FLATNESS IS A CRITERION FOR SELECTION OF MAXIMIZING
MEASURES

RENAUD LEPLAIDEUR

ABSTRACT. For the one-dimensional classical spin system, each spin being able to get
Np + 1 values, and for a non-positive potential, locally proportional to the distance to
one of N disjoint configurations set {(j — 1)p+1,...jp}%, we prove that the equilibrium
state converges as the temperature goes to 0.

The main result is that the limit is a convex combination of the two ergodic measures
with maximal entropy among maximizing measures and whose supports are the two shifts
where the potential is the flattest.

In particular, this is a hint to solve the open problem of selection, and this indicates
that flatness is probably a/the criterion for selection as it was conjectured by A.O. Lopes.

As a by product we get convergence of the eigenfunction at the log-scale to a unique
calibrated subaction.

1. INTRODUCTION

1.1. Background. In this paper we deal with a mathematical approach to the problem of
grounds states in a one-dimensional lattice. To paraphrase [23], the goal is to understand
why materials have a strong tendency to be highly ordered at low temperature. They
reach a crystal or quasi crystal configuration.

This topic has been studied for a long time by physicists. We mention e.g. [25] describing
ground states for classical lattice spin systems. In [22], Radin already made a survey of
that topic. There is still a large production on the domain (see e.g. [I8] for a survey on
the 2-dimensional Ising model and [26] for recent results on the one-dimensional case).

On the contrary, people in dynamical systems have in the 70’s few studied this problem.
Since the 2000’s, and most probably inspired by Lagrangian dynamics (see e.g. [20]), the
development of the theory of ergodic optimization has naturally led mathematicians to
introduce (or rather rediscover) the notion of ground states.

Indeed, despite the theory of thermodynamic formalism has been imported into hyperbolic
dynamics in the 70’s, essentially by Sinai, Ruelle and Bowen, phase transitions and ground
states have been less central in dynamical systems : gradually, the main task turned out
to be to extend the thermodynamic formalism to the non-uniformly hyperbolic case.

Moreover, in the physics approach, the dynamics is not very relevant and just emerges as a
by-product of the invariance by translation. The main difficulty is the geometry of the Z¢
lattice (see e.g. [14, [15] for the Ising Model). The mathematics and the physics approaches
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were thus different, with focus on different aspects. One of the goal of this paper is also
to make a step to join the mathematics and the physics approaches. If Physics is clearly a
source of inspiration for Mathematics, on the other hand mathematicians have developed
tools, as subactions, conformal measures or Max-Plus algebra (see below), which should
interest physicists.

We remind that a one-dimensional lattice is naturally equipped with a Z-action. This
generates a dynamical system, which is by definition, a compact set X and some continuous
map T : X — X. For the classical spin model, the set X is the set of infinite configurations
{0,1}% or {0,1}". The dynamics T is the shift

T((zn)) = (@n41)-

We refer the reader to Ruelle’s book [24] for a good dictionary between physics and math-
ematics languages concerning the thermodynamical formalism for hyperbolic dynamical
systems.

For a given dynamical system (X,T"), the goal is thus to study existence and properties
of the invariant probabilities which maximize a given potential ¢ : X — R.

Ground states are particular maximizing measures which can be reached by freezing the
system as limit of equilibrium states. Namely, for g > 0, which in statistical mechanics
represents the inverse of the temperature, we consider the/an equilibrium state associated
to B¢, that is a T-invariant probability whose free energy

h(1)+ 5 [ o,

is maximal (where h,, is the Kolmogorov entropy of the measure v). Then, considering an
equilibrium state pg, it is easy to check (see [12]) that any accumulation point for pz as
15} goesﬂ to 400 is a maximizing measure for ¢.

The first main question is to know if pug converges. It is known (see [§]) that for an
uniformly hyperbolic dynamical systems, generically in the C’-topology, ¢ has a unique
maximizing measure. Therefore, convergence of 153 obviously holds in that case. Neverthe-
less, generic results do not concern all the possibilities. It is very easy to build examples,
which at least for the mathematical point of view are meaningful, and for which the set of
ergodic maximizing measures is as wild as wanted. We also have some doubts if generic
results are physically relevant.

For these situations, the question of convergence is of course fully relevant. Cases of
convergence or non-convergence are known (see [9, 21} 19l [IT), 10, 13]), but the general
theory is far away of being solved. In particular, no criterion which guaranties convergence
(except the uniqueness of the maximizing measure or the locally constant case) is known,
say e.g. for the Lipschitz continuous case.

The second main question, and that is the one we want to focus on here, is the problem
of the selection. Assuming that ¢ has several ergodic maximizing measures and that g
converges, what is the limit ? In other words, is there a way to predict the limit from

1,3 is the inverse of the temperature, thus § — 400 means Temp — 0, which means we freeze the
system.
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the potential, or equivalently, what makes the equilibrium state select one ground state
instead of another one 7

Inspired by a similar study for the Lagrangian Mechanics ([2]), it was conjectured by
A.O. Lopes that flatness of the potential would be a criterion for selection and that the
equilibrium state always selects the configurations where the potential is the flattest. In
[3] it is actually proved that the conjecture is not entirely correct. Authors consider in
the full 3-shift a negative potential except on the two fixed points 0°° and 1°°, where it
vanishes but is sharper in 1°° than in 0°°. Then, they prove that the equilibrium state
actually converges, but not necessarily to the Dirac measure at 0°°.

The first part of the conjecture is however not (yet) invalided and the question to know if
flatness is a criterion for selection is still relevant.

Here, we make a step in the direction of proving that flatness is indeed a criterion for
selection. Precise statements are given in the next subsection. We consider in the full shift
with Np 4+ 1 symbols a potential, negative everywhere except on N Bernoulli subshiftsﬂ
with p symbols. Figure 1] illustrates the dynamics.

FIGURE 1. Our system

Then, flatness is ordered on these N Bernoulli subshifts : the potential is flatter on the
first one than on the second one, then, it is flatter on the second one than on the third
one, and then so on (see below for complete settings).

Any of these Bernoulli shifts has a unique measure of maximal entropy, and the set of
ground states is contained in the convex hull of these N-measures. We show here that the
equilibrium state converges and selects a convex combination of the two ergodic measures
with supports in the two flattest Bernoulli subshifts.

We emphasize that this result is absolutely not in contradiction with [3]. Indeed, in [3]
it is proved that the equilibrium state converges to a convex combination of the Dirac
measures at 0°° and 1°°; which are obviously the two flattest loci !

2Note that these Bernoulli shifts are empty interior compact sets.
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1.2. Settings.

1.2.1. The set ¥. We consider the full-shift ¥ with Np + 1 symbols, with N and p two
positive integers. We also consider Np + 1 positive real numbers, 0 < oy < ag < ... <
0 <apyr <apya < ... < agy, .-, 0 <an_pr1 < Yn—1)p+2 < --- < anp and a. We
assume

a1 < apt1 < Qppl < N _1)pt1-

We set X1 :={1,...,p}, So:={p+1,....20}, ..., Sn :={(N-1)p+1,..., Np}.
For simplicity the last letter Np+1 is denoted by u. The letter (j —1)p+i will be denoted
by Ui -

The set of letters defining ¥; is A; := {u;5,1 < ¢ < p}. Hence, ¥; = .AI;\], and a word

admissible for ¥; is a word (finite or infinite) in letters w;;. The length of a word is the
number of digit (or letter) it contains. The length of the word w is denoted by |w]|.

If w = wowy ... wy, and w’ = wg, wh, ... w,, are two finite words, we define the concatenated
word ww' = wowy . .. wywy, wi, ... w,,. This is easily extended to the case |w'| = +o00. If
m is a finite-length admissible word for X;, [mx*] denotes the set of points starting with
the same |m| letters than m and whose next letter is not in A;.

The distance in ¥ is defined (as usually) by
d(z,y) = gin{7, $i7éyi}’

where 0 is a fixed real number in (0, 1). This distance is sometimes graphically represented
as in Figure [2]

Zo = Yo 1\
i] X
Tn—1 = Yn—1

FIGURE 2. The sequence x and y coincide for digits 0 up to n — 1 and then split.

We emphasize here, that contrarily to [3] we have not chosen 6 = % in view to get the most
general result as possible. Indeed, in [3] it was not clear if some results where independent
or not of §’s value. Moreover, this also means that we are considering all Holder continuous
functions, and not only the Lipschitz ones, because in ¥, a Hélder continuous function
can be considered as a Lipschitz continuous, up to a change of 6’s value.

1.2.2. The potential, the Transfer operator and the Gibbs measures. The potential A is
defined by

_ [ —eyd(@, %), if o € [ugy]
Alz) = { A(z) = —a, if z € [u].

The potential is negative on ¥ but on each X; where it is constant to 0.
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The transfer operator, also called the Ruelle-Perron-Frobenius operator, is defined by
kE p
Lo(p)(w) =D > M p(uya) + A p(uz).
j=1i=1

It acts on continuous functions ¢. We refer the reader to Bowen’s book [7] for detailed
theory of transfer operator, Gibbs measures and equilibrium states for Lipschitz potentials.

The eigenfunction is Hg and the eigenmeasure is vg. They satisfy:
Lp(Hp) =" P Hg,  L5(v) = "Dy,
The eigenmeasure and the eigenfunction are uniquely determined if we required the as-

sumption that vg is a probability measure and / Hgdvg = 1.

The Gibbs state pg is defined by dug := Hgdvg. The measure pg is also the equilibrium
state for the potential 5.A : it satisfies

max {hu(a)vLﬁ/Adu} :huﬂ(a)+ﬁ/Adu5

Qn o—inv

and this maximum is P(f) and is called the pressure of SA. eP(B) is also the spectral
radius of Lg. It is a single dominating eigenvalue.

1.3. Results. In each ¥; we get a measure of maximal entropy fitop ;. As each X; is a
subshift of finite type, pitop,; is again of the form

dﬂtop,j = Htop,jdytop,j;
where Hy,p j and vy, ; are respectively the eigenfunction and the eigen-probability asso-

ciated to the transfer operator in 3; for the potential constant to 0.

Note that, as 8 goes to +00, ug has only N possible ergodic accumulation points, which
are the measures of maximal entropy in each X;, op, ;-

Our results are

Theorem 1 The eigenmeasure vz converges to the eigenmeasure Viop1 for the weak™
topology as B goes to +oo.

Theorem 2 The Gibbs measure g converges to a convex combination of fiop1 and fiiop2
for the weak* topology as B goes to +oo. This combination depends in which zone Zy U
Zy U Z3 U Zy (see Figure @ the parameters are:

1
(1) For parameters in Zy, g converges to m(,utop,l +p2ﬂtop2)'
p

(2) For parameters in Za, j1g converges to fiiop,1-

1
(3) For parameters in Z3\UZy pg converges to ﬁ(ﬂtop’l —l—p?mopg) for some p; > 0
p.

locally constant in Zs \ Zy, Zy \ Z3 and Z3 N Zi(see Equalities page
page and page .



[§ RENAUD LEPLAIDEUR

\\\\\\\\\\\§§§§§

it
A Y
RHMHMBGBGMuas

A

i M i
A Y
RARRR R R -GS
RARRR R R -GS
RARRR R R -GS
RARRR R LR -.-.-S-S©
AN
NN
QAN

QAXNNXEN \\\\\\
\\<§\\>>§3<<<\ >
NN\

FIGURE 3. Ratio between fiop1 and fizop 2

Zone Z3 corresponds to 0 < a < ap410 and a = %w. Zone Z, corresponds to
«
Qpp1 = 1 and « > opy10. We emphasize that Z4 exists if and only if 6 > %

20 —1

As a by product of Theorem 1 and Theorem 2 we get the exact convergence for the
eigenfunction to a unique subaction (see Section [2| for definition):

Corollary 3 The calibrated subactions are all equal up to an additive constant. Moreover,
the eigenfunction Hg converges at the log-scale to a single calibrated subaction :

=i log(H,
Vv _1)111005 og(Hp).

The question of convergence and uniqueness of a subaction seems to be important for
the theory of ergodic optimization. It appeared very recently in [4]. We point out that
convergence of the eigenfunction to a subaction is related to the study of a Large Deviation
Principle for the convergence of pg (see e.g. [5] and [?]). Nevertheless, in these two papers,
Lopes et al. always assume the uniqueness of the maximizing measure, which yields the
uniqueness of the calibrated subaction (up to a constant). Here we prove convergence to
a unique subaction without the assumption of the uniqueness of the maximizing measure.
It it thus allowed to hope that we could get a more direct proof of a Large Deviation
Principle, without using the very indirect machinery of dual shift (see [5]).

1.4. Further improvements: discussion on hypothesis. The present work is part of
a work in progress. The situation described here is far away from the most general case
and our goal is to prove the next conjecture.
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In [17], Garibaldi et al. introduce the set of non-wandering points with respect to a Holder
continuous potential A, 2(A). This set contains the union of the supports of all optimizing
measures (here we consider maximizing measures, there they consider minimizing mea-
sures).

The set ©(A) is invariant and compact. Under the assumption that it can be decomposed
in finitely many irreducible pieces, it is shown that calibrated subactions are constant on
these irreducible pieces and their global value is given by these local values and the Peierls
barrier (see Section [2| below).

We believe that, under the same hypothesis, it is possible to determine which irreducible
component have measure at temperature zero:

Conjecture. For A : ¥ — R Hélder continuous, if Q(A) has finitely many irreducible
components, QUA)1...Q(A)n, then, ug(2(A);) goes to 0 if Q(A); is not one of the two
flattest loci for A.

We emphasize that this conjecture does not mean that there is convergence “into” the
components. It may be (as in [I0]) that an irreducible components has several maximizing
measures and that there is no selection between these measures.

This conjecture is for the moment far of being proved, in particular because several notions
are not yet completely clear. In particular the notion of flatness has to be specified.
Moreover, the components are not necessarily subshifts of finite type, which is an obstacle
to study their (for instance) measures of maximal entropy.

The work presented here, is for a specific form of potential for which flatness is easily
defined. The dynamics into the irreducible components and also the global dynamics are
easy. We believe that the main issue here is to identify flatness as a criterion for selection.

The next step would be to release assumptions on the dynamics; in particular we would
like that theses components are not full shift and that the global dynamics is not a full
shift. It is also highly probable that the conjecture should be adapted after we have solve
this case. Distortion into the dynamics could perhaps favor other components.

The last step would be to get the result for general (or as general as possible) potential.

Nevertheless, and even if the present work is presented as a work in progress and an
intermediate step before a more general statement, we want to moderate the specificity
of the potential we consider here. For a uniformly hyperbolic system (X,7T) and for
any Holder function ¢, there exists two Holder continuous 1 and s such that ¢ =

1 + m(@) + 2 o T — 1o, where m(¢) = max{/qbdu} and 1 is non-negative and

vanishes only on the Aubry set. This means that, up to consider a cohomologous function,
the assumption on the sign of A is free. Now, if we would consider a very regular potential
(say at least C!) on a geometrical dynamical systems, the fact that 1/, vanishes on the
Aubry set means that close to that Aubry set, ¥ (x) is proportional to the distance between
x and the Aubry set (with coefficient related to the derivative of 11). Consequently, the
potential A we consider here is a kind of discrete version for the symbolic case of a C!
potential on a Manifold.
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1.5. Plan of the paper and acknowledgment. In Section[2] we prove that the pressure
behaves like log p+g(3)e™7? for some specific v and some sub-exponential function g. The
real number ~ is obtained as an eigenvalue for the Max-Plus algebra (see Proposition .

In Section (3| we define and study an auxiliary function F'; This function gives the asymp-
totic both for the eigenmeasure and for the Gibbs measure.

In Section [4] we prove Theorem 1 and in Section [5| we prove Theorem 2. As a by-product
we give an asymptotic for the function g(f) (in the Pressure).

In the last section, Section [6] we prove Corollary 3.

Part of this work was done as I was visiting E. Garibaldi at Campinas (Brazil). I would
like to thank him a lot here for the talks we get together and the attention he gave me to
listen and correct some of my computations.

2. PEIERLS BARRIER AND AN EXPRESSION FOR THE PRESSURE

The main goal of this section is Proposition |5 where we prove that P(/3) converges expo-
nentially fast to logp. The exponential speed is obtained as an eigenvalue for a matrix in
Max-Plus algebra.

2.1. The eigenfunction and the Peierls barrier.

Lemma 1. The eigenfunction Hg is constant on the cylinder [u]. It is also constant on
cylinders of the form [mx], where m is an admissible word for some ¥;. Furthermore,
if m' is another admissible word for the same ¥; with the same length than m, then Hpg
coincide on both cylinders [mx] and [m/x].

Proof. The eigenfunction Hpg is defined by

LS ap
— lim = —kP(B)
Hg := nlggonZe Lp(T).
k=0
For z and z’ in [mx] U [m/«], if wz is a preimage for  then wz' is a preimage for 2’ and
A(wz) = A(wa').

The same argument works on [u]. O

This Lemma allows us to set

(1) Tj = Z Z e*a(l*)PH%Hg(uil*) + e “Hg(u).
I#5 i

Thus, for z in U;[u;;] we get

p
ep(ﬂ)Hg(ﬂj) = ZeﬂA(u”m)Hg(uijfL‘) + Tj-
=1

Lemma 2. The function Hg is constant on each ¥;: for any x in ¥;, Hg(x) =
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Proof. The function Hg is continuous on the compact ¥;. It thus attains its minimum
and its maximum. Let z; and Z; be two points in 3; where Hg is respectively minimal
and maximal.

The transfer operator yields:
P
PO Hy(a;) = (Z Hﬂ(“l‘j%‘)) + 7.
i=1
By definition, for each i, Hg(ux;) > Hg(x;). This yields
(2) (™) — p)Hp(z;) > 7.

Similarly we will get 7; > (e”®) — p)Hjs(Z;). As the potential is Lipschitz continuous, the
pressure function P() is analytic and decreasing (A is non-positive). Then P(3) > log p.
This shows Hg(z;) = Hg(T;).

Let = be any point in ¥;. Equality £3(Hg) = ep('g)Hg yields

ep(ﬁ)Hﬁ(aj) = Z eﬁ'A(m)Hg(ia:) +75.
i€A;

For i e Aj, A(iz) = 0, and as Hg is constant on X; we get
(P — p)Hp () = 7.
O

1
The family of functions {B log Hg} ger+ is uniformly bounded and equi-continuous; any
1
accumulation point V for B log Hg as 3 goes to +oo (and for the C%-norm) is a calibrated
subaction, see [12].

In the following, we consider a calibrated subaction V obtained as an accumulation point

1
for B log Hg. Note that the convergence is uniform (on ¥) along the chosen subsequence

for 8. For simplicity we shall however write V' = limg_, o, %log Hpg.

A direct consequence of Lemmais that the subaction V' is constant on each ¥;. Actually,
it is proved in [16] that this holds for the more general case and, moreover, that any
calibrated subaction satisfies

(3) V(z) = m;.%X{V(ﬂ?j) + h(zj, )},

where h(-,-) is the Peierls barrier and z; is any point in ;. It is thus important to
compute what is the Peierls barrier here.

Lemma 3. Let z; be any point in X3j. The Peierls barrier satisfies h(xj, ) = —a(j_1)pt1 %d(m, ;).

For simplicity we shall set hj;(z) for h(z;,z).
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Proof. Let  be in ¥. Recall that hj(x) is defined by

{z_:A(Ul(Z)) 2 0"(2) =z, d(zj,2) < 5} .
=0

As we consider the limit as € goes to 0, we can assume that ¢ < 6. Now, to compute
h;(x), we are looking for a preimage of x, which starts by some letter admissible for 3;
(because € < 6) and which maximizes the Birkhoff sum of the potential “until z”. As the
potential is negative, this can be done if and only if one takes a preimage of x of the form
mx, with m a X; admissible word. Moreover, we always have to chose the letter ui; to
get the maximal —a(;_1),4,; possible.

lim sup
E— n

In other word we claim that for every n > 1 for every [ > 0 and for every word m of length
n—+1,
Sn(A) (w1 ... urjx) = Spp(A)(me).
N—_——

n times
Let assume d(z, ;) = 6%, i.e., the maximal admissible word for 3; of the form zgzizs. ..
has length a. This yields

i n+a 0 a 0
hj(z) = lim Sy (A)(uj ... w15 2) = =g 1)p4 29 = o Dpr1i7 5% = —ag-vpri 5@ E)-
n times
O

Then, Lemma |3| and Equality yield

@) V(@) = max (V) - gy gle ).

Lemma 4. For every j,

1 .
BETOOEI(’%< *G=0r 19 Hg(uyje) + .. + 6_““’951{5(%]‘*)) = V(u%) = a(j—1)p6-

Proof. By Lemma the eigenfunction Hg is constant on rings [mx] with m € A|jm|, hence
V(% ) = ... = V(up;*). Now, inequalities a(j_1yp41 < Q(j—ipt)2 < Q(j—1)p4i Show
that e”“G-Dr+1 ﬂHg(ulj %) is exponentially bigger than all the other terms as [ goes to
~+o00. O

2.2. Exponential speed of convergence of the pressure : Max-Plus formalism.
Here we use the Max-Plus formalism. We refer the reader to [6] (in particular chapter
3) for basic notions on this theory. Some of the results we shall use here are not direct
consequence of [6] (even if the proofs can easily be adapted) but can be found in [I].

Proposition 5. Let

0 (artoapy) 0 }

fy:mln{mln(ap+19,a)+a11_97 D) 1-0

Then, there ezists a positive sub-exponential function g such that P(f) := logp—l—g(ﬂ)e*W.
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Proof. We have seen (Lemma [2) ' ) that Hg is constant on the sets ;. This shows that
V.= 11m5_>+oo B log Hg is also constant of the XJ;. For simplicity we set u = Ui UijUsj -
This is a point in ;. Now we have

(5) ( P(B) —p Hﬁ Z Z —Q(— 1)7"“06]‘[5(“1[*) + e_aHﬁ(u).
I#j i

Note that the results we get concerning the subaction V' are actually true for any cali-
brated subaction. We point out that we can first chose some subsequence of 8 such that

1
—log(P(B) — log p) converges, and then take a new subsequence from the previous one to

B

1
ensure that 3 log(Hpg) also converges.

We thus consider V' := limg_,; % log Hg and —v := limg_, | % log(P(B) — logp). At
that moment we do not claim that v has the exact value set in the Proposition. It is only

1 1
an accumulation point for 3 log(P(B) — logp). The convergence of 3 log(P(5) — logp)

will follow from the uniqueness of the value for ~.

Then and Lemma [4| yield for every 7,

6) — = V(i) = max (max (V () = a-1pea0) V(0) = ).

Consider the k rows and k + 1 columns matrix

—00 —oszG —042p+10 e _a(N—l)p—f—le —

—a16 —0 —augpy10 -
M1 =

—aq 6 ... —00 —

Then, using the Max-Plus formalism we get

V(i) ~ )
%0 V (u12%)
V(ufs) —v
(7) : =M :
’ V(ulN*)
oo p—
V(“lN) Y V(’U,)
Now, consider the k£ + 1 rows and k£ columns matrix
2
_0‘11979 —Qp+1 29 _O‘(Nfl)ml%
0 92

Mg T%+ligg
My = .

0
M1 TO%+lTa oo THUN-Dp+iToa
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Then can be written as

V(u11*) o0
Vi Vi
(8) : = M :
V(upn*) ‘oo
V(IZL\S V(uiy)

O

Combining and , we get that —v is an eigenvalue for the matrix M;Ms (for the
V(ufy)
V(uf3)

Max-Plus algebra) and . is an eigenvector.
V(uiy)

Let us compute the matrix M = M;Ms. Let us consider the row [ for M7 and the column
j for My. Assume j # .

We have to compute the maximum between the sum of the n** term of the row and the
n term of the column. All the terms in the column are equal to —a(j_l)pﬂﬁ except

the j** which is —a(j,l)pﬂliieﬂ. This term is added to —av;_1)p410 (the 4t term of the
column), and this addition gives _a(j—l)p—i-l%' Therefore, this term is the maximum
(any other term is that one plus something negative).

Assume now that j = I. Then, the j** term of the column is added to —oco, hence
disappears. Now, we just have to compute the maximum of all the terms respectively
equal to a negative term minus a(j,l)pH%. This means that we just have to take the

maximal term in the row and to subtract Q(j—l)p+1%~

Finally, the coefficient m;; of M is

max(—ap416, —a) — alﬁ ifi=1=j,
mi; = ¢ max(—a16, —a) — a(j_l)pﬂﬁ ifi=j+#1,
—agaprady A

To compute the eigenvalue for this matrix, we have to find the “basic loop” with biggest
mean value.

A basic loop is a word in 1, ..., k where no letter appear several times. Then we compute
the mean value of the costs of the transition ¢ — j given by the coefficient m;; of the
matrix for the letters of the basic loop.

e Inequalities a1 < apy1 < ajpyq yields that any basic loop of length greater than 2 gives
a lower contribution than the length 2-loop 1 — 2 — 1. This contribution is

_Oq—l—Oép_;,_l 0
2 1-6
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e We claim that every basic loop of length 1 gives a smaller contribution than the first
one. The claim is easy if @ < a16. In that case we have

0
max(—ap410, —a)—oy T 0 > —a—oq T3 > fafoszﬂm = max(—a10, 70{)7C¥jp+1m.
If o110 < « the claim is also true:

0
_ap+19 — X1 1-0 > —oq@ - Oéjp_i_lm

T b < ajpyr + (0 — D)apy,
and this last inequality holds because
ajpy1+ (0 = Dapr1 = Oapyr + (ajpr1 — api1) 2 Oopia > Oon.

And finally, if 018 < o < o410, Oop — « is non-positive and Oaj, — o is non-negative, and
we let the reader check that this yields

—a—all y > —alﬂ—ajpm.
This shows

0 a +a 0
_r}/:max(max(—ap_i_le, —Oé) _a11_67_ 1 5 p+1 1 _9)

1
In particular, B log(P(8)—log p) has a unique accumulation point, hence converges. Then,

there exists a sub-exponential function g(f) such that

9) P(B) = logp + g(B)e 7.

The pressure is convex and analytic (the potential is Lipschitz continuous) and always
bigger than logp. It is decreasing because its derivative is [ Adug and pg gives positive
weight to any open set and A is negative except on the empty interior sets ;. This proves
that g(B) is positive.

Remark 1. We emphasize v > 04110%9-

2.3. Value for v in function of the parameters. In this subsection we want to state
an exact expression for v depending on the values for the parameters. We have seen
a1 +appr 0 N 0
2 1-0""
0 ay+apre1 6 Qi
Now, a1 —— + a110 < P T
Ve T 2 1-0 20— 1

only for 6 > %) Obviously, 011170 +a< 011170 + apy10 means o < ap416.

0
1 _ 0 +Oé7a1m + ap+10).

v = min(

(which is possible

if and only if a1 >

0 ay + Qpi1 0 Qpt1 — O 0
< <
1o t® 2 1_g e 2 1-9

Finally, oy . Note that for a1 =
aq

20 —1’
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FI1GURE 4. Values for

3. AUXILIARY FUNCTION F

Lemma 6. Let 0 < & < & < ... < &, be p positive real numbers (p > 2). Let us set

e =& — &, fori>2,

—logp

o=

p T _q d +00 p ST
e> ar i=2 ¢ log z dz.

1
I i) = [ log (14 =22 TSP
b (7]27 3, 777p) /O 0g ( + p x * 1 1+ Zf:2 e~ Mz

Then, if n goes first to +00 and then B goes to +oo,
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n
11 (e—sleﬂﬂ 4 62098 +m+e—gpew> _ Zﬁ?’:e—sl1356(1—0">—“"’f;;'g'5"’”+O<ﬁ9")+0w(ﬂ)7
=1

where O(B0™) is bounded in absolute value by a term of the form CY_F_,n,56™ for some
universal constant C and 00(B) is bounded in absolute value by a term of the form

_m2B8 .
C'> ,mie” 2 for some universal constant C'.

Proof. First we write

(10)
n n n . )
(7807 e8P g o) = O T (14 e ),
j=1 J=1
and
log [ | <1 +e ¥ 4 e—”p"’5> = > log (1 +e ¥4 e—”p"”?)
j=1 =1

n P gmibiB _ |
= nlogp+210g <1+ i=2¢ )
=1 p

Note that 7;67 decreases in j. Thus we can compare this later sum with an integral

n D -ni0*8 _ n p —n:i0I8 _ 1
/ log (1 + 2=z ) dr < Zlog (1 4 &i=2 ¢ >
0 .
7j=1

p p

n+1 D e—mﬁxﬁ -1
< / log (1 4 =i=2 ) dz.
1 p

Let I,, and J, respectively denote the integral from left hand side and the right hand side.
First, we focus the study on I,,.

In order to study I, let us set u = $6*. Then we have

! /gen log (1 + Y™ -1 1) du
8 p ’

I, =
log 0 U

Bo™ 1
and we split this last integral in two pieces / and / .
1 B

We remind that n is supposed to go first to +00 and then 8 goes to +0o. Hence, 50" is
P emmv —1
close to 0. For u close to 0, log <1 4 &i=2
P
term of the form —C Z n;u for some universal constant C. This shows that the integral
i=2

0 b et 1\ d
/ log <1 + i1 ) j,
1 p u

> is non-positive and bigger than a
p
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converges (the function has a limit as u goes to 0) and

(11)
Boe™ P _emmiu _ ] d 0 D niu _ d
/1 log <1 + ’26)> KL /1 log <1 + 126)> =y o(pe"),

p u p

where |O(36™)| < C Z Bo™.

For the other part we get:

1 P oommiv 1\ d P et _ 1 1 1 P
/ log <1 yoei=2C T )> g [log (1 + iz i )> log u} + iz
B

p U p
P e B 1 p
= —log <1 + 2i=a "€ )> log B + L
p

p
= logplog 3 —log <1 - Zme’“ﬁ)> log B +
=2
Loy,

+oo P_ e~ i

4o LD g e mn & g 1420 e mu

Now, both terms are

+o00 P o
and ’/ﬁ Hz%logudu

P
log (1 + Z m-e_mﬁ)) log 3

=2
bounded from above by some C’ Zm —58

7

The computation for J, is similar except that borders have to be exchanged. Namely 50"
Bom 1

in / has to be replaced by 86"+ which improves the estimate, and /3 in / has to be
1 B

replaced by fge. This produce an upper bound of the form 0(67%2%) instead of 0(677772 ).

This concludes the proof of the lemma. ]

Definition 1. We define the auziliary function F(Z,z,. .., zp) by

+oo n ) )
F(Z, z1,...,2p) = Z e "2 H(e—z197 +. e
n=1 j=1

For an integer K, Fi() denotes the truncated sum to K :

n
Fx(Z,z1,...,2 Z e [e ™ +.. 4 e
n=1 j=1
Proposition 7. Let 0 < & < & < ... < &, be p positive real numbers (p > 2). We

re-employ notations from Lemma [0l

Then, as 8 goes to +00

. 0 1 (v—¢ L)B_H"Q ----- Up)+o )
) > Pu—— th@nF 73 5 /8’,,,’ B = 76’Y 1779 log 6 S ,

B B 1+ 370 e

g L4 gemu

= log u du

log u du

log u du.
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1

v=&1 ﬁ)ﬂ)
Bg9(B) ’

Zf’}/ < 61%’ then F(P(ﬁ)7§157 s 7€p/8) == 0(676196 V e(

where 05 (B) goes to 0 as B goes to +00.

Proof. Let g9 be a positive real number such that logeg < —2. We set

_logeg

(12) () i= e og .

Note that n(3) goes to +oo as 8 goes to +oc. Furthermore, %) < ﬂ% and nSB0™ goes to
0 if n > n(B) and B goes to +oo.

The proof has three steps. The function F' is defined as a sum over n, for n > 1. In the
first part, we give bounds for a fixed /3, and for the sum for n > n(f). This quantity is a
trivial bound from below for the global sum.

In the second step we prove that the sum for n < n(8) — 1 goes to 0 as 8 goes to 400.
This allows to conclude the proof for the case v > 51%.

In the last step, we use the computations of the second step to conclude the proof for the
[
case ¥ < {175

First step. Remember that P(8) = logp + g(B)e™7?, where g(B) is a positive and
sub-exponential function in 8. Then Lemma [] yields for n > n(83),

9 a2, mp) .
81— o) = =Rl o )—i—ooo(ﬂ))

log 6
n
= e "POT] (e—&eﬂﬂ LB +e—speﬂﬂ),
j=1

e (—ngw)wﬂ -3

As we only consider n > n(/3) and 5 goes to +o00, we can replace O(560") and 6" by 0 (5).
e 7

Doing the sum over n, only the terms e~"9(%) ” have to be summed. We thus get

i exp (_é‘l . 4 B— I(7727 - 77717) + 000(5)> Z e—ng(ﬁ)e’wﬁ

" —0 log 6
’ o8 n2n(B)
n
nzn(B) J=1

e—(8)g(B)e=77

~n(B)g(B)e= 7P _
NOW, Z e ( )g( ) — W

nzn(8)
in 5, hence the numerator goes to 1 as 8 goes to +00. The denominator behaves like

Both ¢(8) and n(f) are sub-exponential
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g(B)e™ 8. Then, yields

n
Br;(me(vsl&,)ﬁwwm(m = Y O] (efalejﬁ Lo tB e*épwﬂ)
n=n(p)

(14)
Second step. All the {; are bigger than &;. We thus trivially get

n
" POT] (e’ﬁlajﬁ oo+ e’é’]wﬂ) < e TP P 100",
j=1
For the rest of the proof, we set D := g(8)e™"# and E := & %ﬁ. The sequence —nD +
E0™ decreases in n, and we can (again) compare the sum with the integral.

We get

fE anJrEG" fE n(8) —xD+EO*
Fu)-1(P(B),&1B, ..., &B) < Z /O e dz.

Now we get

on(B) 7Dlogu+E
/n(IB) ef:(:D+E0I de — 1 / e log6 u "
0 log 0 u

n(B)
1 0 _1-_D_
= u T eea P gy
log 6 /;

on(B)

+00 1k
1 E k—1—-D_
= logb kzo ! / w i du

—+o00 k
_ 1 E* 1 n(8)(k—125)
_ longZ_Ok‘!kz— - [9 _1}.

log 6

+o0 k
_ L el 1 EY 1 k-2
D <1 o ) ) + log 6 e k! 1029 [9 ) 1] '

As we shall consider 8 close to +o0o we can assume that § is big enough such that 67(%) <
Then we have

1
3

o)~ B 1o et +Eu on() Bt 4 Bu
log 0 = log / log 0 / —
Let us first study the last integral.
9n<ﬁ) DlogU+Eu 1 on(B) LD B
log g ——  du < Tog 0 /é U g ¢3 du

/AN
o

__D_
e L1(IN 220 pnd)ils |
D 2
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Remember that D = g(8)e™? and n(B3) = lﬁ)gggé’ log 3. Hence, D and n(3)D go to 0 as 3
goes to +o0o. Then

__D_ __D_
i 1 log 6 B 9_’"‘(5)% _ l 1 log 6 1
D [\2 D [\2

+ % [1 — ) g

log 2

= D).
logg T "B +olD)

) o Bk ep
Let us now study 20 / du.
U
J;;;%Eu \
/ du = "0 e gy,
log 0 log 0
1+ log [

} ; ()g ‘9 i|
‘ ‘ .

(15) Fop)1(P(B), 615, .., &B) < n(Be” 2737 4

for some universal constanlﬁ k> 0.

The term in the right hand side in goes to 0 as ( goes to +o0o. In particular, and
show that the result holds if v > 51% because the sum for n < n(f) is negligible
with respect to the sum for n > n(p).

Third step. We assume v < & 2 125 Let K be sufficiently big such that §1 HK < 7.
Then, note that we get

F(P(6)7§16775p/8) = FK(P(B)vglﬁvagpﬁ)_‘_
K
(16) e KPOTT (9% 4.+ e &"F) F(P(B), 1655, 0% B).
j=1

Again we have

K K
I1 (e—glw‘ﬁ T e—fpwﬂ) R e LA ST 11 (1 LemtiB e—m»@jﬁ) .
j=1 j=1

K

This last term H (1 +em¥8 4 4 e*”’](’nﬂ> goes to 1 as 3 goes to +o0o. The term
j=1

e EPB) goes to the constant p , and F(P(B),£&058,...,£,0%3) behaves (at the expo-

nential scale) like O(e (r=£16% 155)5 ). This proves that the second term in the right hand
6
side of (T6)) behaves like O(eV~817-9)%).

3We emphasize that £ can be assume to be smaller than 4 if 8 is chosen sufficiently big.
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Now, the finite sum Fr(P(8), €15, . .,&0) = e PP =698 ¢ terms which are exponentially
small with respect to e 198 if 8 goes to +00. Hence, this finite sum behaves like the biggest
term, namely like O(e~¢1%%). This concludes the proof of the lemma. O

4. PROOF OF THEOREM 1: CONVERGENCE FOR THE EIGENMEASURE Vg

4.1. Selection for vz. We set O; := U;[u;;]. This is the set of points whose first digit is
one of the u;;’s of the alphabet A;.

Proposition 8. For every j,

v (O) — F(P(B%O{(] 1)p+1/8, e 7ajpﬁ)e_P(/B)
ST F(P(B LG 1)ps1Bs- - ajpB)e PP

Proof. Let m be an admissible word for ¥; with length n. Let k ¢ A;. Then,
—nPB)="""1 a7

(17) va([mk]) = e~ 0m0 0ns T g (k).

This yields

5O = XX Y PO e )

k¢ A; n=1m,|m|=n

—+00 n

= LTI ) O (0)

n=1

= F(PB)a1f,.. ap)e PO = vy (L 1)
Therefore we get
F(P(B),a1,...,a,3)e FPB)
L+ F(P(B),a1f,...,apB)e"P®B)’

v3(0;5) =

We also have an explicit value for vg([u]): we write

and use conformity to get
(18) vg([u]) = e PAI=oF
In particular this quantity goes to 0 as 8 goes to +0o0. This shows that only the N subshifts

¥, can have positive measure as 3 goes to +00.

Now, Propositions |5 and [7| show that F'(P(8),a10,...,ap0) behaves like (T8 o
B goes to +oo, and this quantity diverges to +oo. It also shows that for every j7 > 1,
F(P(B),a(j—1)pt1, - - - » jp) goes exponentially fast to 0.
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1

This shows that v5(01) goes to 1. The speed of the convergence is given by
5(01) 1+ F(P(B),c1f3, ..., ap)

which goes exponentially fast to 0.

As a by-product, we also immediately get from that for any ¥i-admissible word m
with |m| = n and for any k ¢ Aj,

va(mk]) = ¢~ PO ZZ 0 (k) 5 O
as vg([k]) goes to 0 if 5 goes to +o00. Hence we get

Proposition 9. Any accumulation point of vz is a probability measure with support in
3.

4.2. Convergence for vg. The measure of maximal entropy fisp,1 is the product of the
eigenfunction and the eigenmeasure both associated to the transfer operator for (X1, 0)

and the constant potential zero. Hence, the eigenmeasure v4,,1 is characterized by the

1
fact that every ¥j-admissible words with a fixed length n have the same measure —.
p

We have already seen above that any accumulation point for v is a measure, say v, such
that vo,(01) = 0. Our strategy to prove that vg converges to v4p 1 is now to prove that

vs([m])
va([m])

for any two Xi-admissible words m and m with the same length, goes to 1 as (8

goes to +oo0.

Let us thus consider two X1-admissible words m and m with length n. In the following,
m’ is a word (possibly the empty word) admissible for ¥;. We get

v([m]) = Y v(mm's)

400 k
= Ze*”mﬁ) m)BO* o ~kP (B H b8 em By (1 — pg(0y))
k=0 j=1
n—1
where S(m) := — Y  ay,, 0"
=0
— ¢ "PB) | LSmIB L Z eS(m)Bo* —kP(B) H(efaﬂ?]ﬁ e By | (1= 1s(04)).
j=1

(19)

The series in the right hand side of this last equality is almost the same than the one
defining F'(P(B), a1, ..., apB) up to the extra term S(m)Bo*.

Replacing m by m we get a similar formula for vz([m]).

The quantities S(m) and S(m) are negative, hence eSMBY* ig Jower than 1 for m = m, .
1
Now, remember the definition of n(f) = li)ggzo log B (see p. . Step 2 of the proof of

Proposition [7| shows that F,,5)(P(8), 1/, ...,apB) goes to 0 as 3 goes to +oo, whereas
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k
Step 1 of the proof of Proposition |7|shows that the tail Z e FP®) H(e_o‘lwﬁ +...+
E>n(B)+1 J=1
j 1
e~ %5y diverges (exponentially fast) to +00. Note that for k > n(3), 86% < A Therefore
we get
k . .
L+ Fos)(P(B),c1f, ...y 0p8) + Z e FPB) H(e—a1976 + .. e B
vp([m]) _ k>n(B) j=1
vs(lm]) < o ej
e~ H B e 5)
>n(B) Jj=1
vg([m])

Doing S goes to +oco in this last inequality we get lim sup —~+ < 1. Exchanging m
B—+oo0 Y, ,3([m])
and m we also get lim sup M

< 1, which means
B—+o0 va([ml])

i 280

o ()

In other words, any accumulation point for vg is a probability measure with support in
31 which gives the same weight to all the cylinders of same length. There exists only one
such measure, it is v40p 1. This finishes the proof of Theorem 1.

5. PROOF OF THEOREM 2: CONVERGENCE AND SELECTION FOR fig

5.1. An expression for 3(0;). We recall that n(3) was defined (see Equation [12)) by

log eg
log 6

n(B) i= -0 10g 6.

Its main properties are that n(3) goes to +o0o as 3 goes to +o0o and n(f).3.60° goes to 0.

We recall that for every j and for every X;-admissible word m with finite length we have

p
(20) Hﬁ(m) — 6—73(6) Z eﬁ.A(uijm)Hﬁ(uijm) + €_P(ﬁ)7'j.
=1

The main result in this subsection is the following proposition, which gives an expression
log p
log 6

for 115(0;). We employ notations from Lemma 6| and Proposition |7} we remind r = —

and that I(n2,...,n,) was defined there.

Proposition 10. For every j, let us set nij := a(j_1)p4i — O(j—1)p+1- Lhen

1 0 <n(ﬂ)> 4 n(B)(1 + 0002(B)) (27— -1)pt1 %)56*%
A(j—1)p+1 s 8 (9(8))

where 05 (B) goes to 0 as 5 goes to +00.

15(05) = e P 1;(1-15(0;)) [
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As n(p) is proportional to log 3, the term O <n(ﬁ)> goes to 0 as B goes to +00. The

B

importance of the formula is that, either 2y > a(j,l)pﬂﬁ and the second term goes to
400, or the possible convergence occurs at the sub exponential scale.

In particular, it will show that only the components with a;_1),;1 sufficiently small can
have weight as 8 goes to +oo.

In view to prove Proposition let us first start with some technical lemmas.

Lemma 11. For every j # j', 7j(14+F(P(B), api—1)B, - - - ajpB)) = 7 (1+F(P(B), ap(jr—1) 5,

Proof. For a By Lemma (1| Hg is constant on rings. Setting urfj =uyj...uy; we get
N—_——

n times

(21)  Hp(ul;*) = e "W Hg(ul ) (e—%flwﬁe"“ +...+ e—ajp59"+1) +e PP

We set p(j,n+1,0) := e G-t BT L o—aipB™ Note that

+o00 k
F(P(ﬂ), ap(jfl)+1/87 cevy a]pﬂ) = Z eiklp(ﬁ) H p(]a 7;7 5)7
k=1 =1

l k
and remember Fy(P(8), ap(j—1)+18; - - - @jpB) = Ze_kp(ﬂ) Hp(j,i,ﬁ) Then, multiply-
k=1 i=1
ing both sides of Equation by e~ P®p(j,n, 3) and adding e_p(ﬁ)Tj we get
Hg(up; ') = e 2P p(j,n, B)p(j,n + 1, B)Ha(ui %) + e P01 4+ e PP p(j,m, B)).

We get, by induction, a relation between Hﬁ(u’fj*), n and Hg(uy;*). Now, remember

Ha(u) = e PBp(,1,8) + G_P(’B)Tj, and we finally get
(22)

Hg(u) = Ha(ul;*) + e PO+ Fu(P(B), cp(i—1)Bs - - - ajpBB)).

n—1
e " PO ] p.4, 8)
=1

Now, let n goes to 400 in (22). The term H p(uj;*) converges to S — (see Lemma

ePB) —p
n—1
2) and the term e 7% H p(J,1,8) is the general term of a converging series, thus goes
i=1

to 0. Then we get

Hg(u) = e POr(1 + F(P(B), ap(j_1)Bs - - -, ajpB)).
This holds for any j. O

Lemma 12. For any j and for any integer n,

Hﬁ(u?j*) = 6_7—)(5)7—]'(1 + F(P(ﬂ)7 ap(j—1)59n7 B Oszﬁen))

NN Oéj/pﬁ)).



24 RENAUD LEPLAIDEUR

Proof. Equation also yields
Hg(ul;) = e PP p(j,n+1, B)p(j,n+2, B) Hg(ui ) +e PO (14 PP p(j,n+1, 8)).

By induction we get

i i l
Hp(uljx) = le_ip(ﬂ)np(j,wrl,ﬁ) Hy(ui ) + e POm(1+ > e PO ] pli,n +1.8))
=1

=1

S [e—”’(@ [Iot.n+1.5)

=1

Hg(u?j—z ) + 6_7)(5)73(1 + FZ('P(B), Oép(j_l)ﬁgn, “. ,ajpBO”)).

As above, as i goes to +00, Hg (“1] ) converges to % (see Lemma and the term
eP®) —p
)
e P H p(7,1, B) is the general term of a converging series, thus goes to 0. O
=1
l . .
Lemma 13. 1(0; Iy Z e PO T (ee0moma® g o) (1-25(0;).

i=1

Proof. We pick some j. In the following m is a generic ¥;-admissible word with finite
length.

S pglme] = > Hg(mx)vg(ms)

m,|m|=l m,|m|=l
= Y Hy(mee TSI —y(0)).
m,|m|=l
l . K
(23) = H(ui)e POT] (emo0-mmf 4 emf) (1 v5(0y),
i=1
Equality and Lemma (12| yield
l
>° walms] = Hp(uhe)e POTT (emo0-mmn g emon™') (1 15(0;)
m,|m|=l =1

= e P05 (F(P(B), aj—1)ps1Bs- - - jpB) — Fi-1(P(B), a(j—1yp1Bs - - -, ajpB)) (1 — v5(0;))

Now, it is an usual exercise that the sum of the tail of a series of positive terms wu,, is equal
to >, nuy. O

Proof of Proposition [0, We split the sum in the formula of Lemma [13]in two pieces, the
one for [ < n(f) and the one for I > n(f).

For the part for [ < n(f3), we use Inequality , and
l

—1
Z Je—1P(B) H (e—a(jfl)pwtle’bﬁ L4 e—ajpezﬁ> < n(B)Fo(a)-1(P(B), j—1)ps1Bs - - » pB)-
=1

i=1
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For the sum for | > n(8), we use Equality . We have to “update” it and replace
e~ng(B)e™ " by ne~m93e” n other words, we are computing the formal power series
Z na™ with = = e 97 It is the derivative of the power series Z z". Hence

n2n(B) n=n(B)
we get

Again, e (B9 5065 t0 1 as 8 goes to +oo and 1 —e 98" hehaves like g(B)e 7B,
[l

5.2. Selection. For simplicity we setﬂF' = F(P(B), ai—1)p1Bs - - - ajpB)s Mij := NGj—1)pti—
N(—1)p+1 and Ij := @I(ngj, ..., Mp;). We remind that o (f) means a function going to
0 as 8 goes to +o00.

o1 + Qp+1 0

2 1-6
emphasize that, if j is such that 2y < a(j_l)pﬂﬁ, then Propositions |10/ and |7|show that
13(0; ) behaves like 7000 (05).

5.2.1. The case v <

. This corresponds to zone Zy (see Figure . We

Lemma 14. Under the assumption 2y < o(j_1)pt1 %, 13(O;) goes to 0 exponentially
fast as B goes to +oo.

Proof. Let us assume that j is such that 2y < a(]-,l)pﬂﬁ.

ps(01) — 71 = 1 (2y—on1%5)8 —1I 1
50y = Tr s Peeert  on®
- 1+Fj = 1 (2’7—041%)5 I

1+ a2 D eEe° ¢ onlP

(by Lemma [11])

o(2r—entg)B

Ooo(ﬁ)e%’y_al%)ﬁ
by Prop. [7/]and for some sub exponential function ¢

o128

(2 = o

This shows that 15(O1) is exponentially bigger (in 3) than pg(O;), and thus pg(O;) goes
exponentially fast to 0.

The same holds if we only assume 2y < a(j,l)pH%, because for the equality case,
we have just to replace the term o, (8) by some sub exponential quantity (which does

4these are different from the truncated sums defined above.
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not necessarily goes to 0). However, this does not eliminate the exponential ratio in the
computation.

g

Remark 2. Furthermore, this shows that 113(O2) can have a positive accumulation point
only if 2y > Oép+1%. [ |

Lemma 15. Assume 2v > aPH%. Then, for every j > 2, ma ps(0;) =0.
—+00

Proof. We copy the previous computation with Oy instead of O;. Note that F5 goes to 0
as 0 goes to +00. We first assume 2y < a(j,l)pﬂﬁ

Then we have

p3(02) w1+ FyR(B)e® i)’
15(0;) T L+ B 000(83) ’
where 0 () may be replaced by a sub exponential function (if 2y = a(j,l)erl%). Note
14+ F}
that :—j — 1 and 1 ::—_F; — 1 as f = +o00. Then, pug(0O;) is exponentially smaller than
pnp(02) < 1.
O
If 2y > a(j_l)pﬂﬁ, then ad E 02; is— up to a sub-exponential multiplicative ratio—
A

e(%’*%ﬂ%)ﬁ (o, B e
equal to —— = e “U-pH T TG Now, we remind
27— -1)pt179)8

Qpt+1 < Q(j—1)p+1-
L 16. If v < @ttt 0 ypen | 01) = 1.
emma f 7" 1-g> then lim 13(01)

Proof. The result holds if 2y < Oép+1%. Let us thus assume 2vy > Oép+1%. Then

Equation (24) is still valid, provide that we replace o (3) by 67126(27_%“1%9)6 (following
Proposition [10)). Hence we get

:uﬁ(Ol) ( (o1 +apy1) 725 —27)8
= B)e p+1)7 9 R
15(02)

for some sub-exponential function ¢(/3). Our assumption in the Lemma means that this
last quantity diverges exponentially fast to +00 as 5 goes to 400, which means that pz(O1)
is exponentially bigger than pg(O2) as 3 goes to +00. Hence, 1g(O2) goes to 0. Lemma
shows that 153(0;) goes to 0 for every j # 1, thus pg(O1) goes to 1. O

0 0
5.2.2. The case v = a1 —|—2ap+1 T 1—a + o1 + ap410). This corre-

sponds to zone Z; (see Figure . We emphasize that in that case,

< min(ay

o
2 [
LR ey



SELECTION OF MAXIMIZING MEASURE 27

always holds. Therefore only O; and Oz can have weight for 5 — +4o00. Moreover,
_ Yt O 0 implies
L T T

a1 + Qpt1 0
<oy —— 9
5 1-9 M1_g 1%

which yields

0 a1 — opp1 0
iy e e R
Then, Proposition [7] shows
1
(25) Fy = me—fze(’yf%ﬂﬁ)ﬁ(l + 000 (B)).

9
It also shows that for every j > 2, Fj is of order max(e~*G-Dp+18 0TG- Dp )8 Tt
is thus exponentially smaller than F5.

1 _n+n

ot 0 (How(B)).

Lemma 17. Under these hypothesis, lim FyFy = p* and g(3) =
B—+o0

Proof. Equation can be rewritten under the form:
v3(0;) = e PO " Fiug(0:) + e P Pug([u]).

i#]
This yields a linear system
—G_P(’B)FQ 1 —e_P(ﬁ)FQ VB(OQ) _ €_P(5)Vﬁ([u])FQ
—e PO Fy ... —e PP Fy 1 v3(ON) e PBug([u] Fi)

We remind that I} goes to 0 as 8 goes to +oo for j > 2, and Fy goes to +o0.

We compute the dominating term of the determinant of the NV x N matrix in the left hand
side of the last equality. Developing this determinant with respect to the first row, we left
it to the reader to check that the determinant is of the form

N
det(8) =1 - e POy (Z F) (1+0x(8)).
i=2
Now we compute the cofactors for the terms of the first column. Again, we left it to the
reader to check that the cofactor of the term in position ¢, 1 is of the form

5110 =1+ 000(B), i1 =—e POF 1+ 0s0(8)).
Now, remind Equality vg([u]) = e PB)=aB,
Therefore, Equality and the property F; << Fy (for j > 2) yield

F1€*2P(’8)7a(1 + 000(6))
1— e 2PBF Fy(1 + 0(8))

(26) vg(O1) =
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a1 +appr 0 0

5 -0 < alm + a.
Now, Fj behaves (at the exponential scale) like 6(770‘1%)’3 < «af. This shows that the
numerator in goes to 0 as 8 goes to +00. Therefore the denominator also goes to 0
and the first part of the Lemma is proved as limg_, ~ P(3) = p.

We remind that with our values of the parameter, v =

Let us now replace F1 and F3 by their values. Following Proposition |7| and we get

Py = el O 1 o ()
1
= fh_lzw(l + 050 ())-
As FF5 goes to p?, we get g(f) = p;"e — (14 0x0(B)). O

We can now finish the proof of Theorem 2— item (7). We remind that we get

0) = ¢~P®) T1 n(8) o112 %)5’
13(01) L+ F1 B7(g(8))?
and (
0,) = ¢—P®B) 2 n(5) e 2e(27—api1 %)5'
15(02) 1+ F, B(g(B))?

We also remind

o 7i(1+ Fy) = 12(1 + F») (Lemmal[L1))
o I =g oo 0and F1 —g 400 +00,

o 9(8) = — ¢ 2 (1 + 0(8) <Lemma,

Br
o v Q1T Opi
7 2 1-6
Then we get
O 1+ F )t
Z?Eoﬁ G fm)z 2 S(1+ Fy)el el (1 4 o (8)
I—I
e ) O
= arEpe T on(8)
= Bl (grg(g))2e T 2N 5 NI (1 4 o (9))
1
= P(l + 000(83))-
0 0 0
5.2.3. The case vy = il +2ozp+1 10 = 10 +a< alm +apy10. This corresponds

to zone Z3 \ Z4 (see Figure [3)). The situation is very similar than the previous one. We
rewrite Equality :

Fre 2PB)=(1 4+ 0, (B))
1— e 2P P Fy(1+ 000(B))

v3(01) =
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. . - 1
Again we claim that we get F1Fy = e~ 11 IQWU + 050 (8))-

Nevertheless, and contrarily to the previous case, the numerator is equal to
1

Br9(B)
. Then we get

e-2PB)-ap _ oD

Let L be any accumulation for

1
Bg9(B)

1= e Ihp
- p2 _ e—Il—IQLQ :

Note that L > 0, then solving the equation we get only one non-negative solution. Hence

1 Viapteh—b —1 |
= e

lim =
B—+o0 7g(B) 2
Now, copying what is done above we get
Mﬁ(ol) _ 1 1+ F (1+ F2)612—11e(ap+17a1)%5(1 + 000 ()
115(02) (1+7)? m
el2—11 0
— &7 @ (opyi—ai)74B 1
ela—h g2 (Brg(ﬁ))Qe(ozpﬂfal)%ﬁeZ(m%*’Y)ﬁ(l + 00s(B))
4ehr=12
= 5(1+ 0 (8))-
(\/4])26[1_[2 +1- 1)
We set
gelr—12
(27) ps =

5
(\/4p2ell—l2 +1-— 1)

a1+« 0 0
! ptl = 0411 _9+ozp+19 < oq

+ «. This corresponds

0
5.2.4. The case vy = 5 14
to zone Z4 \ Zs (see Figure [3)).

Lemma 18. The quantity Fy is exponentially bigger than every F; for j > 2.

Proof. We remind that a1 = Then, Proposition shows that F5 behaves, at the

o1
20 —1° ,
exponential scale, like max(e_apﬂfw’ e—apr1775)8 ) and these two quantities are equal.

Now, for j > 2, Fj is lower than e~%G-1p+1? thus exponentially smaller than Fb. O

Again, we rewrite Equality . Lemma |18 shows that F» + F3+ ... is again of the form
F2(1 + Ooo(/B)):

Fle_w(ﬁ)_a(l + 000(B))

vp(01) = 1— e~2PB) Fy Fy(1 + 000 (B))
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Lemma 19. The quantity F1Fy goes to p* as 8 goes to +o00 and B"g(3) converges as B3
goes to +o0o. The limit is denoted by L.

0 0
Proof. Remember that Fy behaves like e/ 7177 = ¢®+17557  and our assumption yields
that the numerator in the last expression for v3(01) goes exponentially fast to 0. Hence,
the denominator also goes to 0 and (again) Fy Fy goes to p.

Let L be any accumulation point for 7g(3) (in R,). Proposition shows that F behaves
1 1
like efhze(w_alﬁ)ﬁ(l + 000(8)) and Fy behaves like max(l,eilzf)e(w_a”“%)ﬁ(l +

1 1
This yields equality F} Fy = e_hz. max(1, e_lzz)(l +050(B)). and doing 8 — 400 we get

1 1
28 2= e 2 max(1,e22).
(28) p T ( 7)
Now, the function = — e "'z max(1, 67[2.73) is increasing. Thus there exists a unique x

such that its value is p?>. This proves that 87g(3) has unique accumulation point, thus
converges. O

-n

Now, copying what is done above we get

115(01) T1 1+ Io—1I) (aps1—a1)-L 8
— = = 14 Fy)e2 e\ PP T=07 (1 + 04
pl0) — ArERE o T (14 0:0(8)
el .
- apt1—a1)1—¢h
1+ F)2° =07(1 + 000())

6

_ 612—116211(Brg(ﬁ))Qe(ozp-&-lfal)%ﬁeZ(mm*’?)ﬁ(l_‘_Ooo(ﬁ))
= "TRLA(1 4 05 (B)).

We set
(29) pg = el tizp2
0 0 0
5.2.5. The case y = a1+ Apti T4 = 10 +o= a1m +apy10. This corresponds

to zone Z3 N Zy (see Figure |3)).

The situation is very similar than the previous one. Lemma [1§|still holds as we just used

1
inequalities a1 < aj_1)p41 for j > 2. Hence, [1Fy = e T~ (14 0,0(B)).

(879(8))?
The main difference with the previous case is that writing Equality :

F16_2P(ﬂ)_a(1 + 000(B))

vs(01) = 1 — e 2PB) 1 F3(1 + 00 (B))’

I

the numerator does not necessarily goes to 0. Namely it behaves lik e~ ,87’7(,8)
g

_ 1
note that v = alﬁ + o and Fi behaves like e n G e

9(8)

5 (’Y*alﬁ)ﬁl
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Nevertheless, Lemma still holds. Indeed, Equality has just to be replaced by

~n1
e —_
1= L

p? — e nlmax(l,e21)’

Again, the function z — e 'z(1+max(1, e '22)) is increasing and there is a unique value
for which the function is equal to p?.

Now, copying what is done above we get

0] T 1+ F T (ot —an) B
ZZEOS N (1 +1Fl)2 To - (1+ Fp)e’ helowt 1)1_96(1 + 000 ()
612—11

T +F )26(“”“’”%5(1 + 0s(8))
1

= elrhe2h(grg(8))2elrnimen B2t N8 (1 1 o (8))
— P21 4 0.0 (B)).

We set

(30) P = €L,

This concludes the proof of Theorem 2.

6. CONVERGENCE TO THE SUBACTION- PROOF OF COROLLARY 3

In the proof of Proposition [5| we showed that only two basic loops can have a maximal
weight (which value is 7). These two loops are 1 —+ 1 or 1 — 2 — 1. Following the
Max-Plus formalism (see [6]), in both cases there is a unique mazimal strongly connected
subgraph (m.s.c.s. in abridge way) which is either 1 -1 or 1 — 2 — 1.

Now, Theorem 3.101 in [6] shows that, in both cases, there is a unique eigenvector for
M, up to an additive constant (added to all the coordinates), which is given by the first
column of the associated matrix M := e ® M & M?... (where @ is the sum for the
Max-plus formalism, and M" is computed for the product of the Max-Plus formalims).

In other word, there is a unique calibrated subaction up to an additive constant. Conse-
quently, a subaction is entirely determined by its value on one of any X;’s.

Now, we have:

1
Lemma 20. For every x in Sy, lim —logHg(xz)=0.
f—r+oo B

Proof. The proof is done by contradiction. Assume that § # 0 is an accumulation point
1
for 3 log Hg(z) (for « in ;). Let consider any accumulation point V' such that V(z) =4

(this is always possible up to consider a subsequence of 5’s).
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1
Then, V is Hélder continuous (all the — log Hz are equip-continuous with a upper bounded

g

Hoélder norm), and |V| > g on some neighborhood of x. Let us consider some cylinder C
in ¥4, such that for every 2’ € C, |V(z') — V()| < 3.

By Theorem 2, pug(C”) converges to a positive value as 3 goes to +oo (each cylinder in
¥ has positive jitop1-measure). Similarly, by Theorem 1, v3(C’) converges to a positive
value as 3 goes to +00. Now,

dug =H Bdl/ﬁ,

which yields that pg(C”) is of order Vg(C’)eB% as 3 goes to +o00. Convergence of vg(C")
and pg(C") and 0 # 0 yield a contradiction. O

1
Lemma [20| shows that any accumulation point for B log Hg is the unique subaction whose

value is 0 on X1, thus it converges.
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