn

Sn(BS)).

This gives

C
λn

S

∑

x′∈Antn(x)

exp(Sn(BS)(x′, Cn(x′)))

λ
αγ
2

rn(Cn(x′))
≤

∑

x′∈Antn(x)

C eC exp(Sn(BS)(x′, Cn(x′)))

λ
αγ
2

rn(x′,Cn(x′))

∑

x′∈Antn(x)

exp( sup
Cn(x′)

Sn(BS)))
.(3)

As rn(x′, Cn(x′)) ≥ n for all n and all x′ ∈ Antn(x), we pick n0 such that λ
αγ
2

n0 ≥ 2CeC .
Then (3) yields

‖L̃n0
S (ϕ)‖η ≤

1

2
‖ϕ‖η + b‖ϕ‖∞

for some 0 ≤ b < +∞.

(iii) and (v) hold: Using Lemmas (3.12) and (3.13), we check that ‖L̃n
S(1IF )‖∞ ≤ eC < ∞.

Moreover, if ϕ ∈ C0
η(F ) and ‖ϕ‖∞ ≤ 1, then for all integer n, we have ‖L̃n

S(ϕ)‖∞ ≤

‖L̃n
S(1IF )‖∞. For (v), Ascoli’s theorem is needed.

4.4. Quasi-Gibbs measures.
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4.4.1. λS is an eigenvalue of LS. Using Ionescu-Tulcea and Marinescu’s theorem we get
the following result.

Proposition 4.8. There exists h ∈ C0
η(F ), a strictly positive function, with µS-integral

equals to 1 such that LS(h) = λS h.

Proof. Lemma (C.4) shows that there exists h ∈ C0
η(F ) such that

lim
n→+∞

‖
1

n

n−1∑

k=0

L̃k
S(1IF ) − h‖∞ = 0.

Obviously L̃S(h) = h. Moreover, LS is a positive operator, because BS is a real-valued
funcction ; this implies that h is positive. Also, Lebesgue’s dominated convergence theorem
shows that

∫
h dµS = 1, and the mixing property proves that h can not vanish.

4.4.2. Property of Gibbs measures. As we have seen in previous sections, problems on
F come from points of H or ∂gF . Unfortunatly we have to keep these sets to find good
measures among the dual set of the continuous functions on the compact set F ⊃ H∪∂gF .
We have already seen that µS(H) = 0 for any Gibbs measure µS . We see now another
important result

Proposition 4.9. For any Gibbs measure µS, ∂F and Antn(∂F ) have zero measure for
all n ∈ IN.

Proof. Pick n in IN∗. Set Antn(∂F )∩ int(F )
def
= D◦

n. Since D◦
n ⊂ int(F ), no point can be

in more than n distinct Antk(D
◦
n) (k ∈ IN∗). Use Urysohn’s Lemma and Lebesgue’s con-

vergence theorem to check that µS(Antk(D
◦
n)) = 1

λk
S

∫
1ID◦

n
.L̃k

S(1IF ) dµS . Then set D∞
n

def
=

⋃
k∈IN∗ Antk(D

◦
n); Lemma (C.4) yields again that µS(D◦

n) = 0. Pick an n-cylinder Cn

included in int(F ), check that 0 = µS(∂Cn) =
∫

ψ(y)1I∂F (y) dµS(y) where ψ is bounded
from below on ∂F . Then µS(∂F ) = 0.

4.4.3. Invariant quasi-Gibbs measure. From now on, we can assume that, modulo any
Gibbs measure, cylinders constitute an increasing family of partitions. It allows us to
consider that B and ω are well defined functions on a set of full measure. We claim that
we can extend LS on L1(µS) for any Gibbs measure.

Proposition 4.10. For any Gibbs measure µS, LS can be extended to a contracting
bounded operator from L1(µS) to itself.

Remark. For all φ in L1(µS), we have
∫
L̃S(φ) dµS =

∫
φdµS .

Lemma 4.11. Let ϕ ∈ L1(µS), then L̃S(ϕ) = ϕ µS − a.e. if and only if the measure mS

defined by dmS = ϕ dµS is gF -invariant.

Proof. This is a very classical computation because H and ∂gF have zero measure.

A direct application of Lemma (4.11) is the existence of quasi-Gibbs invariant measure.

Definition 4.12. We call quasi-Gibbs measure any measure mS defined by dmS
def
= h dµS

where µS is a Gibbs measure.
It is called quasi-Gibbs invariant measure iff it is a gF -invariant quasi-Gibbs measure.



12 RENAUD LEPLAIDEUR

5. Uniqueness of the Gibbs measures for (F, gF )

5.1. Some technical Lemmas. In this section we briefly recall a well-known Martingale
theorem.

For any integer k, Qk will denote the σ-algebra generated by the k-cylinders family,
and E will denote the trivial σ-algebra, meaning the σ-algebra whose atoms are points.
Obviously, (Qk)k∈IN∗ is an increasing sequence with respect to the measure µS , which
converges to E . As the k-cylinders are a partition with respect to µS , the conditional
expectation of any measurable function φ satisfies for µS-almost every point x,

φk
def
= IE [φ|Qk] (x) =

1

µS(Ck(x))

∫

Ck(x)
φdµS

where Ck ∈ Qk is the k-cylinder containing x. Then we have

Proposition 5.1 (Martingale theorem). If φ ∈ L1(µS) then φk −→ φ µS-almost every-
where when k → +∞.

This gives the following corollary.

Lemma 5.2. For all Borel set A in F , for µS-almost every x

lim
k→+∞

µS(A ∩ Ck(x))

µS(Ck(x))
= 1IA(x)

where Ck(x) is the k-cylinder containing x.

Proof. Just use proposition (5.1) with φ = 1IA.

Lemma 5.3. Any Gibbs measure µS is continuous.

Proof. Check that any atom x must be a periodic point, and that the conformal condition
implies every y ∈ Ant(x) is also an atom. Then Ant(x) must be in x’s orbit.

5.2. Uniqueness of µS and mS. In this subsection, we will see that there exists only
one Gibbs measure and one invariant quasi-Gibbs measure. This is the consequence of the
fact that any Gibbs measure is a conformal measure (see appendix B).

Definition 5.4. For n ∈ IN we denote by Tn the σ-algebra of Borel sets such that if
E ∈ Tn and x ∈ E then

Antn(gn
F (x)) ⊂ E.

If x is in Antn(y), we will call n-brother of x any element of Antn(y).

We have the following property, which specifies how any Gibbs measure is well dis-
tributed.

Proposition 5.5. Any Gibbs measure µS is exact, meaning that ∩n∈INTn = {∅, F} for
the measure µS.

Proof. Let E be a Borel set in T∞
def
= ∩n∈INTn. We can assume that E∩ (H ∪∂gF ) = ∅. If

µS(E) > 0 then using Lemma (5.2) we find a point x in E such that limk→+∞
µS(E∩Ck(x))

µS(Ck(x)) =

1IE(x) = 1. Set δ > 0, there exists k1 such that for all k ≥ k1, we have µS(E ∩ Ck(x)) ≥
(1 − δ)µS(Ck(x)).
E is a Borel set of Tk1 and by Lemma (3.13) we have

µS(E ∩ Ck1(y))

µS(Ck1(y))
≥ (1 − δ)e−4 C
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for all y k1-brother of x. Summing this inequality over all the k1-brothers of x we get

µS(E) =
∑

y∈Antk1
(g

k1
F (x))

µS(E ∩ Ck1(y)) ≥ (1 − δ)e−4 C .

By Lemma 5.3, µS is non-atomic and we must have µS(E) = 1.

This property of any Gibbs measure yields a property for any correspondant invariant
quasi-Gibbs measure.

Proposition 5.6. Any invariant quasi-Gibbs measure mS is mixing, thus ergodic.

Proof. Let φ and ψ two continuous and zero-integral functions. We will prove that

lim
n→+∞

∫
φ.ψ ◦ gn

F dmS = 0.

∫
φ.ψ ◦ gn

F dmS =
∫

IE[φ.ψ ◦ gn
F |Tn] dmS , which is equal to

∫
IE[φ|Tn].ψ ◦ gn

F dmS by the
definition of conditional expectation. mS and µS are equivalent and the σ-algebra Tn

decreases to the trivial σ-algebra. Moreover

‖IE[φ|Tn].ψ ◦ gn
F ‖∞ ≤ ‖ψ‖∞ ‖φ‖∞.

Lebesgue’s dominated convergence theorem yields

lim
n→+∞

∫
φ.ψ ◦ gn

F dmS = 0.

Ergodicity can be seen as an extremal property in the convex compact set of invariant
probability measures. We will use this point of view to prove uniqueness of the Gibbs
measure and the invariant quasi-Gibbs measure.

Proposition 5.7. The system (F, gF ) admits a unique Gibbs measure associated to the
potential BS and a unique invariant quasi-Gibbs measure.

Proof. Uniqueness of the Gibbs measure is a consequence of the mixing property of the
map (Ruelle’s Perron-Frobenius theorem): The operator LS has a strictly positive real
eigenvalue of greatest module, which is λS . Hence, any Gibbs measure is associated to
this eigenvalue λS for the operator L∗

S . If µ̃S is a Gibbs measure, we set for any t ∈ [0, 1]

µt
S

def
= t µS + (1−t) µ̃S , and mt

S the measure defined by dmt
S = h dµt

S . Since mt
S is ergodic

for any t, µ̃S must be equal to µS .
We show in the same way that the eigenvector h of LS associated to λS in L1(µS) must
be unique, which proves the uniqueness of the invariant quasi-Gibbs measure.

5.3. mS’s property. that For the dynamical system (F, gF ), we will see that there are
Equilibrium States just as for any Axiom-A. We first define

Definition 5.8. Set M′
F the set of gF -invariant ergodic probability measures, such that

H∪∂F has zero measure. If m is in M′
F , we denote by Pm(BS) the real number hm(gF )+∫

BS dm, and we call it the metric pressure of the measure m for the potential BS. We

will call pressure of the system for the potentiel BS, denoted by P(BS), the element of IR
defined by

P(BS) = sup
m∈M′

F

Pm(BS).

Any measure which realizes this maximum will be called an Equilibrium State for BS.
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We have the following result.

Proposition 5.9. For every Hölder-continuous function A defined on Ω, for every S >
SS there exists a unique Equilibrium State for BS, which is the unique gF -invariant quasi-
Gibbs measure associated to BS . Moreover, the pressure of the system is log λS.

Proof. Using ideas given in [15], [9] and [3], we check that we have just to prove the
following lemma.

Lemma 5.10. There exists a universal constant C such that for all n ∈ IN, for all n-
cylinder Cn, and for all x in Cn we have

1

C
≤

mS(Cn)
1

λn
S
eSn(BS)(x)

≤ C.

Proof. Let n be an integer. Pick Cn a n-cylinder and let x in Cn. Cn is a compact set in
F . As mS(∂F ) = 0 we have

mS(Cn) = mS(int(Cn)) = sup
ϕ≺int(Cn)

∫
ϕ dmS

where ϕ ≺ int(Cn) means that ϕ is a positive continuous function, with support in int(Cn),
and bounded from above by 1. Pick such a function ϕ. Then we have∫

ϕ dmS
def
=

∫
ϕ.h dµS

=
1

λn
S

∫ ∑

y∈Antn(x)

eSn(BS)(y)ϕ(y).h(y) dµS(x)

=
1

λn
S

∫
1ICn(y)eSn(BS)(y)ϕ(y).h(y) dµS(x)(4)

There exists a universal constant C such that
1

C
≤ h ≤ C.

Moreover, the variation of BS on each cylinder is uniformly bounded by a universal con-
stant. Equality (4) yields

1

C
×

(
1

λn
S

eSn(BS)(x)

)
≤

∫
ϕ dmS ≤ C ×

(
1

λn
S

eSn(BS)(x)

)
,

which proves Lemma 5.10.

6. Extensions

6.1. Extensions of (F, gF , mPS
). In this subsection, we will prove that there exists a

measure νS such that the system (Ω, f, νS) can be seen as an extension of the system
(F, gF , mS).

6.1.1. Natural extension of (F, gF , mS). We defined the system (F, gF ) as a factor of the
system (R, g). We first want to check we can find a measure m̂S on the Borel set σ-algebra
of R which projects itself onto mS by πF . In this aim, we have to define a new map g̃ to
solve problems of boundaries.

For x in R, we know that πF (x) /∈ ∂uR, and we set g̃(x)
def
= f r(πF (x))(x). Then we

define a family of Borel sets in R in the following way.
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Definition 6.1. We call block of R every Borel set A such that either R is empty, or if
x ∈ A, then W s(x, R) ⊂ A.

We define a map m̂S by

m̂S(A) =

{
mS (πF (A)) if A is a block
mS (πF (g̃−n(A))) if n is the lowest integer such that g̃−n(A) is a block.

If we set T
def
= {g̃n(B), n ∈ IN, B block} then we check that T is an algebra, containing

the closed sets. The property of sequential continuity holds, meaning that for every de-
creasing sequence of elements in T , (An)n∈IN such that ∩n∈INAn = ∅, limn→+∞ m̂S(An) =
0. Using Carathéodory’s theorem, we have the following result.

Proposition 6.2. m̂S is a g̃-invariant Borel probability measure.

By construction of m̂S , for each Borel set of F , B, we have m̂S(π−1
F (B)) = mS(B) and

we claim this implies that (R, g̃, m̂S) is the natural extension to (F, gF , mS). Moreover it’s
ergodic, and the Markov property yields that ∂uR is g̃-invariant. Then we claim it must
have zero measure. Hence we deduce the following corollary.

Corollary 6.3. The maps g̃ and g are m̂S-almost everywhere equal. Thus (R, g, m̂S) is
the natural extension to (F, gF , mS), and m̂S is g-invariant and ergodic.

The measure m̂S satisfies also a variational principle.

Definition 6.4. Set B̂S the function defined by

B̂S(x)
def
=

r(x)−1∑

k=0

A ◦ fk(x) − r(x)S

for every x in R1. We denote by M′
R the set of g-invariant probability measures such that

R \ (R∞ ∪ ∂R) has zero measure. For ν ∈ M′
R, we set Pν(B̂S)

def
= hν(g) +

∫
B̂S dν and we

call it pressure of ν for the potential B̂S. Then we set

P(B̂S)
def
= sup

ν∈M′
R

Pν(B̂S),

and call it pressure of the system for the potential B̂S. Any measure which realizes this
maximum is called Equilibrium State.

We have the following result.

Proposition 6.5. The system (R, g) has a unique Equilibrium State associated to B̂S,
which is m̂S.

Proof. It is sufficient to check that BS ◦πF and B̂S are cohomologous for the map g. Then
we use the properties of the natural extension.

As a direct corollary we have the following.

Corollary 6.6. m̂S is independent of the choice of the leaf F .
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6.1.2. Extension of (R, g, m̂S). We want to see the system (R, g, m̂S) as an induced system
(Ω, f, νS). Proposition (B.2) tells us we have just to prove the following result.

Lemma 6.7. For each S > SS, we have
∫

r dm̂s < +∞.

Proof. By definition of m̂S it is sufficient to prove that
∫

r dms < +∞. We have
∫

r dµS =
1

λS

∫
LS(r) dµS with LS(r)(x) =

∑+∞
k=1

(∑
y∈Ant(k,x) eBS(y)

)
ke−kS for any x in F \ (H1 ∪

∂gF ). Pick x0 in F \ (H1 ∪ ∂gF ). Then LS(r)(x0) can be seen as the derivative series of
the power series LS(1IF )(x0) which converges uniformly because SS < S. Lemma (3.13)
yields

∫
r dmS < +∞.

Hence we have,

Proposition 6.8. For all S > SS, there exists an invariant ergodic Borel probability
measure νS such that (Ω, f, νS) induces (R, g, m̂S). Thus, the pressure of νS associated to
A satisfies

PνS
(f,A) = S + νS(R) log λS .

Proof. The existence of νS is a direct consequence of the previous Lemma. Moreover,

log λS
def
= hbmS

(g) +
∫
BS dm̂S = 1

νS(R)

[
hνS

(f) +
∫
A dνS − S

]
.

Remark. In particular we have λS ≤ 1, ∀S > SS .

6.2. The case S = PA.

6.2.1. Existence of µPA
. By Proposition (4.3), we have SS ≤ PA, but we don’t know if

SS < PA or not. However, we know that a sufficient condition for the existence of µS is
that the series LS(1IF )(x) converges for one point x in F . We will prove that this fact holds
for S = PA, and we will deduce existence and uniqueness of the Equilibrium State for the
system associated to the potential BPA

. To make the reading easier, we will exchange the
subscript PA by A.

Proposition 6.9. There exists a universal constant C such that for all x in F \ ∂F we
have ∑

y∈Ant(x)

eBA(y) ≤ C

Proof. Pick an x in F \ ∂F . Pick S > PA. There exists a universal constant such that
LS(1IF )(x) ≤ eC LS(1IF )(y), which implies LS(1IF )(x) ≤ eC λS . Hence S 7→ LS(1IF )(x)
is decreasing positive and bounded from above on (PA, +∞) and admits a limit when S
tends to PA. Thus

LA(1IF )(x) ≤ eC .

This proposition proves that the previous results also hold for S = PA. We have in
particular the next result.

Proposition 6.10. The dynamical system (F, gF ) admits a unique Equilibrium State as-
sociated to BA, which is the unique invariant quasi-Gibbs measure mA. The pressure of
the system is log λA.

Again the natural extension of the system (F, gF , mA) defines a new dynamical system
(R, g, m̂A) and we have the following.
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Proposition 6.11. The dynamical system (R, g) admits a unique Equilibrium State as-

sociated to B̂A, which is the measure m̂A.

6.2.2. Extension of (R, g, m̂A). The Proposition (B.2) says that a sufficient condition to
find an extension of (R, g, m̂A) is that

∫
r dµA is bounded from above. This part is devoted

to the proof of this claim. We claim it is sufficient to prove that

+∞∑

n=0


 ∑

y∈Ant(n,x)

eB(y)


n e−nS < +∞

for some x in F . Pick one x in F , y in Ant(n, x). Lemma (A.1) gives two families of
sets {ξs(fk(y))}1≤k≤n and {ξu(fk(y))}0≤k<n, each set containing a ball of radius ε in
the adapted topology, and each set being either wholly inside R, either wholy outside.

Moreover by Lemma (A.2), there exists an N such that every ξu(fk(y)) intersects f−N (
◦
R)

and ξs(fk(y)) intersects fN (
◦
R). Pick k ≤ n − 2N . Then, there exists an integer Nk ≤ N

and there exists a point zk(y) ∈ ξu(y) = F such that

(i) f j(zk(y)) ∈ ξu(f j(y)) for all j ≤ k;
(ii) fk+N (zk(y)) ∈ R, f j+N (zk(y)) /∈ R for all k < j ≤ Nk;
(iii) f j+N+Nk(zk(y)) ∈ f j+N+Nk(y) for all j ≤ n − N + Nk.

Lemma 6.12. If z is a point in Ω, there are finitely many y’s in Ant(n, x) such that
z = zk(y) for one k. This finite number is uniformly upper bounded in x and n.

Proof. If z = zk(y) = zk(y
′), then fk(y) and fk(y′) must be (ε, N + Nk)-separated. We

denote by E(ε, 2N) the largest cardinal of any maximal (ε, 2N)-separated set. The case
z = zk(y) = zk′(y′) is impossible because if k < k′, then fk+N (z) is in R and its orbit

doesn’t intersect R for k + N + 1 to n − 1, and we must have fk′+N (z) in R. Finally less
than E(ε, 2N) different y’s can give the same z = zk(y).

If z = zk(y), then f j(z) and f j(y) are close for 0 ≤ i ≤ k and n− k −N −Nk ≤ j ≤ n.
This proves that there exists an uniform constant C such that

eSn(A)(y) ≤ eC eSn(A)(z),

as soon as z = zk(y) for one k ≤ n − 2N . Thus the case z = zk(y) = zk′(y) is impossible
for the same reason that z = zk(y) = zk′(y′) is impossible. Moreover, if we denote by Z
the set of all points z = zk(y) for one y in Ant(n, x) and one k, all the elements of Z are in
F and have image by fn in W s(x, R). They are preimages of x and {fk(z)}0≤k≤n doesn’t
intersect R more than N + 2 times for every z. This means that

LA(r)(x) ≤

(
eC E(ε, 2N)

N+1∑

k=3

Lk
A(1IF )(x)

)
+ 2NLA(1IF )(x).(5)

As LA(1IF )(x) converges, Lk
A(1IF )(x) converges for all k and inequality (5) shows that

LA(r)(x) < +∞.

We denote by νA the f -invariant probability measure on Ω such that the dynamical system
(Ω, f, νA) induces the dynamical system (R, g, m̂A). Again we have

PνA(f,A) = PA + νA(R) log λA.(6)
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6.3. Computation of λA. Equality (6) shows that λA ≤ 1. We will prove that λA ≥ 1,
and because of uniqueness of the Equilibrium State for the system (Ω, f), it will prove
that νA = µA.
Assume that λA < 1, then LA is a contraction, and for all x in F ,

∑+∞
n=0 L

n
A(1IF )(x)

converges. Pick an (ε, n)-maximal-separated set of points En and x in F . If y is in En,
we can find zy such that zy ∈ F , fN (zy) and y are (ε/2, n)-close and fn+2N (zy) ∈ R. To
zy we associate y′ such that πF ◦ fn+2N (y′) = x and y′ ∈ Cn+2N (zy). We obtain a new set
E′

n such that

e−C
∑

y∈En

eSn(A)(y) ≤
∑

y′∈E′
n

eSn+2N (A)(y′) ≤ eC
∑

y∈En

eSn(A)(y).

If (En)n∈IN is a family of (ε, n)-maximal-separated sets, then we have

+∞∑

n=0

∑

y∈En

eSn(A)(y)−nPA(y) ≤ eC
+∞∑

n=0

∑

y′∈E′
n

eSn+2N (A)(y′)−(n+2N)PA(y′)

≤ eC
+∞∑

n=0

Ln
A(1IF )(x).(7)

We know (see [4]) that there exists a universal constant such that

1

C
≤ Zn(A) e−nPA ≤ C,

where Zn(A) denotes
∑

y∈En
eSn(A)(y). Inequality (7) says that

∑+∞
n=0 L

n
A(1IF )(x) cannot

converge, and this finally proves that λA ≥ 1.
Uniqueness of Equilibrium State gives the following.

Proposition 6.13. The measure νA is the measure µA.

7. Proofs of theorems

7.1. Proof of theorem A’. We first define a measurable partition subordinate to the
stable foliation. The proof of the absolute continuity will not depend on the choice of
the partition because of the subordinate condition. We define the partition ηs in R as
ηs(x) = W s(x, R), and more generally

gnηs(x) =

{
gn (ηs(y)) if there exists y in Rn such that gn(y) = x,
{x} if not.

Then proposition (B.1) yields

Proposition 7.1. There exists a set Γs with full µA-measure in R such that for all x in
Γs and for all integer n ∈ IN, every non-trivial atom gnηs(y) (y ∈ ηs(x)) is such that

µA,s
y (gnηs(y)) =

h(yn
F )

h(yF )
eSn(B)(yn

F ),

where yF
def
= πF (y) and yn

F

def
= πF ◦ g−n(y).

We can now prove theorem A’. We check that for every (x, y) in Γs the two measures

µA,s
x and µA,s

y are equivalent modulo the unstable holonomy.
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Lemma 7.2. There exists a universal constant C such that for every (x, y) in Γs if z1

and z2 are respectively in ηs(x) and ηs(y), and z1 ∈ ηu(z2) and gnηs(z1) is non trivial for
every n, then for all n,

1

C
≤

µA,s
y (gnηs(z2))

µA,s
x (gnηs(z1))

≤ C.

Proof. : This is a direct result from proposition (7.1), plus the Hölder continuity property
of B and the continuity of h.

Keeping the same notations, we check that the Jacobian is

J(z1, z2) =
h(πF (x))

h(πF (y))
e(

P+∞

k=1(A◦f−k(z2)−A◦f−k(z1))+ω(z2)−ω(z1)).(8)

The Martingale theorem proves that J(z1, z2) = limn→+∞
µA,s

y (gnηs(z2))

µA,s
x (gnηs(z1))

. For n we have

µA,s
y (gnηs(z2))

µA,s
x (gnηs(z1))

=
h(zn

2F )h(z1F )

h(z2F )h(zn
1F )

eSn(B)(zn
2F )−Sn(B)(zn

1F ).(9)

The cocycle property of B proves that if we set r = rn(zn
1F )

Sn(B)(zn
2F ) − Sn(B)(zn

1F ) =
r−1∑

k=0

A ◦ f−k(zn
2F ) −A ◦ f−k(zn

1F ) + ω(z2) − ω(z1),

the Hölder properties and the contractions prove that there exists some universal constant
C such that∣∣∣∣∣∣

r−1∑

k=r/2

A ◦ fk(zn
2F ) −A ◦ f−r+k(z2)

∣∣∣∣∣∣
≤

C

λr/2
,

∣∣∣∣∣∣

r−1∑

k=r/2

A ◦ fk(zn
1F ) −A ◦ f−r+k(z1)

∣∣∣∣∣∣
≤

C

λr/2
,

and

∣∣∣∣∣∣

r/2∑

k=0

A ◦ fk(zn
2F ) −A ◦ fk(zn

1F )

∣∣∣∣∣∣
≤

C

λr/2
.(10)

Inequalities (10), and the continuity of h prove equality (8).
We do the same with f−1 and we get a set Γu of full µA-measure in R. We set Γ = Γu∩Γs.

For any x and y in Γ, µA,u
x and µA,u

y are equivalent modulo holonomy, hence µA,u
x is

equivalent to mA for every x in F . This proves that µA has a local product structure in
R and then in all Ω.

By [12], we know the existence of a set ∆ of full µA-measure of points such that µA,s
x

and µA,u
x have pointwise dimensions equal δs and δu. Pick any point x in ∆ ∩ Γ. Because

of the continuity of x 7→ Eu(x) and x 7→ Es(x), there exists a universal constant C such
that for every ρ small enough we get

[
Bu(x,

ρ

C
); Bs(x,

ρ

C
)
]

⊂ B(x, ρ) ⊂
[
Bu(x, C ρ); Bs(x, C ρ)

]
,(11)

and the absolute continuity of conditional measures yields

1

C ′
µA,u (Bu(x, ρ)) .µA,s (Bs(x, ρ)) ≤ µA([Bu(x, ρ); Bs(x, ρ)])

≤ C ′ µA,u (Bu(x, ρ)) .µA,s (Bs(x, ρ)) ,(12)

for some universal constant C ′. Then (11) and (12) finish proof of Theorem A’.
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7.2. Proof of theorem A. We first recall a result from [5] in the case of invariant
transversal measure.

Lemma 7.3. Suppose that E is a subfamily of transversal to the stable foliation such that
Ω = {W s(x), x ∈

⋃
K∈E intΦ(K × Dn)}. Then the map

{µK}Ktransversal −→ {µK}K∈E

is a bijection between W s-invariant measures and a family of measures on {K ∈ E} satis-
fying the required conditions on these sets.

If x is in Ω, then W s(x) ∩ int(F ) 6= ∅, and int(F ) ⊂ int(R). This shows that to prove
existence and uniqueness of {µK} it is sufficient to prove existence and uniqueness of such
a measure on the unstable leaf F .

Then we check that µA is the unique measure satisfying the conditions.
The two conditions proves that if such a measure exists, it must be a conformal measure for
the system (F, gF ) with Jacobian e−Sr(x)(A)(x)+r(x)PA−ω(x). This yields that the measure
must be µA. We check existence now. Pick A and A′ two Borel sets, with a one-to-
one Borel map πA,A′ between them. We first assume that A ⊂ F∞ and A′ ⊂ F∞. Set
A = tn∈IN∗An such that x ∈ An if and only if n is the first integer such that fn(x) ∈ R
and fn ◦ πA,A′(x) ∈ W s(fn(x), R). Cut any An in countable Am

n such that on each Am
n ,

fn corresponds to a map gkn,m and on each A′m
n , fn corresponds to a map gk′

n,m . Hence

g
kn,m

F (Am
n ) = g

k′
n,m

F (A′m
n ), the cocycle property of B, and the fact that µA is conformal

prove that

∀(n, m) ∈ IN∗ × IN µA(A′m
n ) =

∫

Am
n

ew(πA,A′ (x),x) dµA.

This proves that µA satisfies conditions of theorem A. Moreover, µA is equivalent to mA

which is equivalent to µA,u
x for any x ∈ F by Theorem A’.

Appendix A. Some facts about Axiom A

We give here some general facts in the Axiom-A theory. In this part, we assume we
have a cover of the basic set Ω by some Markov partition, denoted by R = {Ri}. The
finite union of unstable (resp. stable) boundaries will be denoted by ∂uR (resp. ∂sR).
The map x 7→ ds(x, ∂uR), where ds denotes the canonical metric on the stable leaves, is
continuous. Then for each i, there exists some constant di > 0 such that, for all x ∈ Ri,
W s(x, Ri) contains a ball of radius bigger than di. As we have finitely many rectangles,
we have 0 < d = mini di.

Lemma A.1. Assume x is in R0, fn(x) ∈ R0 and fk(x) /∈ R0 for every 1 ≤ k ≤ n − 1.
Then there exists a family of sets (ξs(fk(x)))1≤k≤n such that

(i) ξs(fn(x)) = W s(fn(x), R0) ;
(ii) for any k in [1, n − 1] ξs(fk(x)) ⊂ W s

loc(f
k(x)), and ξs(fk(x)) ∩ R0 = ∅ ;

(iii) for any k, f(ξs(fk(x))) ⊂ ξs(fk+1(x)).

Moreover, there exists an uniform constant ε = ε(R) such that

ξs(fk(x)) ⊃ Bs(yk, ε) 3 fk(x)

for some yk.
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Proof. Pick one x and one n. We first set ξs(fn(y)) = W s(fn(x), R0). Assume we have
defined ξs(fk(x)) and that its boundary is included in ∂uR. We define ξs(fk−1(x)) in the
following way: f−1(ξs(fk(x))) contains fk−1(x) which is outside of R0, and its boundary
is again in ∂uR. If the interior of f−1(ξs(fk(x))) (for the W s-topology) doesn’t intersectes

with ∂uR, then f−1(ξs(fk(x)))∩
◦

R0= ∅, and we set ξs(fk−1(x)) = f−1(ξs(fk(x))). Other-
wise, the Markov property of R proves that we can find an open subset of f−1(ξs(fk(x)))
(in the W s-topology) with boundary in ∂uR which contains fk−1(x) and doesn’t intersect
with R0. This set defines ξs(fk−1(x)). In each case, ξs(fk−1(x)) contains a ball in the
stable foliation of radius d/2.

Remark. We have also a family of set (ξu(fk(y)))1≤k≤n with symmetric properties.
We formulate now in a different way the mixing property.

Lemma A.2. Let ε be an expansiveness constant. There exists an integer N such that

for every x ∈ Ω W u
ε (x) ∩ f−N (

◦
R0) 6= ∅.

Proof. Because
◦
R0 is an open set it contains a periodic point x0. Let p0 be x0’s period.

As W s(x0) is dense in Ω, foe every x in Ω, there exists some n, such that W u
ε (x) ∩

f−np0W s(x0,
◦
R0) 6= ∅. Moreover, if W u

ε (x) ∩ f−np0W s(x0,
◦
R0) 6= ∅, then there is an open

set U containing x such that for all y in U W u
ε (y)∩f−np0W s(x0,

◦
R0) 6= ∅.. By compactness

we can find a finite number of such open sets, and a finite maximal N .

Remark. If N is taken large enough, we know that fN (W u
ε (x))∩

◦
R0 is an unstable leaf

of
◦
R0. In the same way, if N is taken sufficiently large W s

ε (x) ∩ fN (
◦
R0) 6= ∅ for all x and

f−N (W s
ε (x))∩

◦
R0 is a stable leaf of

◦
R0.

QUESTION: in this part only we seem to be forced to assume existence of a cover by
rectangles with the Markov property. This could be an obstacle to extend this method to
the non-uniform hyperbolic case. Is there a geometrical way to prove that if we have just
one rectangle with the Markov property, then the set Ω \ ∪n≥0f

−n(∂uR) must be a union
of open sets containing balls of big radius in the W s-topology?

Appendix B. Some facts about extensions

We give here some general facts about extensions. We first recall that if (Y,Ψ, ν) is a
dynamical system, the measure ν is said conformal with Jacobian J , if for all Borel set B
such that Ψ|B is one-to-one,

ν(Ψ(B)) =

∫

B
J dν.

The next result gives a relation between the measure ν of a system (Y,Ψ, ν) and the
conditional measures along the fibers of its natural extension.

Proposition B.1. Let (Y,Ψ, ν) be a dynamical system and (X, Φ, µ) its natural extension.
Let Π be the canonical map from X onto Y . Assume there exists a countable partition (in
the sense of ν) (Yn)n∈IN of Y such that for every n Ψ(Yn) = Y . Assume it is a generating
partition

+∞∨

n=0

Ψ−n (Yn(Ψn(y))) = {y} ν − a.e.,
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and each fiber in X, Xy
def
= {x ∈ X, Π(x) = y}, has a countable number of images of fibers

by Φ. Then the partition of X in fibers is measurable and if µx denotes its unique system
of conditional measures, then ν is conformal with Jacobian

1

µΨ(y) (Φ(Π−1(y)))
.

We give now another result which says when a system can be seen as an induced sub-
system.

Proposition B.2. Let (Y,Ψ, ν) a dynamical system with ν a Ψ-invariant ergodic Borel
probability measure. Assume that

(1) Y ⊂ X;
(2) Ψ is almost everywhere the first return map in Y associated to the iteration of an

inversible map Φ from X onto itself;
(3) If r is the first return time map (Ψ(x) = Φr(x)(x)), then

∫
r dν < +∞.

Then there exists a Φ-invariant ergodic Borel probability measure such that (X, Φ, µ) in-
duces by the first return map the system (Y,Ψ, ν).

Proof. We give here just the sketch of the proof. For a complete proof, see [7].

Denote by l
def
= 1R

r dν
. Pick any Borel set in X, and any integer k. Set

Ak
def
= {y ∈ A such that Φ−k(y) ∈ Y and Φ−j(y) /∈ Y ∀ j < k}

and define

µ(A)
def
= l ×

(
+∞∑

k=0

ν
(
Φ−k(Ak)

))
.

Just check that µ satifies the required properties.

Appendix C. Ionescu-Tulcea and Marinescu’s theorem

We recall here Ionescu-Tulcea and Marinescu’s theorem, and some useful lemmas. Some
complete proofs can be found in [10] or [6].

Theorem C.1 (Ionescu-Tulcea & Marinescu). Let (V, ‖ ‖V) and (U , ‖ ‖U ) be two C

-Banach

spaces such that V ⊂ U . We assume that

(i) if (ϕn)n∈IN is a sequence of functions in V which converges in (U , ‖ ‖U ) to a function
ϕ and if for all n ∈ IN, ‖ϕn‖V ≤ C then ϕ ∈ V and ‖ϕ‖V ≤ C,

and Φ an operator from U to itself such that

(ii) Φ lets V invariant and is bounded for ‖ ‖V ;
(iii) supn{‖Φ

n(ϕ)‖U , ϕ ∈ V, ‖ϕ‖U ≤ 1} ≤ MS < ∞ ;
(iv) there exists an integer n0 and two constants 0 < a < 1 and 0 ≤ b < +∞ such that

for all ϕ ∈ V we have ‖Φn0(ϕ)‖V ≤ a‖ϕ‖V + b‖ϕ‖U ;
(v) if X is a bounded subset of (V, ‖ ‖V) then Φn0(X ) has compact closure in (U , ‖ ‖U ).

Then Φ has a finite number of eigenvalues of norm 1 : λ1 . . . λp and Φ can be written
Φ =

∑p
i=1 λiΦi + Ψ, where the Φi are linear bounded operators from V to Φ(V) of finite

dimension image contained in V, and where Ψ is a linear bounded operator with spectral
radius ρ(Ψ) < 1 in (V, ‖ ‖V).
Moreover the following holds : Φi.Φj = Φj .Φi = 0 for all i 6= j, Φi.Φi = Φi for all i, and
Φi.Ψ = Ψ.Φi = 0 for all i.
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Remark. In particular, we will get for all n, Φn =
∑p

i=1 λn
i Φi + Ψn.

Under the same assumptions we get the three following results.

Lemma C.2. There exists L ∈ IR+ such that for all m ∈ IN and for all ϕ ∈ V we have
‖Φmn0(ϕ)‖V ≤ am‖(ϕ)‖V + L‖(ϕ)‖U .

Lemma C.3. The family (‖Φm‖V)m is uniformly bounded.

Lemma C.4. For all ϕ ∈ V there exists ϕ ∈ V such that

lim
n→+∞

∥∥∥∥∥
1

n

n−1∑

k=0

Φk+n0(ϕ) − ϕ

∥∥∥∥∥
U

= 0.
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