
FLATNESS IS A CRITERION FOR SELECTION OF MAXIMIZING

MEASURES

RENAUD LEPLAIDEUR

Abstract. For the one-dimensional classical spin system, each spin being able to get
Np + 1 values, and for a non-positive potential, locally proportional to the distance to
one of N disjoint configurations set {(j− 1)p+ 1, . . . jp}Z, we prove that the equilibrium
state converges as the temperature goes to 0.

The main result is that the limit is a convex combination of the two ergodic measures
with maximal entropy among maximizing measures and whose supports are the two shifts
where the potential is the flattest.

In particular, this is a hint to solve the open problem of selection, and this indicates
that flatness is probably a/the criterion for selection as it was conjectured by A.O. Lopes.

As a by product we get convergence of the eigenfunction at the log-scale to a unique
calibrated subaction.

1. Introduction

1.1. Background. In this paper we deal with a mathematical approach to the problem of
grounds states in a one-dimensional lattice. To paraphrase [23], the goal is to understand
why materials have a strong tendency to be highly ordered at low temperature. They
reach a crystal or quasi crystal configuration.

This topic has been studied for a long time by physicists. We mention e.g. [25] describing
ground states for classical lattice spin systems. In [22], Radin already made a survey of
that topic. There is still a large production on the domain (see e.g. [18] for a survey on
the 2-dimensional Ising model and [26] for recent results on the one-dimensional case).

On the contrary, people in dynamical systems have in the 70’s few studied this problem.
Since the 2000’s, and most probably inspired by Lagrangian dynamics (see e.g. [20]), the
development of the theory of ergodic optimization has naturally led mathematicians to
introduce (or rather rediscover) the notion of ground states.

Indeed, despite the theory of thermodynamic formalism has been imported into hyperbolic
dynamics in the 70’s, essentially by Sinai, Ruelle and Bowen, phase transitions and ground
states have been less central in dynamical systems : gradually, the main task turned out
to be to extend the thermodynamic formalism to the non-uniformly hyperbolic case.

Moreover, in the physics approach, the dynamics is not very relevant and just emerges as a
by-product of the invariance by translation. The main difficulty is the geometry of the Zd
lattice (see e.g. [14, 15] for the Ising Model). The mathematics and the physics approaches
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were thus different, with focus on different aspects. One of the goal of this paper is also
to make a step to join the mathematics and the physics approaches. If Physics is clearly a
source of inspiration for Mathematics, on the other hand mathematicians have developed
tools, as subactions, conformal measures or Max-Plus algebra (see below), which should
interest physicists.

We remind that a one-dimensional lattice is naturally equipped with a Z-action. This
generates a dynamical system, which is by definition, a compact setX and some continuous
map T : X → X. For the classical spin model, the set X is the set of infinite configurations
{0, 1}Z or {0, 1}N. The dynamics T is the shift

T ((xn)) = (xn+1).

We refer the reader to Ruelle’s book [24] for a good dictionary between physics and math-
ematics languages concerning the thermodynamical formalism for hyperbolic dynamical
systems.

For a given dynamical system (X,T ), the goal is thus to study existence and properties
of the invariant probabilities which maximize a given potential φ : X → R.

Ground states are particular maximizing measures which can be reached by freezing the
system as limit of equilibrium states. Namely, for β > 0, which in statistical mechanics
represents the inverse of the temperature, we consider the/an equilibrium state associated
to βφ, that is a T -invariant probability whose free energy

hν(T ) + β

∫
φdν,

is maximal (where hν is the Kolmogorov entropy of the measure ν). Then, considering an
equilibrium state µβ, it is easy to check (see [12]) that any accumulation point for µβ as

β goes1 to +∞ is a maximizing measure for φ.

The first main question is to know if µβ converges. It is known (see [8]) that for an
uniformly hyperbolic dynamical systems, generically in the C0-topology, φ has a unique
maximizing measure. Therefore, convergence of µβ obviously holds in that case. Neverthe-
less, generic results do not concern all the possibilities. It is very easy to build examples,
which at least for the mathematical point of view are meaningful, and for which the set of
ergodic maximizing measures is as wild as wanted. We also have some doubts if generic
results are physically relevant.

For these situations, the question of convergence is of course fully relevant. Cases of
convergence or non-convergence are known (see [9, 21, 19, 11, 10, 13]), but the general
theory is far away of being solved. In particular, no criterion which guaranties convergence
(except the uniqueness of the maximizing measure or the locally constant case) is known,
say e.g. for the Lipschitz continuous case.

The second main question, and that is the one we want to focus on here, is the problem
of the selection. Assuming that φ has several ergodic maximizing measures and that µβ
converges, what is the limit ? In other words, is there a way to predict the limit from

1β is the inverse of the temperature, thus β → +∞ means Temp → 0, which means we freeze the
system.
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the potential, or equivalently, what makes the equilibrium state select one ground state
instead of another one ?

Inspired by a similar study for the Lagrangian Mechanics ([2]), it was conjectured by
A.O. Lopes that flatness of the potential would be a criterion for selection and that the
equilibrium state always selects the configurations where the potential is the flattest. In
[3] it is actually proved that the conjecture is not entirely correct. Authors consider in
the full 3-shift a negative potential except on the two fixed points 0∞ and 1∞, where it
vanishes but is sharper in 1∞ than in 0∞. Then, they prove that the equilibrium state
actually converges, but not necessarily to the Dirac measure at 0∞.

The first part of the conjecture is however not (yet) invalided and the question to know if
flatness is a criterion for selection is still relevant.

Here, we make a step in the direction of proving that flatness is indeed a criterion for
selection. Precise statements are given in the next subsection. We consider in the full shift
with Np + 1 symbols a potential, negative everywhere except on N Bernoulli subshifts2

with p symbols. Figure 1 illustrates the dynamics.

ΣN

u

Σ1
Σ2

Σj

Figure 1. Our system

Then, flatness is ordered on these N Bernoulli subshifts : the potential is flatter on the
first one than on the second one, then, it is flatter on the second one than on the third
one, and then so on (see below for complete settings).

Any of these Bernoulli shifts has a unique measure of maximal entropy, and the set of
ground states is contained in the convex hull of these N -measures. We show here that the
equilibrium state converges and selects a convex combination of the two ergodic measures
with supports in the two flattest Bernoulli subshifts.

We emphasize that this result is absolutely not in contradiction with [3]. Indeed, in [3]
it is proved that the equilibrium state converges to a convex combination of the Dirac
measures at 0∞ and 1∞, which are obviously the two flattest loci !

2Note that these Bernoulli shifts are empty interior compact sets.
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1.2. Settings.

1.2.1. The set Σ. We consider the full-shift Σ with Np + 1 symbols, with N and p two
positive integers. We also consider Np+ 1 positive real numbers, 0 < α1 < α2 6 . . . 6 αp,
0 < αp+1 < αp+2 6 . . . 6 α2p, . . . , 0 < α(N−1)p+1 < α(N−1)p+2 6 . . . 6 αNp and α. We
assume

α1 < αp+1 < α2p+1 6 α(N−1)p+1.

We set Σ1 := {1, . . . , p}N, Σ2 := {p+ 1, . . . , 2p}N, . . . ,ΣN := {(N − 1)p+ 1, . . . , Np}N.

For simplicity the last letter Np+1 is denoted by u. The letter (j−1)p+ i will be denoted
by uij .

The set of letters defining Σj is Aj := {uij , 1 6 i 6 p}. Hence, Σj = AN
j , and a word

admissible for Σj is a word (finite or infinite) in letters uij . The length of a word is the
number of digit (or letter) it contains. The length of the word w is denoted by |w|.

If w = w0w1 . . . wn and w′ = w′0, w
′
1, . . . w

′
n′ are two finite words, we define the concatenated

word ww′ = w0w1 . . . wnw
′
0, w

′
1, . . . w

′
n′ . This is easily extended to the case |w′| = +∞. If

m is a finite-length admissible word for Σj , [m∗] denotes the set of points starting with
the same |m| letters than m and whose next letter is not in Aj .

The distance in Σ is defined (as usually) by

d(x, y) = θmin{j, xi 6=yi},

where θ is a fixed real number in (0, 1). This distance is sometimes graphically represented
as in Figure 2.

x0 = y0
�
�

@
@

n− 1

xn−1 = yn−1

y

x

Figure 2. The sequence x and y coincide for digits 0 up to n− 1 and then split.

We emphasize here, that contrarily to [3] we have not chosen θ = 1
2 in view to get the most

general result as possible. Indeed, in [3] it was not clear if some results where independent
or not of θ’s value. Moreover, this also means that we are considering all Hölder continuous
functions, and not only the Lipschitz ones, because in Σ, a Hölder continuous function
can be considered as a Lipschitz continuous, up to a change of θ’s value.

1.2.2. The potential, the Transfer operator and the Gibbs measures. The potential A is
defined by

A(x) =

{
−αjd(x,Σi), if x ∈ [uij ]
A(x) = −α, if x ∈ [u].

The potential is negative on Σ but on each Σj where it is constant to 0.
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The transfer operator, also called the Ruelle-Perron-Frobenius operator, is defined by

Lβ(ϕ)(x) :=

k∑
j=1

p∑
i=1

eA(uijx)ϕ(uijx) + eA(ux)ϕ(ux).

It acts on continuous functions ϕ. We refer the reader to Bowen’s book [7] for detailed
theory of transfer operator, Gibbs measures and equilibrium states for Lipschitz potentials.

The eigenfunction is Hβ and the eigenmeasure is νβ. They satisfy:

Lβ(Hβ) = eP(β)Hβ, L∗β(νβ) = eP(β)νβ.

The eigenmeasure and the eigenfunction are uniquely determined if we required the as-

sumption that νβ is a probability measure and

∫
Hβ dνβ = 1.

The Gibbs state µβ is defined by dµβ := Hβdνβ. The measure µβ is also the equilibrium
state for the potential β.A : it satisfies

max
µ σ−inv

{
hµ(σ) + β

∫
Adµ

}
= hµβ (σ) + β

∫
Adµβ

and this maximum is P(β) and is called the pressure of βA. eP(β) is also the spectral
radius of Lβ. It is a single dominating eigenvalue.

1.3. Results. In each Σj we get a measure of maximal entropy µtop,j . As each Σj is a
subshift of finite type, µtop,j is again of the form

dµtop,j = Htop,jdνtop,j ,

where Htop,j and νtop,j are respectively the eigenfunction and the eigen-probability asso-
ciated to the transfer operator in Σj for the potential constant to 0.

Note that, as β goes to +∞, µβ has only N possible ergodic accumulation points, which
are the measures of maximal entropy in each Σj , µtop,j .

Our results are

Theorem 1 The eigenmeasure νβ converges to the eigenmeasure νtop,1 for the weak*
topology as β goes to +∞.

Theorem 2 The Gibbs measure µβ converges to a convex combination of µtop,1 and µtop,2
for the weak* topology as β goes to +∞. This combination depends in which zone Z1 ∪
Z2 ∪ Z3 ∪ Z4 (see Figure 3) the parameters are:

(1) For parameters in Z1, µβ converges to
1

1 + p2
(µtop,1 + p2µtop,2).

(2) For parameters in Z2, µβ converges to µtop,1.

(3) For parameters in Z3∪Z4 µβ converges to
1

1 + ρ2i
(µtop,1+ρ2iµtop,2) for some ρi > 0

locally constant in Z3 \ Z4, Z4 \ Z3 and Z3 ∩ Z4(see Equalities (27) page 29, (29)
page 30 and (30) page 31).
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α1

2θ−1

Z2

Z3

Z4

αp+1

Z1

α

α1

α = θαp+
1

Figure 3. Ratio between µtop,1 and µtop,2

Zone Z3 corresponds to 0 < α 6 αp+1θ and α = θ
1−θ

αp+1−α1

2 . Zone Z4 corresponds to

αp+1 =
α1

2θ − 1
and α > αp+1θ. We emphasize that Z4 exists if and only if θ > 1

2 .

As a by product of Theorem 1 and Theorem 2 we get the exact convergence for the
eigenfunction to a unique subaction (see Section 2 for definition):

Corollary 3 The calibrated subactions are all equal up to an additive constant. Moreover,
the eigenfunction Hβ converges at the log-scale to a single calibrated subaction :

V := lim
β→+∞

1

β
log(Hβ).

The question of convergence and uniqueness of a subaction seems to be important for
the theory of ergodic optimization. It appeared very recently in [4]. We point out that
convergence of the eigenfunction to a subaction is related to the study of a Large Deviation
Principle for the convergence of µβ (see e.g. [5] and [?]). Nevertheless, in these two papers,
Lopes et al. always assume the uniqueness of the maximizing measure, which yields the
uniqueness of the calibrated subaction (up to a constant). Here we prove convergence to
a unique subaction without the assumption of the uniqueness of the maximizing measure.
It it thus allowed to hope that we could get a more direct proof of a Large Deviation
Principle, without using the very indirect machinery of dual shift (see [5]).

1.4. Further improvements: discussion on hypothesis. The present work is part of
a work in progress. The situation described here is far away from the most general case
and our goal is to prove the next conjecture.
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In [17], Garibaldi et al. introduce the set of non-wandering points with respect to a Hölder
continuous potential A, Ω(A). This set contains the union of the supports of all optimizing
measures (here we consider maximizing measures, there they consider minimizing mea-
sures).

The set Ω(A) is invariant and compact. Under the assumption that it can be decomposed
in finitely many irreducible pieces, it is shown that calibrated subactions are constant on
these irreducible pieces and their global value is given by these local values and the Peierls
barrier (see Section 2 below).

We believe that, under the same hypothesis, it is possible to determine which irreducible
component have measure at temperature zero:

Conjecture. For A : Σ → R Hölder continuous, if Ω(A) has finitely many irreducible
components, Ω(A)1 . . .Ω(A)N , then, µβ(Ω(A)i) goes to 0 if Ω(A)i is not one of the two
flattest loci for A.

We emphasize that this conjecture does not mean that there is convergence “into” the
components. It may be (as in [10]) that an irreducible components has several maximizing
measures and that there is no selection between these measures.

This conjecture is for the moment far of being proved, in particular because several notions
are not yet completely clear. In particular the notion of flatness has to be specified.
Moreover, the components are not necessarily subshifts of finite type, which is an obstacle
to study their (for instance) measures of maximal entropy.

The work presented here, is for a specific form of potential for which flatness is easily
defined. The dynamics into the irreducible components and also the global dynamics are
easy. We believe that the main issue here is to identify flatness as a criterion for selection.

The next step would be to release assumptions on the dynamics; in particular we would
like that theses components are not full shift and that the global dynamics is not a full
shift. It is also highly probable that the conjecture should be adapted after we have solve
this case. Distortion into the dynamics could perhaps favor other components.

The last step would be to get the result for general (or as general as possible) potential.

Nevertheless, and even if the present work is presented as a work in progress and an
intermediate step before a more general statement, we want to moderate the specificity
of the potential we consider here. For a uniformly hyperbolic system (X,T ) and for
any Hölder function φ, there exists two Hölder continuous ψ1 and ψ2 such that φ =

ψ1 + m(φ) + ψ2 ◦ T − ψ2, where m(φ) = max

{∫
φdµ

}
and ψ1 is non-negative and

vanishes only on the Aubry set. This means that, up to consider a cohomologous function,
the assumption on the sign of A is free. Now, if we would consider a very regular potential
(say at least C1) on a geometrical dynamical systems, the fact that ψ1 vanishes on the
Aubry set means that close to that Aubry set, ψ1(x) is proportional to the distance between
x and the Aubry set (with coefficient related to the derivative of ψ1). Consequently, the
potential A we consider here is a kind of discrete version for the symbolic case of a C1
potential on a Manifold.
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1.5. Plan of the paper and acknowledgment. In Section 2 we prove that the pressure
behaves like log p+g(β)e−γβ for some specific γ and some sub-exponential function g. The
real number γ is obtained as an eigenvalue for the Max-Plus algebra (see Proposition 5).

In Section 3, we define and study an auxiliary function F ; This function gives the asymp-
totic both for the eigenmeasure and for the Gibbs measure.

In Section 4 we prove Theorem 1 and in Section 5 we prove Theorem 2. As a by-product
we give an asymptotic for the function g(β) (in the Pressure).

In the last section, Section 6 we prove Corollary 3.

Part of this work was done as I was visiting E. Garibaldi at Campinas (Brazil). I would
like to thank him a lot here for the talks we get together and the attention he gave me to
listen and correct some of my computations.

2. Peierls barrier and an expression for the pressure

The main goal of this section is Proposition 5 where we prove that P(β) converges expo-
nentially fast to log p. The exponential speed is obtained as an eigenvalue for a matrix in
Max-Plus algebra.

2.1. The eigenfunction and the Peierls barrier.

Lemma 1. The eigenfunction Hβ is constant on the cylinder [u]. It is also constant on
cylinders of the form [m∗], where m is an admissible word for some Σj. Furthermore,
if m′ is another admissible word for the same Σj with the same length than m, then Hβ

coincide on both cylinders [m∗] and [m′∗].

Proof. The eigenfunction Hβ is defined by

Hβ := lim
n→∞

1

n

n−1∑
k=0

e−kP(β)Lβ(1I).

For x and x′ in [m∗] ∪ [m′∗], if wx is a preimage for x then wx′ is a preimage for x′ and
A(wx) = A(wx′).

The same argument works on [u]. �

This Lemma allows us to set

(1) τj :=
∑
l 6=j

∑
i

e−α(l−1)p+iθβHβ(uil∗) + e−αHβ(u).

Thus, for x in ti[uij ] we get

eP(β)Hβ(x) =

p∑
i=1

eβA(uijx)Hβ(uijx) + τj .

Lemma 2. The function Hβ is constant on each Σj: for any x in Σj, Hβ(x) =
τj

eP(β) − p.
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Proof. The function Hβ is continuous on the compact Σj . It thus attains its minimum
and its maximum. Let xj and xj be two points in Σj where Hβ is respectively minimal
and maximal.

The transfer operator yields:

eP(β)Hβ(xj) =

(
p∑
i=1

Hβ(uijxj)

)
+ τj .

By definition, for each i, Hβ(uijxj) > Hβ(xj). This yields

(2) (eP(β) − p)Hβ(xj) > τj .

Similarly we will get τj > (eP(β)− p)Hβ(xj). As the potential is Lipschitz continuous, the
pressure function P(β) is analytic and decreasing (A is non-positive). Then P(β) > log p.
This shows Hβ(xj) = Hβ(xj).

Let x be any point in Σj . Equality Lβ(Hβ) = eP(β)Hβ yields

eP(β)Hβ(x) =
∑
i∈Aj

eβ.A(ix)Hβ(ix) + τj .

For i ∈ Aj , A(ix) = 0, and as Hβ is constant on Σj we get

(eP(β) − p)Hβ(x) = τj .

�

The family of functions { 1

β
logHβ}β∈R+ is uniformly bounded and equi-continuous; any

accumulation point V for
1

β
logHβ as β goes to +∞ (and for the C0-norm) is a calibrated

subaction, see [12].

In the following, we consider a calibrated subaction V obtained as an accumulation point

for
1

β
logHβ. Note that the convergence is uniform (on Σ) along the chosen subsequence

for β. For simplicity we shall however write V = limβ→+∞
1
β logHβ.

A direct consequence of Lemma 2 is that the subaction V is constant on each Σj . Actually,
it is proved in [16] that this holds for the more general case and, moreover, that any
calibrated subaction satisfies

(3) V (x) = max
j
{V (xj) + h(xj , x)},

where h(·, ·) is the Peierls barrier and xj is any point in Σj . It is thus important to
compute what is the Peierls barrier here.

Lemma 3. Let xj be any point in Σj. The Peierls barrier satisfies h(xj , x) = −α(j−1)p+1
θ

1−θd(x,Σj).

For simplicity we shall set hj(x) for h(xj , x).
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Proof. Let x be in Σ. Recall that hj(x) is defined by

lim
ε→0

sup
n

{
n−1∑
l=0

A(σl(z)) : σn(z) = x, d(xj , z) < ε

}
.

As we consider the limit as ε goes to 0, we can assume that ε < θ. Now, to compute
hj(x), we are looking for a preimage of x, which starts by some letter admissible for Σj

(because ε < θ) and which maximizes the Birkhoff sum of the potential “until x”. As the
potential is negative, this can be done if and only if one takes a preimage of x of the form
mx, with m a Σj admissible word. Moreover, we always have to chose the letter u1j to
get the maximal −α(j−1)p+i possible.

In other word we claim that for every n > 1 for every l > 0 and for every word m of length
n+ l,

Sn(A)(u1j . . . u1j︸ ︷︷ ︸
n times

x) > Sn+l(A)(mx).

Let assume d(x,Σj) = θa, i.e., the maximal admissible word for Σj of the form x0x1x2 . . .
has length a. This yields

hj(x) = lim
n→∞

Sn(A)(u1j . . . u1j︸ ︷︷ ︸
n times

x) = −α(j−1)p+1

+∞∑
n=1

θn+a = −α(j−1)p+1
θ

1− θθ
a = −α(j−1)p+1

θ

1− θd(x,Σj).

�

Then, Lemma 3 and Equality (3) yield

(4) V (x) = max
j

(
V (xj)− α(j−1)p+1

θ

1− θd(x,Σj)

)
.

Lemma 4. For every j,

lim
β→+∞

1

β
log
(
e−α(j−1)p+1θβHβ(u1j∗) + . . .+ e−αjpθβHβ(upj∗)

)
= V (u1j∗)− α(j−1)p+1θ.

Proof. By Lemma 1, the eigenfunction Hβ is constant on rings [m∗] with m ∈ A|m|j , hence

V (u1j∗) = . . . = V (upj∗). Now, inequalities α(j−1)p+1 < α(j−1p+)2 6 α(j−1)p+i show

that e−α(j−1)p+1θβHβ(u1j∗) is exponentially bigger than all the other terms as β goes to
+∞. �

2.2. Exponential speed of convergence of the pressure : Max-Plus formalism.
Here we use the Max-Plus formalism. We refer the reader to [6] (in particular chapter
3) for basic notions on this theory. Some of the results we shall use here are not direct
consequence of [6] (even if the proofs can easily be adapted) but can be found in [1].

Proposition 5. Let

γ = min

{
min(αp+1θ, α) + α1

θ

1− θ ,
(α1 + αp+1)

2

θ

1− θ

}
.

Then, there exists a positive sub-exponential function g such that P(β) := log p+g(β)e−γβ.
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Proof. We have seen (Lemma 2) that Hβ is constant on the sets Σj . This shows that

V := limβ→+∞
1
β logHβ is also constant of the Σj . For simplicity we set u∞ij := uijuijuij . . ..

This is a point in Σj . Now we have

(5) (eP(β) − p)Hβ(u∞ij ) =
∑
l 6=j

∑
i

e−α(l−1)p+iθβHβ(u1l∗) + e−αHβ(u).

Note that the results we get concerning the subaction V are actually true for any cali-
brated subaction. We point out that we can first chose some subsequence of β such that
1

β
log(P(β)− log p) converges, and then take a new subsequence from the previous one to

ensure that
1

β
log(Hβ) also converges.

We thus consider V := limβ→+∞
1
β logHβ and −γ := limβ→+∞

1
β log(P(β) − log p). At

that moment we do not claim that γ has the exact value set in the Proposition. It is only

an accumulation point for
1

β
log(P(β) − log p). The convergence of

1

β
log(P(β) − log p)

will follow from the uniqueness of the value for γ.

Then (5) and Lemma 4 yield for every j,

(6) − γ − V (u∞ij ) = max

(
max
l 6=j

(
V (uil)− α(l−1)p+1θ

)
, V (u)− α

)
.

Consider the k rows and k + 1 columns matrix

M1 :=


−∞ −αp+1θ −α2p+1θ . . . −α(N−1)p+1θ −α
−α1θ −∞ −α2p+1θ −α

...
...

−α1θ . . . −∞ −α

 .

Then, using the Max-Plus formalism we get

(7)


V (u∞11)− γ
V (u∞12)− γ

...
V (u∞1N )− γ

 = M1


V (u11∗)
V (u12∗)

...
V (u1N∗)
V (u)

 .

Now, consider the k + 1 rows and k columns matrix

M2 :=


−α1

θ2

1−θ −αp+1
θ

1−θ −α(N−1)p+1
θ

1−θ
−α1

θ
1−θ −αp+1

θ2

1−θ
...

. . .
...

−α(N−1)p+1
θ2

1−θ
−α1

θ
1−θ −αp+1

θ
1−θ . . . −α(N−1)p+1

θ
1−θ

 .
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Then (4) can be written as

(8)


V (u11∗)
V (u12∗)

...
V (u1N∗)
V (u)

 = M2


V (u∞11)
V (u∞12)

...
V (u∞1N )

 .

�

Combining (7) and (8), we get that −γ is an eigenvalue for the matrix M1M2 (for the

Max-Plus algebra) and


V (u∞11)
V (u∞12)

...
V (u∞1N )

 is an eigenvector.

Let us compute the matrix M = M1M2. Let us consider the row l for M1 and the column
j for M2. Assume j 6= l.

We have to compute the maximum between the sum of the nth term of the row and the
nth term of the column. All the terms in the column are equal to −α(j−1)p+1

θ
1−θ except

the jth which is −α(j−1)p+1
θ

1−θ .θ. This term is added to −α(j−1)p+1θ (the jth term of the

column), and this addition gives −α(j−1)p+1
θ

1−θ . Therefore, this term is the maximum

(any other term is that one plus something negative).

Assume now that j = l. Then, the jth term of the column is added to −∞, hence
disappears. Now, we just have to compute the maximum of all the terms respectively
equal to a negative term minus α(j−1)p+1

θ
1−θ . This means that we just have to take the

maximal term in the row and to subtract α(j−1)p+1
θ

1−θ .

Finally, the coefficient mij of M is

mij =


max(−αp+1θ,−α)− α1

θ
1−θ if i = 1 = j,

max(−α1θ,−α)− α(j−1)p+1
θ

1−θ if i = j 6= 1,

−α(j−1)p+1
θ

1−θ if i 6= j.

To compute the eigenvalue for this matrix, we have to find the “basic loop” with biggest
mean value.

A basic loop is a word in 1, . . . , k where no letter appear several times. Then we compute
the mean value of the costs of the transition i → j given by the coefficient mij of the
matrix for the letters of the basic loop.

• Inequalities α1 < αp+1 < αjp+1 yields that any basic loop of length greater than 2 gives
a lower contribution than the length 2-loop 1→ 2→ 1. This contribution is

−α1 + αp+1

2

θ

1− θ .
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• We claim that every basic loop of length 1 gives a smaller contribution than the first
one. The claim is easy if α < α1θ. In that case we have

max(−αp+1θ,−α)−α1
θ

1− θ > −α−α1
θ

1− θ > −α−αjp+1
θ

1− θ = max(−α1θ,−α)−αjp+1
θ

1− θ .

If αp+1θ 6 α the claim is also true:

−αp+1θ − α1
θ

1− θ > −α1θ − αjp+1
θ

1− θ
m θα1 < αjp+1 + (θ − 1)αp+1,

and this last inequality holds because

αjp+1 + (θ − 1)αp+1 = θαp+1 + (αjp+1 − αp+1) > θαp+1 > θα1.

And finally, if α1θ 6 α 6 αp+1θ, θα1−α is non-positive and θαjp−α is non-negative, and
we let the reader check that this yields

−α− α1
θ

1− θ > −α1θ − αjp
θ

1− θ .

This shows

−γ = max(max(−αp+1θ,−α)− α1
θ

1− θ ,−
α1 + αp+1

2

θ

1− θ ).

In particular,
1

β
log(P(β)−log p) has a unique accumulation point, hence converges. Then,

there exists a sub-exponential function g(β) such that

(9) P(β) = log p+ g(β)e−γ.β.

The pressure is convex and analytic (the potential is Lipschitz continuous) and always
bigger than log p. It is decreasing because its derivative is

∫
Adµβ and µβ gives positive

weight to any open set and A is negative except on the empty interior sets Σj . This proves
that g(β) is positive.

Remark 1. We emphasize γ > α1
θ

1−θ .

2.3. Value for γ in function of the parameters. In this subsection we want to state
an exact expression for γ depending on the values for the parameters. We have seen

γ = min(
α1 + αp+1

2

θ

1− θ , α1
θ

1− θ + α, α1
θ

1− θ + αp+1θ).

Now, α1
θ

1− θ + αp+1θ <
α1 + αp+1

2

θ

1− θ if and only if αp+1 >
α1

2θ − 1
(which is possible

only for θ > 1
2). Obviously, α1

θ

1− θ + α < α1
θ

1− θ + αp+1θ means α < αp+1θ.

Finally, α1
θ

1− θ+α <
α1 + αp+1

2

θ

1− θ means α <
αp+1 − α1

2

θ

1− θ . Note that for αp+1 =

α1

2θ − 1
,

αp+1 − α1

2

θ

1− θ = α1
θ

2θ − 1
= θαp+1.
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α

α = θαp+
1

α1+αp+1

2
θ

1−θ

αp+1
α1

α1

2θ−1

α1
θ

1−θ + α

α1
θ

1−θ + αp+1θ

Figure 4. Values for γ

3. Auxiliary function F

Lemma 6. Let 0 < ξ1 < ξ2 6 . . . 6 ξp be p positive real numbers (p > 2). Let us set

• ηi := ξi − ξ1, for i > 2,

• r :=
− log p

log θ
(> 0),

• I(η2, η3, . . . , ηp) :=

∫ 1

0
log

(
1 +

∑p
i=2 e

−ηix − 1

p

)
dx

x
+

∫ +∞

1

∑p
i=2 ηie

−ηix

1 +
∑p

i=2 e
−ηix

log x dx.

Then, if n goes first to +∞ and then β goes to +∞,
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n∏
j=1

(
e−ξ1θ

jβ + e−ξ2θ
jβ + . . .+ e−ξpθ

jβ
)

=
pn

βr
e
−ξ1 θ

1−θβ(1−θ
n)− I(η2,...,ηp)

log θ
+O(βθn)+o∞(β)

,

where O(βθn) is bounded in absolute value by a term of the form C
∑p

i=2 ηiβθ
n for some

universal constant C and o∞(β) is bounded in absolute value by a term of the form

C ′
∑

i ηie
− η2βθ

2 for some universal constant C ′.

Proof. First we write
(10)

n∏
j=1

(
e−ξ1θ

jβ + e−ξ2θ
jβ + . . .+ e−ξpθ

jβ
)

= e−ξ1βθ
1−θn
1−θ

n∏
j=1

(
1 + e−η2θ

jβ + . . .+ e−ηpθ
jβ
)
,

and

log
n∏
j=1

(
1 + e−η2θ

jβ + . . .+ e−ηpθ
jβ
)

=
n∑
j=1

log
(

1 + e−η2θ
jβ + . . .+ e−ηpθ

jβ
)

= n log p+
n∑
j=1

log

(
1 +

∑p
i=2 e

−ηiθjβ − 1

p

)
.

Note that ηiθ
j decreases in j. Thus we can compare this later sum with an integral∫ n

0
log

(
1 +

∑p
i=2 e

−ηiθxβ − 1

p

)
dx 6

n∑
j=1

log

(
1 +

∑p
i=2 e

−ηiθjβ − 1

p

)

6
∫ n+1

1
log

(
1 +

∑p
i=2 e

−ηiθxβ − 1

p

)
dx.

Let In and Jn respectively denote the integral from left hand side and the right hand side.
First, we focus the study on In.

In order to study In, let us set u = βθx. Then we have

In =
1

log θ

∫ βθn

β
log

(
1 +

∑p
i=2 e

−ηiu − 1

p

)
du

u
,

and we split this last integral in two pieces

∫ βθn

1
and

∫ 1

β
.

We remind that n is supposed to go first to +∞ and then β goes to +∞. Hence, βθn is

close to 0. For u close to 0, log

(
1 +

∑p
i=2 e

−ηiu − 1

p

)
is non-positive and bigger than a

term of the form −C
p∑
i=2

ηiu for some universal constant C. This shows that the integral

∫ 0

1
log

(
1 +

∑p
i=2 e

−ηiu − 1

p

)
du

u
,
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converges (the function has a limit as u goes to 0) and
(11)∫ βθn

1
log

(
1 +

∑p
i=2 e

−ηiu − 1

p
)

)
du

u
=

∫ 0

1
log

(
1 +

∑p
i=2 e

−ηiu − 1

p
)

)
du

u
+O(βθn),

where |O(βθn)| 6 C
p∑
i=2

βθn.

For the other part we get:∫ 1

β
log

(
1 +

∑p
i=2 e

−ηiu − 1

p
)

)
du

u
=

[
log

(
1 +

∑p
i=2 ηie

−ηiu − 1

p
)

)
log u

]1
β

+

∫ 1

β

∑p
i=2 e

−ηiu

1 +
∑p

i=2 e
−ηiu

log u du

= − log

(
1 +

∑p
i=2 ηie

−ηiβ − 1

p
)

)
log β +

∫ 1

β

∑p
i=2 e

−ηiu

1 +
∑p

i=2 e
−ηiu

log u du

= log p log β − log

(
1 +

p∑
i=2

ηie
−ηiβ)

)
log β +

∫ 1

+∞

∑p
i=2 e

−ηiu

1 +
∑p

i=2 e
−ηiu

log u du+

∫ +∞

β

∑p
i=2 e

−ηiu

1 +
∑p

i=2 e
−ηiu

log u du.

Now, both terms

∣∣∣∣∣log

(
1 +

p∑
i=2

ηie
−ηiβ)

)
log β

∣∣∣∣∣ and

∣∣∣∣∫ +∞

β

∑p
i=2 e

−ηiu

1 +
∑p

i=2 e
−ηiu

log u du

∣∣∣∣ are

bounded from above by some C ′
∑
i

ηie
− η2

2
β.

The computation for Jn is similar except that borders have to be exchanged. Namely βθn

in

∫ βθn

1
has to be replaced by βθn+1 which improves the estimate, and β in

∫ 1

β
has to be

replaced by
∫ 1
βθ. This produce an upper bound of the form O(e−

η2
2
θβ) instead of O(e−

η2
2
β).

This concludes the proof of the lemma. �

Definition 1. We define the auxiliary function F (Z, z1, . . . , zp) by

F (Z, z1, . . . , zp) :=

+∞∑
n=1

e−nZ n∏
j=1

(e−z1θ
j

+ . . .+ e−zpθ
j
)

 .

For an integer K, FK() denotes the truncated sum to K:

FK(Z, z1, . . . , zp) :=

K∑
n=1

e−nZ n∏
j=1

(e−z1θ
j

+ . . .+ e−zpθ
j
)

 .

Proposition 7. Let 0 < ξ1 < ξ2 6 . . . 6 ξp be p positive real numbers (p > 2). We
re-employ notations from Lemma 6.

Then, as β goes to +∞

if γ > ξ1
θ

1− θ , then F (P(β), ξ1β, . . . , ξpβ) =
1

βrg(β)
e
(γ−ξ1 θ

1−θ )β−
I(η2,...,ηp)

log θ
+o∞(β)

,
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if γ < ξ1
θ

1− θ , then F (P(β), ξ1β, . . . , ξpβ) = O(e−ξ1θβ ∨ 1

βrg(β)
e(γ−ξ1

θ
1−θ )β),

where o∞(β) goes to 0 as β goes to +∞.

Proof. Let ε0 be a positive real number such that log ε0 < −2. We set

(12) n(β) :=
log ε0
log θ

log β.

Note that n(β) goes to +∞ as β goes to +∞. Furthermore, θn(β) < 1
β2 and nβθn goes to

0 if n > n(β) and β goes to +∞.

The proof has three steps. The function F is defined as a sum over n, for n > 1. In the
first part, we give bounds for a fixed β, and for the sum for n > n(β). This quantity is a
trivial bound from below for the global sum.

In the second step we prove that the sum for n 6 n(β) − 1 goes to 0 as β goes to +∞.
This allows to conclude the proof for the case γ > ξ1

θ
1−θ .

In the last step, we use the computations of the second step to conclude the proof for the
case γ < ξ1

θ
1−θ .

First step. Remember that P(β) = log p + g(β)e−γ.β, where g(β) is a positive and
sub-exponential function in β. Then Lemma 6 yields for n > n(β),

1

βr
exp

(
−ng(β)e−γ.β − ξ1

θ

1− θβ(1− θn)− I(η2, . . . , ηp)

log θ
+O(βθn) + o∞(β)

)
= e−nP(β)

n∏
j=1

(
e−ξ1θ

jβ + e−ξ2θ
jβ + . . .+ e−ξpθ

jβ
)
.

As we only consider n > n(β) and β goes to +∞, we can replace O(βθn) and θn by o∞(β).

Doing the sum over n, only the terms e−ng(β)e
−γ.β

have to be summed. We thus get

1

βr
exp

(
−ξ1

θ

1− θβ −
I(η2, . . . , ηp)

log θ
+ o∞(β)

) ∑
n>n(β)

e−ng(β)e
−γ.β

=
∑

n>n(β)

e−nP(β)
n∏
j=1

(
e−ξ1θ

jβ + e−ξ2θ
jβ + . . .+ e−ξpθ

jβ
)
.(13)

Now,
∑

n>n(β)

e−n(β)g(β)e
−γ.β

=
e−n(β)g(β)e

−γ.β

1− e−g(β)e−γ.β . Both g(β) and n(β) are sub-exponential

in β, hence the numerator goes to 1 as β goes to +∞. The denominator behaves like
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g(β)e−γ.β. Then, (13) yields

1

βrg(β)
e
(γ−ξ1 θ

1−θ )β−
I(η2,...,ηp)

log θ
+o∞(β)

=
∑

n>n(β)

e−nP(β)
n∏
j=1

(
e−ξ1θ

jβ + e−ξ2θ
jβ + . . .+ e−ξpθ

jβ
)
.(14)

Second step. All the ξj are bigger than ξ1. We thus trivially get

e−nP(β)
n∏
j=1

(
e−ξ1θ

jβ + . . .+ e−ξpθ
jβ
)
6 e−ξ1

θ
1−θβe−ng(β)e

−γ.β+ξ1
θ

1−θβθ
n

.

For the rest of the proof, we set D := g(β)e−γ.β and E := ξ1
θ

1−θβ. The sequence −nD +

Eθn decreases in n, and we can (again) compare the sum with the integral.

We get

Fn(β)−1(P(β), ξ1β, . . . , ξpβ) 6 e−E
n(β)−1∑
n=1

e−nD+Eθn 6 e−E
∫ n(β)

0
e−xD+Eθx dx.

Now we get

∫ n(β)

0
e−xD+Eθx dx =

1

log θ

∫ θn(β)

1

e
−D log u

log θ
+Eu

u
du

=
1

log θ

∫ θn(β)

1
u
−1− D

log θ eEu du

=
1

log θ

+∞∑
k=0

Ek

k!

∫ θn(β)

1
u
k−1− D

log θ du

=
1

log θ

+∞∑
k=0

Ek

k!

1

k − D
log θ

[
θ
n(β)(k− D

log θ
) − 1

]
.

=
1

D

(
1− θ−n(β)

D
log θ

)
+

1

log θ

+∞∑
k=1

Ek

k!

1

k − D
log θ

[
θ
n(β)(k− D

log θ
) − 1

]
.

As we shall consider β close to +∞ we can assume that β is big enough such that θn(β) < 1
2 .

Then we have

1

log θ

∫ θn(β)

1

e
−D log u

log θ
+Eu

u
du =

1

log θ

∫ 1
2

1

e
−D log u

log θ
+Eu

u
du+

1

log θ

∫ θn(β)

1
2

e
−D log u

log θ
+Eu

u
du.

Let us first study the last integral.

0 6
1

log θ

∫ θn(β)

1
2

e
−D log u

log θ
+Eu

u
du 6

1

log θ

∫ θn(β)

1
2

u
−1− D

log θ e
E
2 du

6 e
E
2

1

D

[(
1

2

)− D
log θ

− θ−n(β)
D

log θ

]
.
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Remember that D = g(β)e−γβ and n(β) = log ε0
log θ log β. Hence, D and n(β)D go to 0 as β

goes to +∞. Then

1

D

[(
1

2

)− D
log θ

− θ−n(β)
D

log θ

]
=

1

D

[(
1

2

)− D
log θ

− 1

]
+

1

D

[
1− θ−n(β)

D
log θ

]
=

log 2

log θ
+ n(β) + o(D).

Let us now study
1

log θ

∫ 1
2

1

e
−D log u

log θ
+Eu

u
du.

0 6
1

log θ

∫ 1
2

1

e
−D log u

log θ
+Eu

u
du =

1

log θ

∫ 1
2

1
u
−1− D

log θ eEu du

6
2
1+ D

log θ

E| log θ|
[
eE − eE2

]
.

Remember that E = ξ1
θ

1−θβ. Therefore we finally get

(15) Fn(β)−1(P(β), ξ1β, . . . , ξpβ) 6 n(β)e
− ξ1

2
θ

1−β β +
κ

ξ1β
,

for some universal constant3 κ > 0.

The term in the right hand side in (15) goes to 0 as β goes to +∞. In particular, (14) and
(15) show that the result holds if γ > ξ1

θ
1−θ because the sum for n 6 n(β) is negligible

with respect to the sum for n > n(β).

Third step. We assume γ < ξ1
θ

1−θ . Let K be sufficiently big such that ξ1
θ

1−θθ
K < γ.

Then, note that we get

F (P(β), ξ1β, . . . , ξpβ) = FK(P(β), ξ1β, . . . , ξpβ) +

e−KP(β)
K∏
j=1

(
e−ξ1θ

jβ + . . .+ e−ξpθ
jβ
)
F (P(β), ξ1θ

Kβ, . . . , ξpθ
Kβ).(16)

Again we have

K∏
j=1

(
e−ξ1θ

jβ + . . .+ e−ξpθ
jβ
)

= e−ξ1
θ

1−θβ+ξ1θ
K θ

1−θβ
K∏
j=1

(
1 + e−η2θ

jβ + . . .+ e−ηpθ
jβ
)
.

This last term

K∏
j=1

(
1 + e−η2θ

jβ + . . .+ e−ηpθ
jβ
)

goes to 1 as β goes to +∞. The term

e−KP(β) goes to the constant pK , and F (P(β), ξ1θ
Kβ, . . . , ξpθ

Kβ) behaves (at the expo-

nential scale) like O(e(γ−ξ1θ
K θ

1−θ )β). This proves that the second term in the right hand

side of (16) behaves like O(e(γ−ξ1
θ

1−θ )β).

3We emphasize that κ can be assume to be smaller than 4 if β is chosen sufficiently big.
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Now, the finite sum FK(P(β), ξ1β, . . . , ξpβ) = e−P(β)−ξ1θβ+ terms which are exponentially

small with respect to e−ξ1θβ if β goes to +∞. Hence, this finite sum behaves like the biggest
term, namely like O(e−ξ1θβ). This concludes the proof of the lemma. �

4. Proof of Theorem 1: Convergence for the eigenmeasure νβ

4.1. Selection for νβ. We set Oj := ti[uij ]. This is the set of points whose first digit is
one of the uij ’s of the alphabet Aj .
Proposition 8. For every j,

νβ(Oj) =
F (P(β), α(j−1)p+1β, . . . , αjpβ)e−P(β)

1 + F (P(β), α(j−1)p+1β, . . . , αjpβ)e−P(β)
.

Proof. Let m be an admissible word for Σj with length n. Let k /∈ Aj . Then,

(17) νβ([mk]) = e−nP(β)−
∑n−1
j=0 αmj θ

n−j
νβ([k]).

This yields

νβ(Oj) =
∑
k/∈Aj

+∞∑
n=1

∑
m,|m|=n

e−nP(β)−
∑n−1
j=0 αmj θ

n−j
νβ([k])

=
+∞∑
n=1

e−nP(β) n∏
j=1

(
e−α1βθj + . . .+ e−αpβθ

j
) e−P(β)(1− νβ(Oj))

= F (P(β), α1β, . . . , αpβ)e−P(β)(1− νβ(tpi=1[i]))

Therefore we get

νβ(Oj) =
F (P(β), α1β, . . . , αpβ)e−P(β)

1 + F (P(β), α1β, . . . , αpβ)e−P(β)
.

�

We also have an explicit value for νβ([u]): we write

[u] = [uu]

kp⊔
i=1

[u i],

and use conformity to get

(18) νβ([u]) = e−P(β)−αβ.

In particular this quantity goes to 0 as β goes to +∞. This shows that only the N subshifts
Σj can have positive measure as β goes to +∞.

Now, Propositions 5 and 7 show that F (P(β), α1β, . . . , αpβ) behaves like e(γ−α1
θ

1−θ )β as
β goes to +∞, and this quantity diverges to +∞. It also shows that for every j > 1,
F (P(β), α(j−1)p+1, . . . , αjp) goes exponentially fast to 0.
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This shows that νβ(O1) goes to 1. The speed of the convergence is given by
1

1 + F (P(β), α1β, . . . , αpβ)
which goes exponentially fast to 0.

As a by-product, we also immediately get from (17) that for any Σ1-admissible word m
with |m| = n and for any k /∈ A1,

νβ([mk]) = e−nP(β)−
∑n−1
j=0 αmj θ

n−j
νβ([k])→β→+∞ 0,

as νβ([k]) goes to 0 if β goes to +∞. Hence we get

Proposition 9. Any accumulation point of νβ is a probability measure with support in
Σ1.

4.2. Convergence for νβ. The measure of maximal entropy µtop,1 is the product of the
eigenfunction and the eigenmeasure both associated to the transfer operator for (Σ1, σ)
and the constant potential zero. Hence, the eigenmeasure νtop,1 is characterized by the

fact that every Σ1-admissible words with a fixed length n have the same measure
1

pn
.

We have already seen above that any accumulation point for νβ is a measure, say ν∞, such
that ν∞(O1) = 0. Our strategy to prove that νβ converges to νtop,1 is now to prove that

for any two Σ1-admissible words m and m̂ with the same length,
νβ([m])

νβ([m̂])
goes to 1 as β

goes to +∞.

Let us thus consider two Σ1-admissible words m and m̂ with length n. In the following,
m′ is a word (possibly the empty word) admissible for Σ1. We get

νβ([m]) =
∑
m′

νβ(mm′∗)

=
+∞∑
k=0

e−nP(β)eS(m)βθke−kP(β)
k∏
j=1

(e−α1θjβ + . . .+ e−αpθ
jβ)(1− νβ(O1))

where S(m) := −
n−1∑
l=0

αmlθ
n−l

= e−nP(β)

eS(m)β +

+∞∑
k=1

eS(m)βθke−kP(β)
k∏
j=1

(e−α1θjβ + . . .+ e−αpθ
jβ)

 (1− νβ(O1)).

(19)

The series in the right hand side of this last equality is almost the same than the one

defining F (P(β), α1β, . . . , αpβ) up to the extra term eS(m)βθk .

Replacing m by m̂ we get a similar formula for νβ([m̂]).

The quantities S(m) and S(m̂) are negative, hence eS(m̃)βθk is lower than 1 for m̃ = m, m̂.

Now, remember the definition of n(β) =
log ε0
log θ

log β (see p. 17). Step 2 of the proof of

Proposition 7 shows that Fn(β)(P(β), α1β, . . . , αpβ) goes to 0 as β goes to +∞, whereas



22 RENAUD LEPLAIDEUR

Step 1 of the proof of Proposition 7 shows that the tail
∑

k>n(β)+1

e−kP(β)
k∏
j=1

(e−α1θjβ + . . .+

e−αpθ
jβ) diverges (exponentially fast) to +∞. Note that for k > n(β), βθk 6

1

β
. Therefore

we get

νβ([m])

νβ([m̂])
6

1 + Fn(β)(P(β), α1β, . . . , αpβ) +
∑

k>n(β)

e−kP(β)
k∏
j=1

(e−α1θjβ + . . .+ e−αpθ
jβ)

e
S(m̂)
β

∑
k>n(β)

e−kP(β)
k∏
j=1

(e−α1θjβ + . . .+ e−αpθ
jβ)

.

Doing β goes to +∞ in this last inequality we get lim sup
β→+∞

νβ([m])

νβ([m̂])
6 1. Exchanging m

and m̂ we also get lim sup
β→+∞

νβ([m̂])

νβ([m])
6 1, which means

lim
β→+∞

νβ([m])

νβ([m̂])
= 1.

In other words, any accumulation point for νβ is a probability measure with support in
Σ1 which gives the same weight to all the cylinders of same length. There exists only one
such measure, it is νtop,1. This finishes the proof of Theorem 1.

5. Proof of Theorem 2: convergence and selection for µβ

5.1. An expression for µβ(Oj). We recall that n(β) was defined (see Equation 12) by

n(β) :=
log ε0
log θ

log β.

Its main properties are that n(β) goes to +∞ as β goes to +∞ and n(β).β.θβ goes to 0.

We recall that for every j and for every Σj-admissible word m with finite length we have

(20) Hβ(m) = e−P(β)
p∑
i=1

eβ.A(uijm)Hβ(uijm) + e−P(β)τj .

The main result in this subsection is the following proposition, which gives an expression

for µβ(Oj). We employ notations from Lemma 6 and Proposition 7; we remind r = − log p

log θ
and that I(η2, . . . , ηp) was defined there.

Proposition 10. For every j, let us set ηij := α(j−1)p+i − α(j−1)p+1. Then

µβ(Oj) = e−P(β).τj(1−νβ(Oj))

[
1

α(j−1)p+1
O

(
n(β)

β

)
+
n(β)(1 + o∞(β))

βr (g(β))2
e(2γ−α(j−1)p+1

θ
1−θ )βe

−
I(η2j ,...,ηpj)

log θ

]
,

where o∞(β) goes to 0 as β goes to +∞.
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As n(β) is proportional to log β, the term O

(
n(β)

β

)
goes to 0 as β goes to +∞. The

importance of the formula is that, either 2γ > α(j−1)p+1
θ

1−θ and the second term goes to
+∞, or the possible convergence occurs at the sub exponential scale.

In particular, it will show that only the components with α(j−1)p+1 sufficiently small can
have weight as β goes to +∞.

In view to prove Proposition 10, let us first start with some technical lemmas.

Lemma 11. For every j 6= j′, τj(1+F (P(β), αp(j−1)β, . . . , αjpβ)) = τj′(1+F (P(β), αp(j′−1)β, . . . , αj′pβ)).

Proof. For a By Lemma 1 Hβ is constant on rings. Setting un1j = u1j . . . u1j︸ ︷︷ ︸
n times

we get

(21) Hβ(un1j∗) = e−P(β)Hβ(un+1
1j ∗)

(
e−α(j−1)p+1βθ

n+1
+ . . .+ e−αjpβθ

n+1
)

+ e−P(β)τj .

We set ρ(j, n+ 1, β) := e−α(j−1)p+1βθ
n+1

+ . . .+ e−αjpβθ
n+1

. Note that

F (P(β), αp(j−1)+1β, . . . , αjpβ) :=
+∞∑
k=1

e−kP(β)
k∏
i=1

ρ(j, i, β),

and remember Fl(P(β), αp(j−1)+1β, . . . , αjpβ) :=

l∑
k=1

e−kP(β)
k∏
i=1

ρ(j, i, β) Then, multiply-

ing both sides of Equation (21) by e−P(β)ρ(j, n, β) and adding e−P(β)τj we get

Hβ(un−11j ∗) = e−2P(β)ρ(j, n, β)ρ(j, n+ 1, β)Hβ(un+1
1j ∗) + e−P(β)τj(1 + e−P(β)ρ(j, n, β)).

We get, by induction, a relation between Hβ(un1j∗), n and Hβ(u1j∗). Now, remember

Hβ(u) = e−P(β)ρ(j, 1, β) + e−P(β)τj , and we finally get
(22)

Hβ(u) = Hβ(un1j∗)
[
e−nP(β)

n−1∏
i=1

ρ(j, i, β)

]
+ e−P(β)τj(1 + Fn(P(β), αp(j−1)β, . . . , αjpβ)).

Now, let n goes to +∞ in (22). The term Hβ(un1j∗) converges to
τj

eP(β) − p (see Lemma

2) and the term e−nP(β)
n−1∏
i=1

ρ(j, i, β) is the general term of a converging series, thus goes

to 0. Then we get

Hβ(u) = e−P(β)τj(1 + F (P(β), αp(j−1)β, . . . , αjpβ)).

This holds for any j. �

Lemma 12. For any j and for any integer n,

Hβ(un1j∗) = e−P(β)τj(1 + F (P(β), αp(j−1)βθ
n, . . . , αjpβθ

n)).
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Proof. Equation (21) also yields

Hβ(un1j∗) = e−2P(β)ρ(j, n+1, β)ρ(j, n+2, β)Hβ(un+2
1j ∗)+e−P(β)τj(1+e−P(β)ρ(j, n+1, β)).

By induction we get

Hβ(un1j∗) =

[
e−iP(β)

i∏
l=1

ρ(j, n+ l, β)

]
Hβ(un+i1j ∗) + e−P(β)τj(1 +

i∑
l=1

e−P(β)
l∏

r=1

ρ(j, n+ r, β))

=

[
e−iP(β)

i∏
l=1

ρ(j, n+ l, β)

]
Hβ(un+i1j ∗) + e−P(β)τj(1 + Fi(P(β), αp(j−1)βθ

n, . . . , αjpβθ
n)).

As above, as i goes to +∞, Hβ(un+i1j ∗) converges to
τj

eP(β) − p (see Lemma 2) and the term

e−iP(β)
i∏
l=1

ρ(j, l, β) is the general term of a converging series, thus goes to 0. �

Lemma 13. µ(Oj) = e−P(β)τj

+∞∑
l=1

le−lP(β)
l∏

i=1

(
e−α(j−1)p+1θ

iβ + . . .+ e−αjpθ
iβ
)

(1−νβ(Oj)).

Proof. We pick some j. In the following m is a generic Σj-admissible word with finite
length.

∑
m,|m|=l

µβ[m∗] =
∑

m,|m|=l

Hβ(m∗)νβ(m∗)

=
∑

m,|m|=l

Hβ(m∗)e−lP+β.Sl(A)(m∗)(1− νβ(Oj).

= Hβ(ul1j∗)e−lP(β)
l∏

i=1

(
e−α(j−1)p+1βθ

i
+ . . .+ e−αjpβθ

i
)

(1− νβ(Oj),(23)

Equality (23) and Lemma 12 yield∑
m,|m|=l

µβ[m∗] = Hβ(ul1j∗)e−lP(β)
l∏

i=1

(
e−α(j−1)p+1βθ

i
+ . . .+ e−αjpβθ

i
)

(1− νβ(Oj)

= e−P(β)τj
(
F (P(β), α(j−1)p+1β, . . . , αjpβ)− Fl−1(P(β), α(j−1)p+1β, . . . , αjpβ)

)
(1− νβ(Oj))

Now, it is an usual exercise that the sum of the tail of a series of positive terms un is equal
to
∑

n nun. �

Proof of Proposition 10. We split the sum in the formula of Lemma 13 in two pieces, the
one for l < n(β) and the one for l > n(β).

For the part for l < n(β), we use Inequality (15), and

n(β)−1∑
l=1

le−lP(β)
l∏

i=1

(
e−α(j−1)p+1θ

iβ + . . .+ e−αjpθ
iβ
)
6 n(β)Fn(β)−1(P(β), α(j−1)p+1β, . . . , , αjpβ).
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For the sum for l > n(β), we use Equality (13). We have to “update” it and replace

e−ng(β)e
−γβ

by ne−ng(β)e
−γβ

. In other words, we are computing the formal power series∑
n>n(β)

nxn with x = e−g(β)e
−γ.β

. It is the derivative of the power series
∑

n>n(β)

xn. Hence

we get ∑
n>n(β)

nxn = n(β)
xn(β)−1

(1− x)2
(1 + x(1− 1

n(β)
)).

Again, e−n(β)g(β)e
−γ.β

goes to 1 as β goes to +∞ and 1−e−g(β)e−γ.β behaves like g(β)e−γ.β.

�

5.2. Selection. For simplicity we set4 Fj := F (P(β), α(j−1)p+1β, . . . , αjpβ), ηij := η(j−1)p+i−
η(j−1)p+1 and Ij := 1

log θI(η2j , . . . , ηpj). We remind that o∞(β) means a function going to

0 as β goes to +∞.

5.2.1. The case γ <
α1 + αp+1

2

θ

1− θ . This corresponds to zone Z2 (see Figure 3). We

emphasize that, if j is such that 2γ < α(j−1)p+1
θ

1−θ , then Propositions 10 and 7 show that

µβ(Oj) behaves like τjo∞(β).

Lemma 14. Under the assumption 2γ 6 α(j−1)p+1
θ

1−θ , µβ(Oj) goes to 0 exponentially
fast as β goes to +∞.

Proof. Let us assume that j is such that 2γ < α(j−1)p+1
θ

1−θ .

µβ(O1)

µβ(Oj)
=

τ1
(1 + F1)τj

κ̂(β)
1

βr(g(β))2
e(2γ−α1

θ
1−θ )βe−I1

1

o∞(β)

=
1 + Fj

(1 + F1)2
κ̂(β)

1

βr(g(β))2
e(2γ−α1

θ
1−θ )βe−I1

1

o∞(β)

(by Lemma 11 )

= φ(β)
e(2γ−α1

θ
1−θ )β

o∞(β)e2(γ−α1
θ

1−θ )β

by Prop. 7 and for some sub exponential function φ

= φ(β)
eα1

θ
1−θβ

o∞(β)
.(24)

This shows that µβ(O1) is exponentially bigger (in β) than µβ(Oj), and thus µβ(Oj) goes
exponentially fast to 0.

The same holds if we only assume 2γ 6 α(j−1)p+1
θ

1−θ , because for the equality case,

we have just to replace the term o∞(β) by some sub exponential quantity (which does

4these are different from the truncated sums defined above.
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not necessarily goes to 0). However, this does not eliminate the exponential ratio in the
computation.

�

Remark 2. Furthermore, this shows that µβ(O2) can have a positive accumulation point

only if 2γ > αp+1
θ

1−θ . �

Lemma 15. Assume 2γ > αp+1
θ

1−θ . Then, for every j > 2, lim
β→+∞

µβ(Oj) = 0.

Proof. We copy the previous computation with O2 instead of O1. Note that F2 goes to 0
as β goes to +∞. We first assume 2γ 6 α(j−1)p+1

θ
1−θ

Then we have

µβ(O2)

µβ(Oj)
=

τ2
τj

1 + Fj
1 + F2

κ̂(β)e(2γ−αp+1
θ

1−θ )β

o∞(β)
,

where o∞(β) may be replaced by a sub exponential function (if 2γ = α(j−1)p+1
θ

1−θ ). Note

that
τ2
τj
→ 1 and

1 + Fj
1 + F2

→ 1 as β → +∞. Then, µβ(Oj) is exponentially smaller than

µβ(O2) 6 1.

If 2γ > α(j−1)p+1
θ

1−θ , then
µβ(O2)

µβ(Oj)
is— up to a sub-exponential multiplicative ratio—

equal to
e(2γ−αp+1

θ
1−θ )β

e(2γ−α(j−1)p+1
θ

1−θ )β
= e(α(j−1)p+1−αp+1)

θ
1−θβ. Now, we remind

αp+1 < α(j−1)p+1.

�

Lemma 16. If γ <
α1+αp+1

2
θ

1−θ , then lim
β→+∞

µβ(O1) = 1.

Proof. The result holds if 2γ 6 αp+1
θ

1−θ . Let us thus assume 2γ > αp+1
θ

1−θ . Then

Equation (24) is still valid, provide that we replace o∞(β) by e−I2e(2γ−αp+1
θ

1−θ )β (following
Proposition 10). Hence we get

µβ(O1)

µβ(O2)
= φ(β)e((α1+αp+1)

θ
1−θ−2γ)β,

for some sub-exponential function φ(β). Our assumption in the Lemma means that this
last quantity diverges exponentially fast to +∞ as β goes to +∞, which means that µβ(O1)
is exponentially bigger than µβ(O2) as β goes to +∞. Hence, µβ(O2) goes to 0. Lemma
15 shows that µβ(Oj) goes to 0 for every j 6= 1, thus µβ(O1) goes to 1. �

5.2.2. The case γ =
α1 + αp+1

2

θ

1− θ < min(α1
θ

1− θ + α, α1
θ

1− θ + αp+1θ). This corre-

sponds to zone Z1 (see Figure 3). We emphasize that in that case,

2γ > αp+1
θ

1− θ
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always holds. Therefore only O1 and O2 can have weight for β → +∞. Moreover,

γ =
α1 + αp+1

2

θ

1− θ implies

α1 + αp+1

2

θ

1− θ < α1
θ

1− θ + αp+1θ,

which yields

γ − αp+1
θ

1− θ =
α1 − αp+1

2

θ

1− θ > −αp+1θ.

Then, Proposition 7 shows

(25) F2 =
1

βrg(β)
e−I2e(γ−αp+1

θ
1−θ )β(1 + o∞(β)).

It also shows that for every j > 2, Fj is of order max(e−α(j−1)p+1β, e(γ−α(j−1)p+1
θ

1−θ )β). It
is thus exponentially smaller than F2.

Lemma 17. Under these hypothesis, lim
β→+∞

F1F2 = p2 and g(β) =
1

pβr
e−

I1+I2
2 (1+o∞(β)).

Proof. Equation (17) can be rewritten under the form:

νβ(Oj) = e−P(β)
∑
i 6=j

Fiνβ(Oi) + e−P(β)νβ([u]).

This yields a linear system
1 −e−P(β)F1 . . . −e−P(β)F1

−e−P(β)F2 1 −e−P(β)F2
...

. . .
...

−e−P(β)FN . . . −e−P(β)FN 1




νβ(O1)
νβ(O2)

...
νβ(ON )

 =


e−P(β)νβ([u])F1

e−P(β)νβ([u])F2
...

e−P(β)νβ([u]FN )

 .

We remind that Fj goes to 0 as β goes to +∞ for j > 2, and F1 goes to +∞.

We compute the dominating term of the determinant of the N×N matrix in the left hand
side of the last equality. Developing this determinant with respect to the first row, we left
it to the reader to check that the determinant is of the form

det(β) = 1− e−2P(β)F1

(
N∑
i=2

Fi

)
(1 + o∞(β)).

Now we compute the cofactors for the terms of the first column. Again, we left it to the
reader to check that the cofactor of the term in position i, 1 is of the form

δ1,1 = 1 + o∞(β), δi,1 = −e−P(β)F1(1 + o∞(β)).

Now, remind Equality (18) νβ([u]) = e−P(β)−αβ.

Therefore, Equality (25) and the property Fj << F2 (for j > 2) yield

(26) νβ(O1) =
F1e
−2P(β)−α(1 + o∞(β))

1− e−2P(β)F1F2(1 + o∞(β))
.
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We remind that with our values of the parameter, γ =
α1 + αp+1

2

θ

1− θ < α1
θ

1− θ + α.

Now, F1 behaves (at the exponential scale) like e(γ−α1
θ

1−θ )β < αβ. This shows that the
numerator in (26) goes to 0 as β goes to +∞. Therefore the denominator also goes to 0
and the first part of the Lemma is proved as limβ→+∞ P(β) = p.

Let us now replace F1 and F2 by their values. Following Proposition 7 and (25) we get

F1F2 = e−I1−I2
1

(βrg(β))2
e(2γ−(α1+αp+1)

θ
1−θ )β(1 + o∞(β))

= e−I1−I2
1

(βrg(β))2
(1 + o∞(β)).

As F1F2 goes to p2, we get g(β) =
1

pβr
e−

I1+I2
2 (1 + o∞(β)). �

We can now finish the proof of Theorem 2— item (1). We remind that we get

µβ(O1) = e−P(β)
τ1

1 + F1

n(β)

βr(g(β))2
e−I1e(2γ−α1

θ
1−θ )β,

and

µβ(O2) = e−P(β)
τ2

1 + F2

n(β)

βr(g(β))2
e−I2e(2γ−αp+1

θ
1−θ )β.

We also remind

• τ1(1 + F1) = τ2(1 + F2) (Lemma 11)
• F2 →β→+∞ 0 and F1 →β→+∞ +∞,

• g(β) =
1

pβr
e−

I1+I2
2 (1 + o∞(β)) (Lemma 17),

• γ =
α1 + αp+1

2

θ

1− θ .

Then we get

µβ(O1)

µβ(O2)
=

τ1
(1 + F1)2

1 + F1

τ2
(1 + F2)e

I2−I1e(αp+1−α1)
θ

1−θβ(1 + o∞(β)

=
eI2−I1

(1 + F1)2
e(αp+1−α1)

θ
1−θβ(1 + o∞(β))

= eI2−I1e2I1(βrg(β))2e(αp+1−α1)
θ

1−θβe2(α1
θ

1−θ−γ)β(1 + o∞(β))

=
1

p2
(1 + o∞(β)).

5.2.3. The case γ =
α1 + αp+1

2

θ

1− θ = α1
θ

1− θ +α < α1
θ

1− θ +αp+1θ. This corresponds

to zone Z3 \ Z4 (see Figure 3). The situation is very similar than the previous one. We
rewrite Equality (26):

νβ(O1) =
F1e
−2P(β)−α(1 + o∞(β))

1− e−2P(β)F1F2(1 + o∞(β))
.
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Again we claim that we get F1F2 = e−I1−I2
1

(βrg(β))2
(1 + o∞(β)).

Nevertheless, and contrarily to the previous case, the numerator is equal to

e−2P(β)−αF1 = e−I1
1

βrg(β)
.

Let L be any accumulation for
1

βrg(β)
. Then we get

1 =
e−I1L

p2 − e−I1−I2L2
.

Note that L > 0, then solving the equation we get only one non-negative solution. Hence

lim
β→+∞

1

βrg(β)
=

√
4p2eI1−I2 − 1

2
eI2 .

Now, copying what is done above we get

µβ(O1)

µβ(O2)
=

τ1
(1 + F1)2

1 + F1

τ2
(1 + F2)e

I2−I1e(αp+1−α1)
θ

1−θβ(1 + o∞(β)

=
eI2−I1

(1 + F1)2
e(αp+1−α1)

θ
1−θβ(1 + o∞(β))

= eI2−I1e2I1(βrg(β))2e(αp+1−α1)
θ

1−θβe2(α1
θ

1−θ−γ)β(1 + o∞(β))

=
4eI1−I2(√

4p2eI1−I2 + 1− 1
)2 (1 + o∞(β)).

We set

(27) ρ23 :=
4eI1−I2(√

4p2eI1−I2 + 1− 1
)2 .

5.2.4. The case γ =
α1 + αp+1

2

θ

1− θ = α1
θ

1− θ +αp+1θ < α1
θ

1− θ +α. This corresponds

to zone Z4 \ Z3 (see Figure 3).

Lemma 18. The quantity F2 is exponentially bigger than every Fj for j > 2.

Proof. We remind that αp+1 =
α1

2θ − 1
. Then, Proposition 7 shows that F2 behaves, at the

exponential scale, like max(e−αp+1θβ , e(γ−αp+1
θ

1−θ )β) and these two quantities are equal.

Now, for j > 2, Fj is lower than e−α(j−1)p+1θ, thus exponentially smaller than F2. �

Again, we rewrite Equality (26). Lemma 18 shows that F2 + F3 + . . . is again of the form
F2(1 + o∞(β)):

νβ(O1) =
F1e
−2P(β)−α(1 + o∞(β))

1− e−2P(β)F1F2(1 + o∞(β))
.
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Lemma 19. The quantity F1F2 goes to p2 as β goes to +∞ and βrg(β) converges as β
goes to +∞. The limit is denoted by L.

Proof. Remember that F1 behaves like e(γ−α1
θ

1−θ )β = eαp+1
θ

1−θβ, and our assumption yields
that the numerator in the last expression for νβ(O1) goes exponentially fast to 0. Hence,
the denominator also goes to 0 and (again) F1F2 goes to p2.

Let L be any accumulation point for βrg(β) (in R+). Proposition 7 shows that F1 behaves

like e−I1
1

L
e(γ−α1

θ
1−θ )β(1 + o∞(β)) and F2 behaves like max(1, e−I2

1

L
)e(γ−αp+1

θ
1−θ )β(1 +

o∞(β)).

This yields equality F1F2 = e−I1
1

L
.max(1, e−I2

1

L
)(1 +o∞(β)). and doing β → +∞ we get

(28) p2 = e−I1
1

L
.max(1, e−I2

1

L
).

Now, the function x 7→ e−I1xmax(1, e−I2x) is increasing. Thus there exists a unique x
such that its value is p2. This proves that βrg(β) has unique accumulation point, thus
converges. �

Now, copying what is done above we get

µβ(O1)

µβ(O2)
=

τ1
(1 + F1)2

1 + F1

τ2
(1 + F2)e

I2−I1e(αp+1−α1)
θ

1−θβ(1 + o∞(β)

=
eI2−I1

(1 + F1)2
e(αp+1−α1)

θ
1−θβ(1 + o∞(β))

= eI2−I1e2I1(βrg(β))2e(αp+1−α1)
θ

1−θβe2(α1
θ

1−θ−γ)β(1 + o∞(β))

= eI1+I2L2(1 + o∞(β)).

We set

(29) ρ24 := eI1+I2L2.

5.2.5. The case γ =
α1 + αp+1

2

θ

1− θ = α1
θ

1− θ +α = α1
θ

1− θ +αp+1θ. This corresponds

to zone Z3 ∩ Z4 (see Figure 3).

The situation is very similar than the previous one. Lemma 18 still holds as we just used

inequalities αp+1 < α(j−1)p+1 for j > 2. Hence, F1F2 = e−I1−I2
1

(βrg(β))2
(1 + o∞(β)).

The main difference with the previous case is that writing Equality (26):

νβ(O1) =
F1e
−2P(β)−α(1 + o∞(β))

1− e−2P(β)F1F2(1 + o∞(β))
,

the numerator does not necessarily goes to 0. Namely it behaves like5 e−I1
1

βrg(β)
.

5note that γ = α1
θ

1−θ + α and F1 behaves like e−I1
1

βrg(β)
e(γ−α1

θ
1−θ

)β .
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Nevertheless, Lemma 19 still holds. Indeed, Equality (28) has just to be replaced by

1 =
e−I1 1

L

p2 − e−I1 1
L max(1, e−I2 1

L)
.

Again, the function x 7→ e−I1x(1+max(1, e−I2x)) is increasing and there is a unique value
for which the function is equal to p2.

Now, copying what is done above we get

µβ(O1)

µβ(O2)
=

τ1
(1 + F1)2

1 + F1

τ2
(1 + F2)e

I2−I1e(αp+1−α1)
θ

1−θβ(1 + o∞(β)

=
eI2−I1

(1 + F1)2
e(αp+1−α1)

θ
1−θβ(1 + o∞(β))

= eI2−I1e2I1(βrg(β))2e(αp+1−α1)
θ

1−θβe2(α1
θ

1−θ−γ)β(1 + o∞(β))

= eI2+I1L2(1 + o∞(β)).

We set

(30) ρ23∩4 := eI1+I2L2.

This concludes the proof of Theorem 2.

6. Convergence to the subaction- proof of corollary 3

In the proof of Proposition 5 we showed that only two basic loops can have a maximal
weight (which value is γ). These two loops are 1 → 1 or 1 → 2 → 1. Following the
Max-Plus formalism (see [6]), in both cases there is a unique maximal strongly connected
subgraph (m.s.c.s. in abridge way) which is either 1→ 1 or 1→ 2→ 1.

Now, Theorem 3.101 in [6] shows that, in both cases, there is a unique eigenvector for
M , up to an additive constant (added to all the coordinates), which is given by the first
column of the associated matrix M+ := e ⊕ M ⊕ M2 . . . (where ⊕ is the sum for the
Max-plus formalism, and Mn is computed for the product of the Max-Plus formalims).

In other word, there is a unique calibrated subaction up to an additive constant. Conse-
quently, a subaction is entirely determined by its value on one of any Σj ’s.

Now, we have:

Lemma 20. For every x in S1, lim
β→+∞

1

β
logHβ(x) = 0.

Proof. The proof is done by contradiction. Assume that δ 6= 0 is an accumulation point

for
1

β
logHβ(x) (for x in Σ1). Let consider any accumulation point V such that V (x) = δ

(this is always possible up to consider a subsequence of β’s).
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Then, V is Hölder continuous (all the
1

β
logHβ are equip-continuous with a upper bounded

Hölder norm), and |V | > δ
2 on some neighborhood of x. Let us consider some cylinder C

in Σ1, such that for every x′ ∈ C, |V (x′)− V (x)| < δ
2 .

By Theorem 2, µβ(C ′) converges to a positive value as β goes to +∞ (each cylinder in
Σ1 has positive µtop,1-measure). Similarly, by Theorem 1, νβ(C ′) converges to a positive
value as β goes to +∞. Now,

dµβ = Hβdνβ,

which yields that µβ(C ′) is of order νβ(C ′)eβ
δ
2 as β goes to +∞. Convergence of νβ(C ′)

and µβ(C ′) and δ 6= 0 yield a contradiction. �

Lemma 20 shows that any accumulation point for
1

β
logHβ is the unique subaction whose

value is 0 on Σ1, thus it converges.
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