
CHAOS : BUTTERFLIES ALSO GENERATE PHASE TRANSITIONS
AND PARALLEL UNIVERSES

RENAUD LEPLAIDEUR

Abstract. We exhibit examples of mixing subshifts of finite type and potentials such
that there are phase transitions but the pressure is always strictly convex. More surpris-
ingly, we show that the pressure can be analytic on some interval although there exist
several equilibrium states.

1. Introduction

1.1. General background. In this paper we deal with the notion of phase transition.
There are several viewpoints for studying phase transitions: Statistical Mechanics, Prob-
ability Theory or Dynamical Systems. Depending on the viewpoint, the settings, the
questions and the interests are di↵erent. In Statistical Mechanics and in Probability, one
usually considers lattices with interaction energy between the sites. Often, the geometry
of the lattice and the decay of correlation of interactions are the main issues. On the other
hand, in Dynamical Systems, one usually consider one-dimensional lattice (with natural
Z-actions) and the potential as a function of which regularity is the main issue.

The definition of phase transition also naturally depends on the viewpoint. The Ising
model (see e.g. [14]) and its extension, the so-called Pots model are studied in Probability
Theory, either in mean fields case (see [5, 12, 2]), or via the percolation theory (see [15, 4]).
In both cases, a phase transition means co-existence of several probability measures re-
solving or resulting from some optimization.
In very applied Physics, a phase transition “simply” is, for instance, the boiling water.
In more theoretical physics, it is related to the Gâteaux di↵erentiability of the pressure
function (see e.g. [7, 8, 19, 20]).
The topic is actually relatively new in Dynamical Systems (compared to Statistical me-
chanics and Probability Theory), and one usually considers that a phase transition occurs
when the pressure function stops to be analytic (see [18, 10, 16]). This definition was also
used in Statistical Mechanics via the Ehrenfest classification, and the lack of analyticity
defines notion of first-order, second over or even higher order phase transitions.

We want to emphasize here that, both definitions (regularity of the pressure v.s. co-
existence of several equilibria) are not necessarily well-related. Of course, a first-order
phase transition, that is when the pressure function is not C1, yields co-existence of several
equilibria. But we show here that the converse is not true. Actually, our Theorem B states
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that there are mixing systems such that the pressure function is analytic on some interval
despite simultaneous existence of several equilibria.

One motivation in Dynamical System for studying phase transition is ergodic optimization.
Since the 00’s, mathematicians somehow rediscovered the notion of ground states well
known in Statistical Mechanics: if T : X ! X is the dynamical system and ' : X ! R
the potential, one studies what happens to the/some equilibrium µ

�

for �.' as � goes
to +1. in Statistical Mechanics � is the inverse of the temperature. Most of the phase
transitions studied in Dynamical Systems are actually “freezing” phase transitions, that
is that for � > �

c

the pressure function is a�ne.
Such transitions are known in Statistical Mechanics as the Fisher-Felderhof models (see
e.g. [13], and also [11] for a one-dimensional lattice case). Physically, this means that for
some positive temperature, the systems reaches its/one ground state and then stops to
change.
It was thus natural to inquire about the possibility to get phase transitions in Dynamical
Systems which are not freezing, that is, that after the transition the pressure is non-flat.
This is the purpose of our Theorem A.

1.2. General settings. We consider a subshift of finite type ⌃ on a finite alphabet A.
Several cases will be considered depending on the theorem.

We remind that a point x in ⌃ is a sequence x0, x1, . . . (also called an infinite word) where
x
i

are letters in A. Moreover, there is an incidence matrix which makes precise what the
authorized transition x

i

! x
i+1 are.

The distance between two points x = x0, x1, . . . and y = y0, y1, . . . is given by

d(x, y) =
1

2min{n, xn 6=yn}
.

A finite string of symbols x0 . . . xn�1 is also called a word, of length n. For a word w, its
length is |w|. A cylinder (of length n) is denoted by [x0 . . . xn�1]. It is the set of points y
such that y

i

= x
i

for i = 0, . . . n � 1.

If i is a digit in A, x = in⇤ means that x = i . . . i| {z }
n digits

j with j any digit 6= i such that ij is

admissible in ⌃.

The alphabet will depend on some integer parameter L. It will be either

{1, 2, 3, 4, 11, 12, . . . , 1L} or {1, 2, 3, 4, 30, 40, 11, 12, . . . , 1L},

and L may be equal to 1.

Let consider positive real numbers ↵, �, � and ". The potential � is defined by

�(x) =

8
>>><

>>>:

�↵ < 0 if x0 2 {1, 11, 12, . . . , 1p}
� log

�
n+1
n

�
if n+ 1 = min{j > 1, x

j

6= 2}
� � " log

�
n+1
n

�
if x0 = 3, 30 and and n+ 1 = min{j > 1, x

j

= 2},
� + � � " log

�
n+1
n

�
if x0 = 4, 40 and and n+ 1 = min{j > 1, x

j

= 2}.
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Hence, if x = 2n⇤, �(x) = � log
�
n+1
n

�
. If x = 3 x1 . . . xn�2| {z }

n�2 digits=3,4

32 . . ., then �(x) = � �

" log

✓
n+ 1

n

◆
.

We recall that for � > 0, the pressure function P(�) is defined by

P(�) = max
µ T�inv

⇢
h
µ

+ �

Z
� dµ

�
,

where h
µ

is the Kolmogorov entropy of the measure µ. We refer the reader to [3] for
classical results on thermodynamic formalism in the shift. A measure which realizes the
maximum in the above equality is called an equilibrium state for �.�.

Definition 1. We say that P(�) (or equivalently that the potential �) has a phase tran-
sition (at �

c

) if � 7! P(�) is not analytic at � = �
c

.

1.3. Results. We first consider the case A = {1, 2, 3, 4, 11, 12, . . . , 1L}. The transitions
are given by Graph 1. This gives a “butterfly” with two wings, each one tending to be
autonomous.

Full shift
1 2 3 4

1L

1112

1j

Figure 1. Dynamics for Theorem A.

We emphasize that the system is irreducible but has several subsystems. In particular we
shall consider two di↵erent subsystems, ⌃34 := {3, 4}N ⇢ ⌃ and ⌃234 := {2, 3, 4}N \⌃, the
restriction of ⌃ to the invariant set of infinite words only with letters 2, 3 or 4. For the
same potential �, we shall consider the associated pressure functions, P34(�) and P234(�).

Theorem A.
There exist two positive real numbers �1 < �

c

such that P(�) and P234(�) have phase
transition respectively at �

c

and �1. More precisely (see Figure 2 p.12),

(1) the pressure function P34(�) is analytic,
(2) for � < �

c

, the pressure function P(�) is analytic and satisfies P(�) > P34(�),
(3) for � > �

c

, the pressure function P(�) satisfies P(�) = P34(�),
(4) for � < �1, the pressure function P234(�) is analytic and satisfies P234(�) >

P34(�),
(5) for � > �1, the pressure function P234(�) satisfies P234(�) = P34(�).
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Moreover, for each transition, the entropy is positive.

For � = �1, there is an unique equilibrium state for ⌃234. For � = �
c

, there are two
equilibrium states for ⌃ if and only if "�

c

> 2. This inequality can be realized (depending
of the parameters ↵, ", � and �) or non-realized.

As we said above, the principal motivation for Theorem A was to built phase transitions
with non-flat pressure function after the transition. Actually such an example was already
known in [9]. However, in that case, the map is a skew product over a Horseshoe and
the potential the logarithm of the derivative in the central direction (equivalent to the
direction of fibers). Then, when it is projected onto the Horseshoe, the potential is not
a function anymore. Hence, that phase transition cannot be realized as a continuous
potential defined on a subshift of finite type.

To be complete concerning the shape of the pressure, we also have to mention [16]. There,
they also show that the pressure may be non-flat after the transition. However, and
this is the main di↵erence, in their construction they always need some interval where the
pressure is flat. Following their vocabulary, for this interval the systems is transient, which
means it has no conformal measure. In our example, at any � there exists a conformal
measure and the pressure is always strictly convex.

Let us now present the main result of the paper. As we said above, the regularity of the
pressure function is an indicator of the uniqueness of the equilibrium state. This regularity
can be understood in two di↵erent ways.
First, regularity in the direction of the potential, that is that we study � 7! P(�). Con-
versely, non-regularity yields di↵erent order of phase transitions as seen above.
Another point is the Gâteaux-di↵erentiability of the functional P(�+ .) on C(⌃). In [22,
Cor. 2], it is showed that Gâteaux-di↵erentiability at � is equivalent to uniqueness of the
equilibrium state for �. Of course this later point is more subtile that the regularity for
P(�), but it was however communally expected that analyticity for P(�) would insure
uniqueness of the equilibrium state. We prove here that it is not true.

Theorem B.
There exist irreducible subshifts of finite type and continuous potentials such that their
pressure function are analytic on some interval ]�0

c

,+1[ but there coexist several equilib-
rium states.

There exists an infinite-dimensional space of functions ' such that for every � > �0
c

,
' 7! P(�+ ') is Gâteaux-di↵erentiable in the '-direction.

We remind that a function f is Gâteaux-di↵erentiable at x in the direction y if

lim
t!0

f(x+ ty) � f(x)

t

exists.

1.4. Overview of the paper. The main tool is the notion of local equilibrium state as
it was introduced in [17] and developed in further works of the author. We briefly recall
in Appendix A the principal steps.
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In Section 2 we prove main of the results concerning Theorem A and the phase transition
for P(�). In Section 3 we prove the “small” phase transition for ⌃234 and finish the proof
of Theorem A.

In these both sections the main issue is to define and understand Figure 2 (p. 12). The
special curves eZ

c

(�), �
Z,�,[1] and �

Z,�,[32] appear on that figure. Most of the proofs of
lemmas are easily under stable if one keep Figure 2 in mind.

In Section 4 we prove Theorem B. We explain how to adapt the results from the proof of
Theorem A to the new situation.

2. The phase transition for P(�)

2.1. The induced operator on [1]. The first return time map has been widely used in
dynamical systems to understand the ergodic properties of a system. In this direction,
we introduced in [17]a generalisation of the classical transfer operator which allow us to
obtain information in cases that the usual theory breaks down. Denote by ⌧[1](x) the first
return time into the cylinder [1]. Given Z 2 R the Induced Transfer Operator on the
cylinder [1] for the first return time map and for the potential

��(x) + . . .+ �� � �⌧[1](x)(x) � ⌧[1](x)Z,

is defined by

L
Z,�,[1]( )(x) :=

X

y: g(y)=x

eS⌧(y)(�.�)(y)�Z⌧[1](y) (y).

A counting argument yields

L
Z,�,[1](1I[1])(x) =

+1X

n=1

e�n�↵�nZ+(n�1) logL +
+1X

n=1

✓
1

n+ 1

◆
�

e�nZ · e�↵��Z ⇥
2

4
+1X

k=0

 
+1X

n=1

✓
1

n+ 1

◆
�

e�nZ ·
+1X

n=1

✓
1

n+ 1

◆
"�

L
n

(�, [3])e�nZ

!
k

3

5 ,

where

(1) L
n

(�, [3]) =
X

w2{3,4}n,w0=wn�1=3

e�'(w).

Indeed, the first summand corresponds to the points x = (1x2x3 . . . xn�1 . . . ) such that
for every i 2 {2, 3, . . . , n � 1} we have x

i

2 {11, . . . , 1L}. For those points we have that
��(x)+ . . .+����⌧1(x)(x)�⌧[1](x)Z = �n�↵�nZ. Moreover, since the system restricted
to {1, 11, . . . , 1L} is a full-shift on L symbols there are exactly Ln�1 di↵erent words of the
form just described. Hence the factor (n � 1) logL.

The second summand considers the points of the form x = (12, 2, 2, . . . 21 . . . ). In this
case e��↵�Z takes into account the potential at x and the contribution for the strain go

2’s yields the term

✓
1

n+ 1

◆
�

.
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Finally, we have to consider the points in [1] that before returning to the cylinder [1] visit
the cylinders [3], [4]. They must first visit [2. These words are of the form

1(string of 2’s) (intermittence of strings of 3’s or 4’s and strings of 2’s) 1 . . .

Note that,

L
n

(�, [3]) = en��
n�2X

k=0

ek��
✓
n � 2

k

◆
⇥ possible 4’s in the word w

= en��(1 + e��)n�2 =

�
e�� + e(�+�)�

�
n

(1 + e��)2
=

1

(1 + e��)2
enP34(�).

Following Section A we need to determine the curve Z
c

(�) associated to L
Z,�,[1]. For

simplicity we set

⌃1 = ⌃1(Z,�) :=
+1X

n=1

e�n�↵�nZ+(n�1) logL

⌃2 = ⌃2(Z,�) :=
+1X

n=1

✓
1

n+ 1

◆
�

e�nZ

⌃3 = ⌃3(Z,�) :=
1

(1 + e��)2

+1X

n=1

✓
1

n+ 1

◆
"�

en(P34(�)�Z).

With these notations we get for every x in [1]

L
Z,�,[1](1I[1])(x) = ⌃1 + ⌃2e

�↵��Z

+1X

k=0

(⌃2⌃3)
k

= ⌃1 +
⌃2e

�↵��Z

1 � ⌃2⌃3
,

which makes sense only if ⌃2⌃3 < 1.

2.2. Critical value Z
c

(�) for L
Z,�,[1]. The quantity L

Z,�,[1](1I[1]) is well-defined if and
only if

⌃1 < +1, (2a)

⌃2⌃3 < 1. (2b)

Condition (2a) is satisfied only if Z > logL�↵�. Let us now study Condition (2b). First,
we emphasize that a necessary condition is Z > P34(�). Now we have:

Lemma 2. For every values of the parameters, there exists a unique �1 which is positive
such that for every 0 6 � < �1 there exists an unique eZ

c

(�) satisfying

(1) eZ
c

(�) > P34(�),
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(2) ⌃2⌃3 < 1 for every Z > eZ
c

(�),

(3) ⌃2⌃3 > 1 for every P34(�) 6 Z < eZ
c

(�),

(4) ⌃2⌃3 = 1 for every Z = eZ
c

(�).

Proof. Note that ⌃2 and ⌃3 decreases in Z for fixed �. For a fixed �, the unicity of eZ
c

(�)
such that

⌃2(Z,�)⌃3(Z,�) = 1

is thus proved (if it exists !). Note that both ⌃2 and ⌃3 go to 0 if Z goes to +1. Then,
existence of eZ

c

(�) follows from the value of ⌃2(0,�)⌃3(0,�). If it is larger than 1 then
eZ
c

(�) exits, if it is smaller than 1, then eZ
c

(�) does not exist. Now,

⌃2(P34(�),�)⌃3(P34(�),�) =
+1X

n=1

✓
1

n+ 1

◆
�

e�nP34(�) ⇣("�) � 1

(1 + e��)2
.

The function � 7! P34(�) increases in �, thus � 7! ⌃2(P34(�),�)⌃3(P34(�),�) decreases
in �. It goes to +1 if � goes to 0 and to 0 if � goes to +1.

Therefore, there exists a unique �1 such that

(3) ⌃2(P34(�1),�1)⌃3(P34(�1),�1) =
+1X

n=1

✓
1

n+ 1

◆
�1

e�nP34(�1) ⇣("�1) � 1

(1 + e��1)2
= 1

⇤

Remark 1. We point out that "�1 > 1 because the Zeta function does converge. ⌅

Note that for every � < �1, eZc

(�) > P34(�) and is given by the following implicit formula

+1X

n=1

✓
1

n+ 1

◆
�

e�n

e
Zc(�) 1

(1 + e��)2

+1X

n=1

✓
1

n+ 1

◆
"�

e�n( eZc(�)�P34(�)) = 1.

It shows eZ
c

(�) is analytic in � for � < �1.

Another consequence of Lemma 2 is that for � > �1, Condition (2b) holds for every
Z > P34(�), the case � = �1 being the critical one1.

Consequently, Conditions (2a) and (2b) hold if and only if

(1) for � 6 �1, Z > logL � ↵� and Z > eZ(�),
(2) for every � > �1, Z > logL � ↵� and Z > P34(�).

1Actually, for � = �1, (2b) holds for every Z > P34(�1).

renaud
pas clair, il manque de dire qu'après beta1 on suit P34. 
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Hypotheses. In order to simplify the determination of Z
c

(�), we make the assumption
L = 1. This assumption does not a↵ect the results neither the proofs. We shall see
below that eZ

c

is increasing so as P34 and � 7! logL � ↵� is decreasing. Therefore, there
eventually exists some �0 such that for every � > �0, Z

c

(�) = P34(�) (see Figure 2).
Actually, the assumption allows us to consider �0 = 0, and then just to consider relative
positions with respect to P234(�) (which is equal eZ

c

(�) for � < �1) and P34(�).

With this assumption, Z
c

(�) = eZ
c

(�) if � 6 �1 and L
Z,�,[1](1I[1]) diverges for Z = Z

c

(�);
Z
c

(�) = P34(�) if � > �1 and L
Z,�,[1](1I[1]) converges for Z = Z

c

(�).

2.3. Spectral radius of L
Z,�,[1]. Due to the form of the potential, the spectral radius of

L
Z,�,[1] is given by

(4) �
Z,�,[1] = L

Z,�,[1](1I[1])(x) = ⌃1 +
⌃2e

�↵��Z

1 � ⌃2⌃3
,

for any x in [1].

We are interested by the level curve �
Z,�,[1] = 1 because it partially gives the implicit

function Z = P(�).

Lemma 3. There exists �
c

> �1 such that for every � < �
c

, there exists a unique Z >
Z
c

(�) such that �
Z,�,[1] = 1.

Moreover, for every � > �
c

and for every Z > Z
c

(�) = P34(�), �
Z,�,[1] < 1.

Proof. We emphasize that ⌃1, ⌃2 and ⌃3 decreases in Z. Let us first consider the case
� 6 �1. For a fixed �, if Z # eZ

c

(�), �
Z,�,[1] increases to +1 because ⌃2⌃3 goes to 1. On

the other hand, if Z goes to +1, �
Z,�,[1] goes to 0.

Therefore, there exists a unique Z such that �
Z,�,[1] = 1.

Let us now assume � > �1. Again, �
Z,�,[1] goes to 0 if � goes to +1. Existence of a

solution for

�
Z,�,[1] = 1,

is thus a consequence of inequality

(5) F (�) :=
+1X

n=1

e�n↵��nP34(�)+

P+1
n=1

⇣
1

n+1

⌘
�

e�nP34(�)e�↵��P34(�)

1 � 1
(1+e

��)2
P+1

n=1

⇣
1

n+1

⌘
�

e�nP34(�)
P+1

n=1

⇣
1

n+1

⌘
"�

> 1.

As � 7! P34(�) increases, we claim that F (�) decreases in �. If � # �1, ⌃2⌃3 goes to 1
and then F (�) goes to +1. If � ! +1, F (�) ! 0.

Consequently, there exists an unique �
c

, such that F (�
c

) = 1. We have �
c

> �1 because
lim

�#�1 F (�) = +1.

For � < �
c

, the implicit equation �
Z,�,[1] = 1 has an unique solution, Z = P(�). For

� > �
c

it has no solution. ⇤
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2.4. Thermodynamic formalism for � < �
c

. If � < �
c

we simply use Fact 1 in Ap-
pendix A. As P(�) is given by an implicit function inside the interior of the domain of
analyticity in both variables, � 7! P(�) is analytic for � < �

c

.

By construction, P(�) > Z
c

(�) > P34(�).

We can now study the influence of the assumption L = 1. If L is not supposed to be equal
to 1 then, Z

c

(�) is, by definition larger than logL�↵�. For Z # Z
c

(�), if logL�↵� > eZ
c

(�)
or/and logL�↵� > P34(�), then �

Z,�,[1] goes to +1 and the same reasoning than above
works.

On the other hand, logL � ↵� decreases in � to �1, whereas P34(�) increases in � to
+1. Therefore, there eventually exists some �0 such that for every � > �0 Z

c

(�) = eZ
c

(�)
(if � < �1) or Zc

(�) = P34(�) (if � > �1). Then, the reasoning is the same.

Hence, the influence of L only shift the phase transition to higher �
c

. As a by-product,
this shows that "�

c

can be made as big as wanted if L increases.

Lemma 4. lim
�!�

�
c

P(�) = P34(�c).

Proof. Rememeber that P(�) is given by the implicit formula �
Z,�,[1] = 1. On the other

hand, for every �1 < � < �
c

and Z = P34(�) we set

�
Z,�,[1] = F (�).

Furthermore, F (�) > 1 for � < �
c

and goes to 1 if � ! �
c

(by definition of �
c

).

As for any fixed �, Z 7! �
Z,�,[1] decreases, for � = �

c

, Z = P34(�) is the unique solution
for

�
Z,�,[1] = 1,

thus P(�
c

) = P34(�c). ⇤

2.5. Number of equilibrium states at �
c

and thermodynamic formalism for
� > �

c

. Note that due to Facts 2 and 3 in Appendix, for � > �
c

no equilibrium state
can gives positive weight to [1]. At the transition, � = �

c

, P(�
c

) = P34(�c) which yields
that the unique equilibrium state in ⌃34 for �.� is one equilibrium state for the global
system. Then, existence of one equilibrium state giving positive weight to [1] is related to

the condition

����
@L

Z,�,[1](1I[1])(x)

@Z

���� < +1.

Lemma 5. If µ is an equilibrium state for �.� and µ([1]) = 0, then µ([11]) = . . . =
µ([1

L

]) = 0.

Proof. Assume µ is an equilibrium state for �.� and µ([1]) = 0. As we always can consider
an ergodic component of µ it is equivalent to assume that µ is ergodic.

Then, if µ([11] [ . . . [ [1
L

]) > 0, by ergodicity, µ([11] [ . . . [ [1
L

]) = 1. As the potential
� is constant on [11] [ . . . [ [1

L

], µ is the measure with maximal entropy supported in
{11, . . . , 1L}N and P(�) = logL � �↵.
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In that case, the measure of maximal entropy supported in {1, 11, . . . , 1L}N has a pressure
log(L+ 1) � �↵ > P(�) which is impossible. ⇤

Consequently, for � > �
c

, any the equilibrium state has support in {2, 3, 4}N \ ⌃

Proposition 6. If "�
c

> 2, then there are at least two equilibrium states for � = �
c

. If
"�

c

6 2, then no equilibrium state for � = �
c

gives positive weight to [1].

Proof. We remind than
�
Z,�,[1] = L

Z,�,[1](1I[1])(x),

for every x in [1] and Equality (4) is

�
Z,�,[1] = ⌃1(Z,�) +

⌃2(Z,�)e�↵��Z

1 � ⌃2(Z,�)⌃3(Z,�)
,

with Z = P34(�). Therefore we have to compute
@�

Z,�,[1]

@Z |Z=P34(�). This quantity can be

expressed in function of ⌃1 ⌃2 and ⌃3 but also
@⌃1

@Z
,
@⌃2

@Z
and

@⌃3

@Z
.

We point out that as P34(�) > 0 and we necessarily have logL � ↵�
c

< P(�
c

), the

convergence in the series defining ⌃1, ⌃2 but also
@⌃1

@Z
and

@⌃2

@Z
are exponential. Therefore,

the global convergence is equivalent to the convergence of
@⌃3

@Z
, that is

(6)
X

n

✓
1

n+ 1

◆
"�

n < +1.

This holds if and only if "�
c

> 2. ⇤
Remark 2. If "�

c

> 2, there exists a unique equilibrium state which gives positive weight
to [1]. ⌅

3. Phase transition for P234(�). End of the proof of Theorem A

3.1. First inequalities and obvious results. One of the main di�culties is that we do
not know, at that stage if the pressure for � > �

c

is strictly bigger than P34(�) or not.

Let P234(�) be the pressure for the sub-system {2, 3, 4}N \ ⌃ of points in ⌃ with no
symbols in {1, 11, . . . , 1L} and for the potential �.�. As it is a subsystem of the global one,
P234(�) 6 P(�). Conversely, {3, 4}N is a subsystem of {2, 3, 4}N \ ⌃ and then P234(�) >
P34(�). Therefore

P234(�c) = P(�
c

) = P34(�c).

The main question is to know if for � > �
c

one equilibrium state gives weight to the
cylinder [2] or not.

We recall that � is continuous and the entropy is upper semi-continuous. Thus, there
exists at least one equilibrium state, say bµ

�

, in ⌃234.

Lemma 7. For every �, for every equilibrium state bµ
�

, bµ
�

([3]) > 0.
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Proof. If bµ
�

([3]) = 0, then any ergodic component of bµ
�

is either �21 or �41 . In the first
case the pressure is 0, in the second case it is �.(�+ �). In both cases the value is strictly
lower than P34(�) 6 P234(�). ⇤
Lemma 8. Let bµ

�

be an equilibrium state for �.�. Then bµ
�

([32]) = 0 if and only if
P234(�) = P34(�).

Proof. If bµ
�

([32]) = 0, then �-invariance immediately yields that any cylinder of the form
[i0i1 . . . in�132] has null bµ

�

-measure. As bµ
�

([3]) > 0, this shows that bµ
�

(⌃34) = 1, thus
P234(�) 6 P34(�). The converse inequality is true as recalled above. ⇤

For our purpose we will thus induce on the cylinder [32]. To avoid heavy notations, the
first return will simply be denoted by ⌧ and the first return map by T .

3.2. Induced operator in [32]. Consider a point in [32] say x := 32x2x3 . . .. Any y
satisfying T (y) = x is of the form

y = 3 2 . . . 2| {z }
at least one 2

3!32x2x3 . . . ,

where ! is a word in 3 and 4.

If x0 := 32x02x
0
3 . . . y := 32n3!32x2x3 . . . and y0 := 32n3!32x02x

0
3 . . ., we emphasize that

(7) S
n+1+|!|+1(�)(y

0) = S
n+1+|!|+1(�)(y)

holds. This is the main interest to induce on [32].

Then, the family of transfer operators for T and �.� is defined by
(8)

L
Z,�,[32]( )(x) :=

1

2"�
e���Z

+1X

n=1

X

!

✓
1

n+ 1

◆
�

e�nZ

✓
2

|!| + 3

◆
"�

e|!|��+(#42!).���|!|Z (32n!x),

where  belongs to C0([32]), x starts with 32. . . , ! is a (possibly empty) word with digits
3 and 4 and starting with 3 and #4 2 ! is the number of 4’s in !.

Due to (7), the potential (for induction) satisfies condition (C2) in Appendix A, and then
we have by Lemma 9

�
Z,�,[32] = L

Z,�,[32](1I[32]) =
1

(1 + e��)2

+1X

n=1

✓
1

n+ 1

◆
�

e�nZ

+1X

m=1

✓
1

m+ 1

◆
"�

em(P34(�)�Z).

Now, the implicit equation
�
Z,�,[32] = 1,

is exactly realized for Z = eZ
c

(�) (see Lemma 2) and holds if and only if � 6 �1. By
definition of �1, for every � > �1,

⌃2⌃3 < 1,

and then Facts 1, 2 and 3 show that

• P234(�) = eZ
c

(�) for � < �1,
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• there is a unique equilibrium state for � < �1, and it is fully supported in ⌃234,

• the unique equilibrium state for � > �1 is the one in ⌃34,

• there are two equilibrium state for � = �1 if and only if "�1 > 2.

At that point, all the results stated in Theorem A are proved except ".�1 < 2 and the fact
that condition ".�

c

Q 2 and can be realized.

�Z,�,[32] = 1

�

log L � �.��Zc(�)

�1
�c

P(�)

P34(�)

�Z,�,[1] = 1

Figure 2. Principal curves.

3.3. End of the proof of Theorem A.

3.3.1. Proof that "�1 < 2. We remind that �1 is defined by the implicit formula (3):

+1X

n=1

✓
1

n+ 1

◆
�1

e�nP34(�1) ⇣("�1) � 1

(1 + e��1)2
= 1,

with P34(�) = �� + log(1 + e��). Note that P34(�) is always larger than log 2, thus for
every choices of the parameters

⇣("�1) > (1 + e��1)2 + 1 > 5.

Now, ⇣(2) =
⇡2

6
, which shows "�1 < 2.



NON-FLAT PHASE TRANSITIONS 13

3.3.2. Values for "�
c

. We remind that �
c

is given by the implicit formula derived from
Inequality (5):

(9)

+1X

n=1

e�n↵�c�nP34(�c)+(n�1) logL+

P+1
n=1

⇣
1

n+1

⌘
�c

e�nP34(�c)e�↵�c�P34(�c)

1 � 1
(1+e

��c )2
P+1

n=1

⇣
1

n+1

⌘
�c

e�nP34(�c)
P+1

n=1

⇣
1

n+1

⌘
"�c

= 1.

We have already seen that increasing L is a simple way to force "�
c

> 2 to hold.

Remind that �
c

> �1 and ".�1 > 1. Then, assume that � ! +1, " being fixed, this yields
��

c

! +1. Reporting this in (9), the first summand and the numerator of the fraction
go to 0 if � ! +1. Consequently, the denominator must also tend to 0, and as ��

c

tends
to +1, we must have

"�
c

! 1.

It is thus lower than 2 if � is su�ciently large.

4. Proof of Theorem B

For proving Theorem B we consider the next subshift of finite type:

Full shift
1 2

43

1L

1112

1j

3� 4�

Figure 3. Dynamics for Theorem B

4.1. Phase transition for P(�). We now explain how to adapt the results from the
proof of Theorem A to this new case. Inducing in [1], orbits going to [2] will/can visit ⌃34

or ⌃3040 before visiting [2] again. More precisely, after a string of 2’ we can either get a
word of the form 3!3 which ! a word with only 3 or 4 as digits, or a word of the form
30!030 with !0 a word with only 3’ and 4’.

By symmetry of the potential, any sum ⌃3 as thus to be replaced by 2⌃3 = ⌃3 +⌃3, one
for a string in 3 and 4 and one for a string in 3’ and 4’.

Consequently the condition (2b) has to be replaced by

(10) ⌃2⌃3 <
1

2
.
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The implicit formula (similar to (3)) we have to consider is

⌃2(P34(�2),�2)⌃3(P34(�2),�2) =
1

2
,

where �2 replaces �1: for � < �2, eZc

(�) is strictly larger than P34(�). For � > �2,
eZ
c

(�) = P34(�).

Similarly, the new value for the spectral radius �
Z,�,[1] is

⌃1 +
⌃2e

�↵��Z

1 � 2⌃2⌃3
,

and there exists �0
c

> �2 such that for every � > �0
c

, �
Z,�,[1] < 1. Then, for � > �0

c

,
P(�) = P2343040(�), and any equilibrium state has support in ⌃2343040 which is ⌃ restricted
to words without digits 1, 11, . . . 1L.

4.2. Phase transition for P2343040(�). Again, we shall induce on the cylinder [32]. In
that new case, the orbit leaving [32] and then returning back to [32] have the form:

32( string of 2’s) ( intermittence of strings of 3’ ’s or 4’ ’s and strings of 2’s) ( string of 3’s or 4’s)32.

This yields that the new equation to consider for �
Z,�,[32] is

�
Z,�,[32] = ⌃2(P34(�),�)

 
+1X

n=0

(⌃2(P34(�),�)⌃3(P34(�),�))
n

!
⌃3(P34(�),�)

=
⌃2(P34(�),�)⌃3(P34(�),�)

1 � ⌃2(P34(�),�)⌃3(P34(�),�)
,

where we took into account the symmetry for ⌃34 and ⌃3040 .

Note that z 7! z

1 � z
increases for z < 1, and then

�
Z,�,[32] < 1 () ⌃2(P34(�),�)⌃3(P34(�),�) <

1

2
.

This shows that �2 is a transition parameter for ⌃2343040 : for � < �2 there exists a unique
equilibrium state in ⌃2343040 and it is fully supported. For � > �2, no equilibrium state
gives weight to [32]. For symmetric reason, no equilibrium state gives weight to [302], and
thus, there are two equilibrium states which are the ones in ⌃34 and in ⌃3040 .

For � > �0
c

, there is no more a single global equilibrium state (for ⌃ and P(�)) but these
two “smaller” equilibria in ⌃34 and in ⌃3040 . Nevertheless, P(�) = P34(�) is analytic for
� > �0

c

.

4.3. Gâteaux-di↵erentiability in other directions. To use vocabulary from [16], the
potential � is a kind of grid function: it is constant on cylinders of the form [1], [1

i

], [2n⇤],
[3!32] with ! 2 {3, 4}n for some n and [30!302] with ! 2 {30, 40}n for some n.

Let V be the set of such functions, which are in addition Hölder continuous and totally
symmetric in 3 $ 30 and 4 $ 40. V is infinite-dimension in C(⌃).

It we pick some ' in V, for � > �0
c

, and for t 2 (�⌘, ⌘) with ⌘ ⇡ 0+, the spectrums for the
induced transfer operators for �.�+ t.' are the same than for �.�.
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As things are totally symmetric in ⌃34 or ⌃3040 , there will still be two equilibrium states
and the pressure is di↵erentiable in direction ' because we are into the domains with
spectral radiuses < 1.

Remark 3. It is actually highly probable that P (�.�+ .) is Gâbeaux di↵erentiable in the
direction of any ' which is Hölder and totally symmetric in 3 $ 30 and 4 $ 40 (and not
necessarily a grid function). ⌅

Appendix A. some recall on induced transfer operator

We recall here some results from the construction of local equilibrium state as it was
done in [17] and develop by the author in later works. We emphasize that the discussion

�
Zc,[i] T 1 and

����
@L

Z

@Z

���� 6 +1 is very similar to the cases of positive/null recurrence and

transience in Sarig’s work (see e.g. [21, 6]).

A.1. Local equilibrium states. We consider a one-sided subshit of finite type b⌃ and a
continuous potential ' : b⌃ ! R. We consider a symbol [i] and the associated cylinder [i].
Then, we consider the first return time ⌧ in [i] and the first return map g. Even if the map
g is not defined everywhere, the main property is that inverse-branches are well-defined.

The notion of local equilibrium state follows from the next question: is there a way to do
thermodynamical formalism for ([i], g) and some “good” potential such that the measure
obtained in [i], invariant for g is the conditional measure of the/a equilibrium state for '
?

For that purpose we consider the induced operator on [i] depending on a parameter Z:

L
Z

( )(x) :=
X

y g(y)=x

eS⌧(y)(')(y)�Z.⌧(y) (y).

We recall that ⌧(y) is the return time: g(y) = �⌧(y)(y). The parameter Z is put to make
the series converge.

Namely, if the potential ' satisfies the local Bowen condition:

9C 8 y, y0 2 [ij1 . . . jn�1i],
��S

n

(')(y) � S
n

(')(y0)
�� < C,

where the symbols j
k

are di↵erent from i, then, there exists some critical Z
c

such that
for every  continuous and for every x, L

Z

( )(x) converges for Z > Z
c

and diverges for
Z < Z

c

.

Now, it is well-known that the Bowen condition yields good spectral properties for L
Z

(see e.g. [1]) and then existence and uniqueness of an equilibrium state for the system
([i], g) and the potential S

⌧(.)(')(.) � Z.⌧(.) (for Z > Z
c

). If it is denoted by µ
Z,[i], then

the pressure is log �
Z,[i], where �Z,[i] is the spectral radius of L

Z

. The measure µ
Z,[i] is

referred to as a local equilibrium state.

We remind that the local Bowen condition follows from one of the 2 next conditions:

(C1)— the potential ' is Hölder continuous,
(C2)— the potential ' is such that L

Z

(1I[i])(x) does not depend on x.
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A.2. Relation with global equilibrium state. For every Z > Z
c

, there exists a unique
�-invariant probability in b⌃ bµ

Z,[i] such that its conditional measure (conditionally to [i])
is µ

Z,[i]. Then, it turns out that bµ
Z,[i] is the unique equilibrium state for ' � �

Z,[i]1I[i].
Indeed, we have for every �-invariant probability ⌫

h
⌫

(�) +

Z
' d⌫ 6 Z + �

Z,[i]⌫([i]),

with equality if and only if ⌫ = bµ
Z,[i].

Thus, the unique equilibrium state for ' (if it exists) is morally obtained by opening out
the measure µ

Z,[i] for Z = P('), or presumably equivalently, for the unique Z such that

�
Z,[i] = 12

However, one important condition to be checked is Z
c

< P('). If this condition holds, then
the unique global equilibrium state is exactly corresponding to the unique local equilibrium
state for Z = P(').

An convexity argument shows that Z 7! Z � �
Z,[i]bµZ,[i] is maximal, either for Z such that

�
Z,[i] = 1, and in that case we get a global maximum, or for Z = Z

c

if for any Z > Z
c

,
�
Z,[i] 6 1.

Fact 1. If there exists Z > Z
c

such that �
Z,[i] = 1, then necessarily Z = P('), local 3 and

global equilibrium are unique and coincide up to conditioning to [i].

Note that in that case4, Z
c

< P(').

A.3. Detection or non-detection of an equilibrium state by the induction. A
critical case is when Z

c

= P('). In that case two situations may happen.

Fact 2. If ' satisfies some conditions yielding existence and uniqueness of the local equi-
librium state, if for every Z > Z

c

, �
Z,[i] < 1, then, no equilibrium state in the whole system

(b⌃,�) gives weight to the cylinder [i].

We recall that under assumption on the kind (C1) or (C2), the local equilibrium state is
of the form dµ

Z,[i] = H
Z,[i]d⌫Z,[i], where ⌫Z,[i] is the eigen-probability measure for the dual

operator L⇤
Z,[i] and H

Z,[i] the eigen-function for L
Z

, both associated to the spectral radius
�
Z

. Uniqueness is obtained via the normalization
Z

H
Z,[i] d⌫Z,[i] = 1.

We point out that the function H
Z,[i] is continuous and positive (otherwise the mixing

property would show it is null). In other words, both measures µ
Z,[i] and ⌫Z,[i] are equiv-

alent.

2This unique Z turns out to be the pressure of '.
3for Z = P(')
4The philosophy could be that everything is good at the same moment.
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Now, such a measure is the restriction and renormalization of a global invariant measure
if and only o↵ it satisfies Z

⌧(x) dµ
Z,[i](x) < +1.

Equivalence of the measures implies that this last condition is equivalent to

����
@L

Z

(1I[i])

@Z
(x)

���� <
+1.

Fact 3. We emphasize that the construction of local equilibrium state holds for Z = Z
c

if
L
Zc(1I[i])(x) converges for every (or equivalently some) x.

The fact that this local equilibrium state can be opened out to a global equilibrium state
only depends if the expectation of its return time is finite or not.

Consequently, if for Z = Z
c

, �
Zc,[i] = 1, the local equilibrium state gives a global equi-

librium state for ' if and only if

����
@L

Z

(1I[i])

@Z
(x)

���� < +1. There may be other equilibrium

states, and they do not give weight to [i].

A.4. The special case where Condition (C2) holds.

Lemma 9. If Condition (C2) holds, then for every x in [i], �
Z,[i] = L

Z

(1I[i])(x).

Proof. By definition of (C2) L
Z

(1I[Z)(x) is a constant function in x.

Now, log �
Z

= lim sup
n!1

1

n
log |||Ln

Z

|||, where

|||Ln

Z

||| = sup
 6=02C0

||Ln

Z

( )||1
|| ||1

.

Clearly, |||Ln

Z

||| > ||Ln

Z

(1I[Z])||1, but as it is a positive operator, for every  ,

||Ln

Z

( )||1 6 || ||1||Ln

Z

(1I[Z])||1.

Therefore, log �
Z

= lim sup
n!1

1

n
log ||Ln

Z

(1I[Z])||1.

Now, L
Z

(1I[Z) is a constant function, thus for every n,

Ln

Z

(1I[Z]) =
�
L
Z

(1I[Z])(x)
�
n

,

for any x 2 [i]. ⇤
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