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Abstract

A diffeomorphism f of a compact manifold M is called Almost Aziom-A if
it is hyperbolic in a neighborhood of some compact f-invariant set €2, except
in some singular set of neutral points. We prove that, if there exists some
f-invariant set of hyperbolic points, with positive unstable-Lebesgue measure,
and such that for every point in this set the stable and unstable leaves are
“long enough”, then, f admits either a probability SRB-measure or a o-finite
SR B-measure.

1 Introduction and statement of results

Let us consider a smooth dynamical system (M, f), where M is a compact smooth
Riemannian manifold (of dimension N), f a C? diffeomorphism acting on M. Let
i be a f-invariant ergodic probability measure on M. By the Ergodic Theorem,
the set G, of generic points, i.e. the set of points x such that for every continuous
function ¢ ,

n—+oo N

n—1
lim Y60 (o) = [du 1)
k=0

has full g-measure. From the point of view of physics, this convergence can be
actually observed only when this set G, has strictly positive measure for the measure
of volume of the manifold, also called the Lebesgue measure on M and denoted by
LebM.
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Definition 1.1. We say that a f-invariant ergodic probability measure is a physical
measure, if, and only if, Leby (G,) > 0.

If f is Axiom-A, results about existence of a physical measure are known: one can
construct special Gibbs States which are the so called Sinai-Ruelle-Bowen measures,
and which are special physical measures (see e.g. [5]). In the non-uniformly hyper-
bolic case, some results are known but there is no general theory, maybe because
there are a lot of possibilities to make uniform hyperbolicity fail. However several
works give some conditions on a dynamical system (M, f) yielding existence of a
physical measure: in [3], it is proved that for the special case of Hénon’s maps, many
maps of this type admit a unique SRB measure. In [8], it is proved that every non
degenerate Almost Anosov Diffeomorphism on a surface admits a finite or o-finite
SRB measure. In [4] or [2] it is proved that a partially hyperbolic diffeomorphism
such that the central direction is mostly contracting or mostly expanding admits a
SRB measure.

In this paper we consider dynamical systems, in dimension > 2, for which hyper-
bolicity comes from a point-wise behavior but fails on a globally f-invariant set S
of indifferent points; this case is new in dimension higher than 3, and new problems
arise. For instance, even the question of integrability of the hyperbolic splitting is
not obvious, because the derivative has no uniform spectral gap near to the set of
indifferent points; therefore the classical method of the graph transform does not
work. Hence, in this situation, the notion of S RB-measure is not obvious.

1.1 Statement of Results

We first define the class of dynamical systems that we shall consider in the sequel:

Definition 1.2. Let f be in Diff>(M). It is said to be Almost-Aziom-A if there
exists an open set U which contains a non-empty f-invariant compact set Q@ C U
such that:

(i) For every x € U there is a df -invariant splitting (invariant where it makes sense)
of the tangent space T,M = E"(z) & E*(z) with x — E%(z) and z — E*(z) two
Hélder continuous maps (with uniformly bounded Holder constant).

(i1) There exist two continuous and non negative functions r — k*(z) and z — k*(z)
such that

Vo € E°(x) [|df (2).0]|s) < e Jv]],

Yo € B'(z) |ldf (2)0]]j@) > € @l[v]]a,

where || ||, denotes the Riemannian norm on T, M.
(11i) the exceptional set, S = {z € U, k*(z) = k*(z) = 0} satisfies f(S) = S, and
for every x in U\ S, k*(x) and k*(z) are positive real numbers.

Ve e U,

Remark: In this definition the set U can be considered as hyperbolic in a weak
point of view. We probably do not really need hyperbolicity in U, and we should
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obtain the same results without this assumption. However, we think it makes the
proof easier and particularly less technical than it would be without this assumption.

From now on, f will be some Almost-Axiom-A, that is, f obeys the
conditions of definition 1.2. The sets S and €2 and the functions £* and k° are

fixed as in the definition. The splitting T, M = E*(x) & E*(x) will be called the
hyperbolic splitting.

Definition 1.3. Let A €]0,+oo[. A point x in 2 is said to be A-hyperbolic if

1. Yv € E*(z) \ {0}, hmsup—log||df ()| < =A;

n—-+0o0o

1
2. Yv € E*(x) \ {0}, hmsup—longf"( )v|] < —A.
n—-+oo
A f-invariant set Ay such that every point in Ay is A\-hyperbolic will be called a
A-hyperbolic set.

The notion of (non-uniformly) hyperbolicity is not completely standard, and sev-
eral definitions exist in the literature. If hyperbolic currently means the existence of
some splitting of the tangent space in one expanding direction and one contracting
direction, the notion of “expansion” is not clear. In our case, the definition of hy-
perbolicity is directly taken from the definition of Axiom-A, where expansion means
contraction in the negative time.

Definition 1.4. A point x in Q is said to be a point of integration of the hyperbolic
splitting if there exist € > 0 and two C*-disks D*(x) and D:(z) of size & (and centered
in ) such that for every y in Di(z) (i =u,s) T,D(z) = E'(y).

The set, of points of integration is invariant by f. As usual when we have two fami-
lies of local unstable and stable manifolds we define 7*(z) = {,», /"D,y (f 7"(z))

and F*(z) = U, 50 f "D,y (f"(x)), where £(k) is the size of the disks associated to

f¥(z). They are the global unstable and stable manifolds.

As we said before, it is not obvious, in our case and in dimension higher then 3, that
there exist some points of integration of the hyperbolic splitting. Our first result is
to prove their existence.

Theorem A
Let A > 0. Any A-hyperbolic point is a point of integration of the hyperbolic splitting.

Remark: This result is well known when the hyperbolic splitting is dominated,
because this condition yields the existence of a uniform spectral gap for the derivative
df. A very close result is also well known in the Pesin Theory, but only on a set of
full measure. Therefore, the precise topological characterization of the set of points
of integration given by Pesin Theory depends on the choice of the invariant measure.
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In our case the improvement consists in the fact that we prove integrability even in
the presence of indifferent points for a set of points whose precise characterization
does not depend on the ergodic properties of some invariant probability measure
which would be given a priori.

Let x be some point of integration; the two manifolds F*(z) and F*(z) are also
Riemannian manifolds. We denote by d* and d° their Riemannian metrics, and by
Leb? and Leb; their Riemannian measures. If a measurable partition is subordinated
to the unstable foliation F* (see [14] and [11]), any f-invariant measure admits a
unique system of conditional measures with respect to the given partition.

Definition 1.5. In this article we will refer to an invariant measure having abso-
lutely continuous conditional measures on unstable leaves F*(x) with respect to Leb®
as a Sinai-Ruelle-Bowen measure or a SRB-measure (in abridged version).

Definition 1.6. Let two real numbers A > 0 and €y > 0 be fized. A point x in Q is
said to be (g, \)-reqular if the following conditions are satisfied:

(i) z is A-hyperbolic.

(i) for i = u, s, F'(x) contains a disk D (x) (centered in x) of size &q.

Let A be a f-invariant compact set in Q. It is said to be (g9, A)-reqular if all points
of A are (g9, A)-regular points.

Markov partitions (see [5]) play an important role in the theory of uniformly
hyperbolic diffeomorphism. Unfortunately there is no general way to build some
Markov partition in the non-uniformly hyperbolic case. In our case we are able to
construct some Markov partition and, under some additional assumption, to produce
SRB measures:

Theorem B

Let f be an Almost-Aziom-A diffeomorphism. Let A be a (g9, A)-regular set. Then
there exists a countable Markov partition of A.

Moreover, if there exists some xo in A such that Leb% (DE (1) NA) > 0, then there
erists a SRB measure for f which is finite or o-finite.

It is important to notice that hypothesis in Theorem B is very weak. If there exists
some probability SRB-measure, p, then, there exists some (gg, A)-regular set A of
full y-measure such that for p-a.e. z in A, Leby (DY () N A) > 0. However, a work
due to M. Herman ([7]) proves that there exist some dynamical systems on the circle
such that Lebesgue-almost-every point is “hyperbolic” but there is no SRB-measure
(even o-finite).

The rest of this paper proceeds as follows: in Section 2 we prove Theorem A.
The aim of Section 3 is to construct some special reduced dynamical system (R, g).
This is a very technical part and certainly the key point in the proof of Theorem
B. We first state and prove a shadowing lemma. Several shadowing lemmas already
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exist in literature but they introduce some invariant measure (which would be given
a priori), or they hold for the so called Pesin’s set ( the ergodic way). As far as we
know, this is the first shadowing lemma for non-uniformly “topologically” hyperbolic
dynamical systems. Then, we use our shadowing lemma to construct several Markov
covers of A. Finally we produce the special reduced system. Section 4 is devoted to
the rest of the proof of Theorem B: we prove the existence of some special measure
for the reduced system and we extend it to the global system (M, f). This extended
measure will be an SRB-measure.

The prooves are all based on the same key point: the estimates are all uniformly
hyperbolic outside some fixed bad neighborhood B(S,e;) of S. Moreover a -
hyperbolic point cannot stay too long in the fixed neighborhood. The fact that f
is an Almost-Axiom-A implies that an incursion in B(S, ;) cannot spoil too much
the (uniformly) hyperbolic estimates of contractions or expansions.

Obviously all the constants appearing are strongly correlated, and special care is
taken in Section 3 in choosing them in the right order.

2 Proof of Theorem A

Let A > 0 be fixed. For e; > 0 we set B(S, 1) «f {y € M,d(S,y) < e1}. We pick
some small €; > 0: precise conditions are stated along the way. We first assume
that ¢; is small enough such that B(S,e;) C U. By continuity, we can choose

g1 small enough such that, for every x € B(S,e1), 1 < ||df (2)|pu()|| < e and
1< [|df (@) s oy ]| < €790

There exists some A\* > 0 (namely min{k"(z),z € Q\ B(S,¢1)}) and A* > 0 (namely
min{k*(z),z € Q\ B(S,e1)}) such that for every z € Q\ B(S, 1)

1dF (@) 0]y > €0
e Vv e E¥%(x),v #0, N v
(), # { dF~1 (@)l 1y < e [0l
dF1 (@)l ;1) > € [[o],
e Vv € E*(x),v # 0, e
(2),v# { df ()0l 10y < e [[o]la-

We denote by |.| the euclidean norm on IRY. By continuity we always can assume
that the map x — dim E*(z) are constant (i = u,s). From now on, we will denote
by IR* the space R¥™E" x {0}4mE° In the same way B“(0,p), B*(0,p),and RR?
Wiil denote the spaces BE™F" (0, p) x {0}dim B fo}dimE® 5 pdimE(( 5y {0}dimE®
R imEs)'

Proposition 2.1. Let ¢ be small compared to A, \* or \*. There exist constants p; >

0,0 < K, < Ky, a positive function p, and a family of embeddings ¢ = B5(0, p1) C RY — M
such that

(1) ¢:(0) = z and d¢,(0) maps respectively R* and R® onto E*(x) and E*(x).

(2) Set fo = ¢yl 0 foba and Fr' =Ly, 0 f1 0 b then
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(2.1) if x is in Q\ B(S,e1), then

|df,(0).0] > e |v],

_V ERu, 0; - u
veRLu7 { dF1(0)-0] < e [ul.

df1(0).0] > eX'[o],

— Vo e R%,v #0, s
Y v {|df$(0).v|<e* J0].

(2.2) if x is in B(S,¢e1), then

o] < |df,(0).v] < et o],
o > |df;1(0).v] > e~ 10 [u].

—Vve]R”,v;«éO,{

|v| > |df(0).v] > e 100 |v].
(8) For every x in B(S,e1), 0 < p(x) < p1, and for every x in Q\B(S, 1), p(x) = p;.
(4) On the ball B, (0, p(x)) we have Lip(fo—df,(0)) < € and Lip(f, ' —df, (0)) < e.
(5)For every x and for every z,z' € B;(0, p1),

Ki|z = 2| < d(s(2), ¢o(2')) < Ka|z — 2.

This is a simple consequence of the fibered map exp. However, it is important
for the rest of the paper to understand that the two constants K; and K5 do not
depend on €;. They result from the distortion due to the angle between the two

sub-spaces E* and E°, plus the injectivity radius. This quantities are uniformly
bounded.

Moreover () is a compact set in U and thus, we can choose p; > 0 such that
B(Q, p1) C U. As the maps z — E*(z) and z — E*(x) are continuous, we also can
assume that p; is small enough such that for every z in 2 and y in ¢,(B(0, p1)), the
slope of d¢;'(y)(E*(y)) in RY = R" @ IR® is smaller than 1/2.

For the rest of the paper, we set (g “a \ B(S,e1), Q1 = QN f(Q0) N f(Q) and
Qo =0 \ Q.

2.1 First step: the graph transform theory

The idea to prove Theorem A is to use the graph transform theory (see [13]). We
first give some general result:

Proposition 2.2. Let FE be some Banach space and T : E — E be some linear map

such that there exists a T-invariant splitting E = E1 ® Ey. We set T, def Tig, and we
assume that the norm on E is adapted to the splitting, i.e. ||.||r = max(||.||z,, ||-||z,)-
We also assume that there exist two numbers Ao < 0 < Ay such that:
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for every v in Ey, ||T7v||p, < e™|v||g,,

for every v in Es, ||Tyv||g, < e*2||v||g,-

Let p be a positive number, € a positive number very small compared to A\, and —X,
and F be some C*-map from E to E such that:

(1) F(0) =0,

(11) on the ball B(0, p), Lip(F —T) <& and Lip(F' —T™!) <e.

Then

1. The image by F of the graph of any map g : B1(0,p) — Bs(0, p) satisfying
g(0) = 0 is a graph of some map U'(g) : B1(0, pe*~2¢) — By(0, pe~*212),

2. This induce some operator I' on the set Lipy of 1-Lipschitz-continuous maps
g : B1(0, p) = B3(0, p) satisfying g(0) = 0.

3. On Lip, (with the standard norm on the set of Lipschitz-continuous maps) T’
s a contraction. Thus it admits some unique fized point.

For the proof of Theorem A, it is important to keep in mind the 2 key points of
the proof of proposition 2.2. In one hand, the fact that [" is a contraction on Lip,
is essentially due to the spectral gap of dF'. This is obtained by the properties of
the T;’s and Lipschitz proximity of F' and T. On the other hand, the fact that the
image by F' of any graph (from B;(0, p) to By(0, p)) extends beyond the boundary
of the ball B(0, p) is essentially due to expansion on Ej.

2.2 Second step: estimations in our case

We want to use proposition 2.2 in the fibered case of f; If z is in Qo N f~1(y) the
spectral gap of df;(O) is uniformly bounded from below in B,(0, p;), and so we can
apply the proposition with dﬁ(O), frand p=p;. In B(S,&1), the value of p(x) has
to decrease to 0 when x tends to S: the spectral gap of df tends to 0 as = tends to
S because k*(x) + k*(x) tends to 0. The idea is to apply proposition 2.2 for d],”;?((])

and f7 for some good n. First, we have to check that hypothesis of the proposition
hold.

Proposition 2.3. Let x € Qy and n > 2 such that :

(1) ["(z) € Qo,

(2) V0 < k < n, f*¥(z) € B(S,¢1).

Then, there ezists some constant C' > 0 such that Ior every 0 < r < 1, proposition
2.2 holds for F = f*, T = dF(0) and p = C.r.e” %0

Proof. Let us fix some 7. We consider that the norm on R = IR* @ IR® is the
adapted norm ( with respect to the splitting); this norm is equivalent to the Eu-
clidean norm.
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We first control what happens in the bad area B(S,e;) (for f*(z), with 1 < k <
n —1). For y in By(;(0, p1) we have

(A (0) = Ay (W))0] < NI PRt @) A () 0] + 2)
df 1) (O)II-|(dF}5}(0) — dfE) ()]

as soon as it makes sense to define J/‘}C(I) (y)-
Let us assume that for every y in By)(0,1) (with I < p;) and for every 0 < k& <
p <n—1 we have

and let us pick some y in By (0,1). Then we can define j/‘;’fa; (y) and (2) gives

~ N FUN ~
1(dF755(0) = dFEE W) < [ld Fll.e* 5051 + 7 || (d 7, (0) — dFfy ). (3)
As this formula also holds for every £ < p, we obtain by induction

3pL

1(df355(0) = dFges )l < l1d I b

J— e_Qﬁ '

We have now to compute how [ must be, to be sure that conditions (i) and (ii) from
above still hold for p + 1.

We first see that

72 | < IdFhG () — Ay (O + ld e (0)]]

and so, in view to satisfy (ii), it is sufficient to have

SpL
114 % 1 ePtD100 < e3P+ 105

e “100

)\
o A A -
which is true for [ < (ei0 — 1).e100.1 |ﬁi2f|| e P00,
A

Let set ) < (eToo _1)'eﬁ'max(|\ld2j‘||2||1;§f D and pick some [ = p,.l".Cy.e~2P100, with
I' < 1. Then (ii) holds for every point in the convex ball By (0,1) with £ =p + 1.

Hence we have for every y in this ball

IN
®
|
=
[
o
S
o~
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and (i) holds for £k = p + 1.
Therefore, if C el p1.C5.Cy.e~" =2 (with Cy < 1), for every y in B, (0, C.I".r.e 3"100)
(with I"” < 1), we can define f”(y), and (3) gives

1df7(0) — df(y)|| < Coul".r.py.

This formula yields R R

Lip(f; — df;(0)) < Co.l".r.py. (4)
Moreover, the previous discussion proves that fz‘(y) belongs to Bn(g)(0, Ca.l" .7.p1 € 300,
On the other hand, we have |df"(0).v| > e*.|v| for every v in R* and |df"(0).v| < =" ||
for every v in IR®°. For the same reasons we have |dﬁ?w) (0).v] > eX.|v| for every v
in R’ and |dﬁz’ém)(0).v| < e™".|v| for every v in IR*. Hence, the previous discussion

gives some formula which is equivalent to (4) but for J?}_sz) as soon as [ < e~ 2"100:

Lip(};;?m) - dﬁfzx) (0)) < Cy.r.py. (5)

Therefore (4) and (5) prove that for Cy < ewe can apply proposition 2.2 with F' =
" T =df"(0) and p = C.r.e ¥"20, with C' = C3C,.C;, where Cj is a constant that
is introduced because the norm on IRY is not the adapted norm. O
We remark that the proposition 2.2 also holds with F' = f}’n’zw), T = dfﬁl(z) (0)

_9p A
and p = C.r.e 2"100.

Definition 2.4. Let x in €.
If f(x) is in B(S,e1) we call forward length of stay of x the integer (in IN)

nt(x) def sup{n / V0 < k < n, f*(x) € B(S,e1)}.

If f~Y(x) is in B(S,e1) we call backward length of stay of x the value

n~(x) e/ sup{n / VO < k <n, f*x) € B(S, &)}

Let z in €.

_ 9nA

o If f(z) is in B(S,&;) and n := n*(z)(< 4+00), then we set I/ (z) “ee 200,

o If f~!(z) is in B(S,¢e1) and n := n~(z)(< +00), then we set I°(z) © e .
For the rest of the proof, if z is in Qy N f~1(Q) we will call the one-step graph
transform the graph transform due to proposition 2.2 with F' = J/”;, T = df;((])
and p = p;. If x belongs to QN f~1(B(SY,¢e1)), the graph transform that results
from proposition 2.3 will be refer as the n™ (x)-steps graph transform. Both will be
denoted by I',.
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2.3 Third step: end of the proof

Let x in €}y be some A-hyperbolic point. We are going to construct a piece of
unstable leaf as some set ¢,(graph(g,)), where g, would be some special map from
B¥(0,1(z)) to B:(0,1(x)) satisfying ¢,(0) = 0 (for some [(x) < p;). For that purpose
we will use the graph transform along the backward orbit of x.

For any £ in g, we set 6,5 then null-map from B¢ (0, p1) to B(0, p1). We also set

&L (o).

Firstly we check that every A-hyperbolic point must return infinitely many times in
Qo (in the future and in the past):

Lemma 2.5. Let & in Qo be some \-hyperbolic point such that f(§) ¢ Qo (resp.
F7HE) ¢ Q). Then n™(£) < oo (resp. n™(§) < +00).

Proof. Let us assume that f(§) ¢ Qo and n*(§) = +oo, i.e. Vn > 1, f*(§) €
B(S,&1). This yields

Vn > 1, Vo € E*(f™(9), |ldf (f*(€))-v]| > e 10 [o]]. (6)

Hence we get

1 A
liminf —1 s > ——,
im inf -~ log {|dff: (€)] = — 155
which contradicts the fact that £ is A-hyperbolic.
The proof is of the same kind for the other case. O

Therefore, there exist two sequences 0 < ¢y < po < g1 < p1 < ... of integers such
that

° FOI"OSkSQO,LE‘kEQo,
e For every i > 0, for ¢; < k < p;, z, € B(S,¢1),

e For every 7 > 1, for every p; 1 < k < ¢;, zx € Q.

We set y; «f zq, = f7%(x), 2 wf Ty, = f7Pi(z) and m; := p; — ¢;.

Let n be any integer such that z,, belongs to €2y. Then, we define I'} as the com-
position of the graph transforms along the piece of orbit x,,x, 1,..., 2, where we
take the one-step graph transform I'y, if z; and z;_; are in Q and the m;-steps
graph transform if z; is one of the z;’s.

The goal is to prove that the sequence of maps Fg(ﬁzn) converges to some map.
This is well-known for uniformly hyperbolic dynamical systems, but here, the crit-
ical set S influences the graph transform: by construction, I'? is a contraction (of
ratio smaller than e ™ Zip<n(mim)A"FAE)) “p04 56 i not clear that the length
of the graph associated to I'*(0,,) is uniformly (in n) bounded away from 0. Now,
we explain how S influences the graph transform, and prove that the length of the

~

graphs associated to the I'?(0,, )’s are uniformly bounded away from 0.
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Let n be any integer such that z, belongs to €)5. There exists some integer k such
that pr <n < ey
For p, + 1 < 4 < n we just apply the one-step graph transform, and so we get in
B,, (0, p;) some graph. At this moment we apply the my-steps graph transform to the
graph restricted to the ball B, (0,1/(2;)), and we get some graph in By, (0, 1P(yy)).
We call this phenomenon a < truncation>>. For p,_; <7 < g, we can again apply
the one-step graph transform, but to the small piece of graph (with length 2.17(yy)).
However, the length increases along this piece of orbit (as long as it is smaller
than 2.p;) because, at each (one-)step, we can take the whole part of the image-
graph. For i := p;_; three cases may occur:

(i) The length of the graph is 2.p; and so, there is a new truncation. Thus there
is a “past-stabilization” (a notion due to S. Newhouse).

(ii)) The length of the graph is strictly smaller than 2.p;, but is bigger than
2.17(2,—1). Again, there is a new truncation and again there is a “past-
stabilization”.

(iii) The length of the graph, 2.l, is strictly smaller than 2.1/(z;_1). We apply
the my_i-steps graph transform with p = [, and we obtain some graph in

By, ,(0,1). From z,we can see the truncation due to I',,,

and so on, along the piece of orbit yx_1,...,7_1.

Hence, the length of the graph (0, ) is (at least) equal to 2./ (2;), where j is such
that p; is the smallest integer where a truncation occurs. We set i(n) := j and we
want now to give a more precise estimate for this length.

Lemma 2.6. For every A-hyperbolic point £ and for every v in E*(§),

Om; A
JJim e [[df 9 (€).0]| = 0.

Proof. There exists n = n(e1, £) such that Vp > n, de‘;ﬁ )| < e P00,
Pick j such that g; > n. Then,

9\

(@) < oI, (™

E‘u

Moreover, by definition of £, we have
miA
Vo € BU(fmata)(€)) |[df™a(f %™ (€)) vl < e [[o]. (8)
Hence inequalities (7) and (8) give for every v in E%(§)

[|df ~% (€).v]| < ™35 e To0 |||
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With the previous notations, the length [, of the graph associated to I'? (/0\%) is
smaller than 2p; but at least

o
ldf 5 (@)l

(if this quantity is smaller than 2.p;). Lemma 2.6 proves that there exists some

2.7 (2i(n))

integer p such that if i(n) > p, then I/ (2i()) > py. Therefore, = sees

1df 2™ ()]
only the truncations due to the p;’s with j < p, \‘zvhlch proves that the sequences of
lengths (1,,) is bounded away from 0. The family of maps I'*(0,, ) converges to some
map g, : B%(0,1(z)) — B:(0,1(z)), with ¢,(0) = 0, and where [(z) is such that for
every n, 0 < l(z) < .

For the rest of the paper we set F}.(z) wf ¢z (graph(gz))-
Lemma 2.5 also proves that the backward orbit of z returns infinitely many often
in . Therefore, if f%(x) belongs to B(S,&;) we set

w(f R @) G F (R (),

where n is the smallest positive integer such that f~(*%)(z) belongs to €. Then,

we set
Fia)= |  F el @)
n, f~"(x)ENo

The uniqueness of the map g, and its construction prove that F*(z) is an immersed
manifold.

To complete the proof of Theorem A, we must check that the C!-disks that have been
constructed are tangent to the correct spaces. Let y be in F (z). By construction
of Fi.(z) we have for every n such that f™"(z) € Qo, f™(y) € FL.(f"(x)).

loc

For such an integer n, we pick some map g,, : B*(0,p1) — B*(0,p;) such that
F7MY) € ¢f-n(x)(graph(gny)) and Ti-ne)dp-n)(graph(gny)) = E*(f"(y)). As
the map g, is obtained as some unique fixed- pomt for the graph transform, the
sequence I'?(g,,,) converges to g,. By df-invariance of E* (until the orbit of y leaves
U) we must have T, F*(z) = E"(y).

We also can do the same construction with f~! to obtain some immersed manifolds
F?(x). Then, x € F*(x) N F*(z).

However, it can be important to have an estimate for the length of F (x) or F*(x).

oc
Actually we are not able to give a lower bound for such estimates.

3 Shadowing lemma and Markov rectangles

Let A be some fixed (g9, A)-regular set satisfying hypothesis of Theorem B. The goal
of this section is to construct some Markov rectangle to use Young’s method (see
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for instance [9]). The principal steps of this section are the following :
In the first subsection we define the pseudo-orbits and we state (and prove) a shad-
owing lemma.
In the second subsection we prove that the dynamical system (A, f) is conjugate to
some symbolic dynamical system (3, o).
In the third subsection we define two generations of rectangles.
In the fourth subsection we fix the constants and construct a third generation of
rectangles.
In the last subsection we define the special reduced system (R, g), where R is some
rectangle satisfying the Markov property and g the return map in R.

We first assume that ¢; has been chosen so small that for every z in {25, 1 <
|df () 5o ()] | < €5 and 1< [|df 7' (2) )| | < €73.

3.1 Shadowing lemma

For convenience, we briefly recall how Bowen constructed a Markov partition in [5]
(for Axiom-A).

A pseudo-orbit is a sequence of points (x,) such that for every n, f(z,) is “close
enough” to z,1. Therefore, every sequence (y,+1x)r of points on the local piece
of unstable manifold W*(z,41) gives a new sequence (2,+1,)r on the local piece of
unstable manifold W (f(x,)) by sliding along the stable leaves. By contraction, this
gives a sequence (y, x)x of points on the local piece of unstable manifold W*(x,,).
One of the key points in this proof is to control the distortion due to this stable holon-
omy: with the notations from above, it is untrue that the “unstable distance” along
the unstable leaves, d"(f (), zn+1k) is exactly d*(f(z,), Tni1) + d“(Tnt1, Ynt1k)-
However we have ,

du(f(xn): Zn+1,k) S ’fd(xna xn+1) + Rdu ($n+1, yn+1,k)a (9)

where x and R are some distortion constants. Therefore, to be able to use the

contraction (in negative time) along the unstable leaves, Bowen considers pseudo-
orbits for some f*, where k is such that Re=**" < 1 (see [5] p. 74-75).

3.1.1 Control on the distortion in our case

Here we cannot control the distortion of the system of local coordinates by the
dynamic because we do not have any control on how long a point stays in €25. Hence
we must compute this distortion and control it at each step.

Moreover we want to use the family of charts (¢, B, (0, p1)), which introduce another
distortion (that appears in x and R in (9)). This distortion is not really correlated
to the dynamic, firstly because it occurs uniformly and secondly because its effects
do not add up along the orbits. Hence, for convenience, we will assume that
these charts introduce no distortion, namely K; = K, = 1.
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For z in A we set Di(z) (i = u, s) the disk in F(x) of radius p (with p < ). We
also set Di(y) for every y in F'(z) when it makes sense. Let 0 < o < 3. For z in
)y we define the unstable and the stable cones of angle « as

“ 1
v, 1y

Ci(z) = {v=0v"+0v"€eR*@ R’

lvs| — «
u
Ci(z) = {v=0v"4+0v"eR"®R’, ||Zs“ < a}.

By continuity of E* and E?*, if p is small enough, we have for every z € {2y N A and

for every y € B(z,10p)
{ do, ' (y)-E°(y) C Cy(),
do, ' (y)-E*(y) C Cy(=).
Therefore, for sufficiently small p (namely p < % and p < {55), for every x in €
and for every y and z in B(z, p) such that D3 (y) and Dj,(z) exist, we can define

def s w
[Z,y] = D2p(z)ﬂD2p(y)a

and we get a system of local coordinates. However, this system introduces some
distortion, because the holonomies (stable and unstable) are not isometries. Thus
we have formulas like (9): for z in A, the following holds:

d*(z, [z, z]) < d(z,y) +rd“(y, [z v]), (10)
ds( [z,y]) < d(z,z2)+r2d’(z[2,9]), (11)
d“(z,[z,z]) < ryd(z,2), (12)
d*(z,[z,y]) < rad(z,y). (13)

By definition of p the disks D3 (y) and Dj,(2) must stay in some cones, and a

standard computation in IR” proves that the distortion’s constants r; (i = 1,2, 3,4)
depends continuously on d(z,y) and d(z, z). Obviously we have r; =1 if z = y and
ro = 1 if x = 2. Moreover, the continuity of E* and E® proves that r3 and r4 tend
to 1 when y and z go to z. On the other hand, if p is small enough (namely p < £1),
there exist constants 4* > 0 and 7°* > 0 (which depend on p) such that for every
xz € Q9N A and for every y € B(z, p)

dfe(y)v] < e 7o,
df; ()] > 7o,
|dfz(y)v] > ™[],

jdF; ()-v] < e o).

Yv € E*(y), {
Vv € E*(y), {

We also have ' — A" when p goes to 0. Hence, we assume that p is sufficiently small
such that for every z € {y N A and for every y and z in B(z, p) such that D3 (y)
and Dj,(z) exist, the distortion’s constants in (10), (11), (12) and (13) satisfy for
every 1 =1,2,3,4: . »

rie” 27 <1and rie 2 <1. (14)
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3.1.2 Definition of a pseudo-orbit

We can now define more precisely what a pseudo-orbit is. Let us pick some py, < p
sufficiently small. We set

Af(n) = {z€QnA, f(z)¢Q and n'(z) = n},
A, (n) = {z€WnA, fli(z)¢Q and n () =n}.
By definitions of n™(z) (resp. n~(z)) we have AL(m) N A4(n) = 0 if n # m with

i=+,—.

Definition 3.1. Let 6 > 0 be such that

1. 6< 21—,

16
2.5 < f—é(l _ e,
€0 _aty 1l
3. (5<Z(1—e 2)e 27,
4. 0 < 2—0(1 — e’g)e’%"’s,
€0 1
. 0< -
43 4 1 7
l—e 27
1
6. (5<Z—° I —.
27+ 3
. 1*67:’2—

A sequence (Tn)nem of points in A is called a §-pseudo-orbit if
(1) Vn € Z, d(f(zn), Tny1) <0 and d(zn, f (2ns1)) < 0.
(2) Nn € Z, if x, € AJ (m) then T,y1m € Ay (m) and
either VO < k < m, Tpip = fF(x,),
or VO <k <m, ok = f ™ (Znim).
In both cases we have d(zp,, ™% (Tnix)) <0 and d(Tpik, fF¥(z,)) < 6.

We say that the point x B-tracks the 0-pseudo-orbit (x,) if and only if Vn € Z,
d(f™(x), zn) < B.
Definition 3.2. A point = in Q is said to be weakly hyperbolic if:
(i) It is a point of integration of the hyperbolic splitting.
1 1
(i) lim sup — log ||df g (z)|| < 0 and limsup —log ||df . (z)|| < 0.

n—+oo T n—+oo T



3. Shadowing lemma and Markov rectangles 16

Proposition 3.3 (shadowing lemma). Let 6 > 0 be such as in definition 3.1 and
(x) be some 6-pseudo-orbit. Let

5(5)=max< 2 2 )

I—e ") (1—e27)

Then, there exists a unique point x € U such that x [(0)-tracks the §-pseudo-orbit

Moreover, x is weakly hyperbolic.

Proof. The positive part (z,),>0 and the negative part (z,)n<o play symmetric roles.
Therefore, we are just going to study the positive part. The goal is to “repatriate”
by f=", for each n, a piece of D} (z,) close to zo. We have to control that such a
piece of stable leaf is long enough to be sure that it intersects D (z¢) in one point.
This will allow us to define close to zg a family of pieces of stable leaves which
will accumulate themselves on some limit piece of stable leaf. Doing the same in
the negative time, we will also obtain a piece of unstable leaf close to zy. The two
pieces of leaves must intersect themselves in exactly one point, which must track
the pseudo-orbit.

To be sure that this point tracks (z,) the repatriation has to be done by induction.

Let us assume that zq is in €y and pick n > 0 such that x, € (.

step 1 We first study how we can repatriate one piece of stable leaf close to the
“previous” point.

Case one: z,_1 € )y . Because ¢ is sufficiently small (conditions with £¢) and the
x;’s are (g9, A)-regular we can define [z, f(z,-1)] and (12) gives

d*(f(@n-1), [Tn, f(2n-1)]) < 736,

Moreover, (13) and (14) give d*(zn, [T, f(2n_1)]) < 746 < €276,

Thus we can define Djg 5 ([2n, f(2n-1)]), because [z,, f(zn_1)] is far away from the
boundary of F*(x,). Then, by expansion along the stable leaves in negative times,
we can define Dy 5 (f “Y[@n, f(zn_1)])) and by contraction along the unstable leaves
in negative times (14) yields

d(@n 1, ([T [(n1)])) < €376,

Case two: Tn_1 ¢ Qo. Let m be such that z,, € Qo and Vk, 0 < k < n — m,
Tmik ¢ Qo. By definition of a d-pseudo-orbit there are two sub-cases

either VO < k < n—m zpik = f¥(z) (case (2.1)),

or VO < k <n—m Tpyp = f"*(x,) (case (2.2)).
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In both cases we can define [z,, f" ™ (x,,)] and as in the first case we can define
def

D5 ([@n, 7™ (@m)]). We set &npn = ~(=m) (2, f""™(2m)]). The unstable
foliation is contracted and the stable foliation is expanded in negative time and
both points z,, and z,, are in €y (where there is strong contractions). Thus :

(1) d(@m; Empn) < r3e” 216 < e,gvu(s’

(ii) f*(&mn) € B(@mtk, 35(0)) for every 0 < k <n —m,

(iii) we can define D345 (&mn)-

step 2 We now study how we can induce the construction.
On DY (z,) N B(zy, 58(6)) we have a family of points (&,;);. For each j we can
define Dyg 4 (&n,5)-

In the case one, we set &,_1 wf “1[&njf (xn-1)])- Then (10) and (14) give
1
L 500).

Moreover d*(&, j, [f(En1,4)]) < e27°§. Therefore we can define D;g((s)— %785(“5”—1,1))

and by expansion along the stable leaves in the negative times we can define Dj 5(5) (&n-1,5)

0"t Ear) < €7 (54 r5P(9) < 6+ e 5(9) <

(there is “strong” expansion close to €)).
In the cases (2.1) and (2.2), we set &, f F™ ([ ™ (@)]) and for

0<k<n—m,&nik; = f*(Emy)-
In the both cases, we obtain

A" (L, Emg) < €727 (6 + r%ﬁ(a)).

Thus we get
1
2" (5 Emg) < 5B(0).
Just like in the first case, we can define Djg (&n—1,5) because of the expansion in
the stable leaves in negative times (that occurs at each step and at least two times
“strongly” because both points z, and z,, are in ). We also set &, ; = &y, for
m+1<j<n.

step 3 We can iterate this construction. This gives by induction a sequence
of points (&;);>1 in D% (z0) N B(xo, 36(8)), such that for each j we can define
D355, (&o,5)- Such a s-disk can be viewed in By,(o,,) as the graph of some map
90,5 : B*(0,35(5)) — B*(0,(6)). The family of maps (go,;); is equicontinuous in
the C!-topology because E° is Holder continuous. Therefore, by Ascoli’s theorem, it
converges (up to some sub-sequence) to some map ¢* : B*(0, 13(6)) — B*“(0, 3(9)).
This proves that ¢,,(graph(g*®)) is a C'-disk of size 5(6). This disk must contain
a point in B(z, 38(9)) (obtained as an accumulation point of the sequence (&;)).
Moreover for every point y in ¢,,(graph(g®)) we have

Tybao(graph(g®)) = E*(y).
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Doing the same with the negative part of the pseudo-orbit, we get some C'-u-disk
of size £3(0), which contains a point in B(zg, £3(5)). The two disks must intersect
themselves in exactly one point z. By construction of x we have for every integer n,

f"(x) € B(zn, B(9))-

Moreover z is a point of integration of the hyperbolic splitting and at least weakly
hyperbolic because it returns infinitely many times (in the past and in the future)
in B(p, p2) (where there are uniform expansions and contractions). O

3.2 Symbolic dynamic

We have now to prove the converse of proposition 3.3 : let ¢ be fixed as above. We
want some countable set, I' C A, such that every point in A is 3(§)-tracked by some
sequence (that should be some §-pseudo-orbit) in ['%.

Let & be
max (sup ||df (z)|], sup ||df ~*(z)|]).
rEM TeEM

We build a cover of A in the following way:

1- We take a finite cover of A Ny by balls B(p;, %), where p; is in ANy and 4

describes {0, ..., Py} C IN. This can be done because A N §2; is totally bounded.

2- For each n > 0, we take a finite cover of A (n) by balls B,,(¢i , %), where ¢; , is

in Af (n), Bu(y,e€) denotes [ f~7(B(f'(y),e)) and i describes {0,..., P} C IN.
0<j<n

We can find such a cover be_(?ause each dynamical ball B, (y, %) contains the ball

B(y, 5:5+7)-

3—For each n > 0, we take a finite cover of A5 (n) by balls B_, (7, %), where 7; ,, is

in AJ (n), B_,(y, €) denotes ﬂ fI(B(f™?(y),€)) and i describes {0, ..., P_,} C IN.
0<j<n

For m <0, let us set IN,, de] {0,...,m}; then we define

T déf {pz,Z € ]I\IPO} U {Qi,na f(q't,n)v AR fn_l(qz',n)}

U {Ti,na f_l(ri,n); ey f_n+1(7"i,n)}-

’n>0,i€INp_n
The set I' is a countable set. For convenience we will set I' = {&, k € IN}.

Proposition 3.4. For every z in A, there exists some sequence (T,)nez n T% such
that:

(1) (Ty)nem 1S a d-pseudo-orbit;

(i1) © B(6)-tracks (xp)nez-
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Proof. Pick z in A. We always may assume that x is in {y (every point in A comes
in g along its orbit). The main idea of the proof is to construct the sequence by a
recursive way. It will be constructed by “blocks”.

step one. We first define the family of times, (7;,)nez, such that the 7/-iterate
of x are in (g:
7o = 0, and if we have built 7_,, ..., 79, . . ., T, then we define 7,11 = 7, +min{k, 0 <
k, ft*(z) € Q} and 7_(n41) = 7, — min{k, 0 <k, f7*(z) € Qp}.
The 7,’s are called the stopping times.

step two. We construct the first block of point(s) z;. Each block will have a
length 7, — 7x_1. There are several cases.

(c1) If z is in €y, and there is some ng such that z € B(&,, =) (&, is one of the
pi’s). Then we set zq = &,,. The first block is {z}.

(c2) If z is in AJ (m), then 7, = m. Hence, there exists some ng such that z €
Bin(&ng, ) (&no is one of the g;’s). We set 2, = f¥(&,,), for every 0 < k < m.
The first block is {zg, ..., Tm-1}-

(c3) If x is in 2, but does not belong to any Aj(j), then 7_; = —m. Hence, there
exists some ng such that x € B_,,(&,,, %) (&g 1s one of the 7;,,’s). We set
Tr = f*(&,), for every —m < k < 0. The first block is {Z_,11,---,Z0}-

step three. We construct new blocks by a recursive way. Let us assume that we
have constructed (z;,...,z;) with i < j. We study how we can construct a block
(%j41,...,7) (called an upper block) and a block (?,...,z;_1) (called a lower block).

Upper block.

e If j is not a stopping time, then 7 + 1 must be some stopping time 75 and
I (x) € AS (1p — Thn).

*If 7py1 = T, + 1 = j + 2, then we just construct z;41; f77!(z) belongs to
Qo and there exists some p = py(j+1) such that fi*!(z) € B(p, £). We
set Tjy1 = D-

*If 71 > T + 1, then f77(x) € AJ (k41 — 7k), and there exists some
4 = Gm(j+1)mep—m Such that f7H(z) € BTkH_Tk(q,%). Hence we set
zjn = fY(q), for 1 <1 < Tpyy — T

e If j = 74, then necessarily j + 1 = 731.

* If f97(z) belongs to €, then we construct z;,; by choosing any p =
Pm(j+1) such that fi+!(z) € B(p, &). We set ;41 = p.

* If f7+1(x) does not belong to 2, then fi*1(z) € AJ (7442—7k11) and there
eXiSts SOMe ¢ = Gm(j41);7p40—mss SUCh that fIH(z) € B, r. (g, ).
Hence we set 2,4, = f!(q), for 1 <1 < Tpy0 — Tpy1.
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Lower block.
e If 7 is not a stopping time, then 7 — 1 must be some stopping time 7.
* If 7,_1 = 7, —1, then we just construct z;_;. There exists some p = Prm(i—1)
such that f*~'(z) € B(p, ). We set z;_1 = p.

*If 1y < 7, — 1, then f=!(z) € A (|7e—1 — 7%|), and there exists some
T = Tm(-1),r_ | Such that f=*(z) € B, . (r,L). Hence we set
T = fir), for 1 <1< |11 — 73l

® Ifi:Tk,

*If fi71(x) ¢ Qo, then 7,1 < 7 — 1, and f™1(z) belongs to A (7 —
Te—1). Hence, there exists some ¢ = gm(i—1),r,—r,_, such that f7-1(z) €
B, _.._.(q, 3%) Hence we set z,,_, 1 = fi(q), for 0 <1 < 73, — 1.

*If f7=1(z) € Qy, then we just construct z;_; by choosing any p = pp,i—1)
such that f*~'(z) € B(p, ). We set z;_1 = p.

*If fol(x) € Qy, then fol(x) € Ay (|7x 2 — 7%_1|) but does not belong
to any Aj (m). Then, there exists some r = ry_1),r,_,—n_,| sSuch that

fil(z) € BTk_z_Tk_l(q,%). Hence we set z;_; = f'(q), for 1 < | <
Tg—1 — Tk—2-
We have now constructed zyr, ..., %, ..., %5, ..., Tj.

We let the reader check that if ¢/ (resp. j') is not a stopping time, then ¢/ — 1
(resp.j’ + 1) must be a stopping time.

step four. Hence, by construction, we obtain for every n,

AF"(w),22) < o < B(6).

The sequence (T, )ncz is a d-pseudo-orbit in I'Z, and x 3(6)-tracks (z,)nez. O

We denotes by ¥ the set of d-pseudo-orbit in I'%. Proposition 3.3 proves that
there is a canonical map © : T2 — M that maps every d-pseudo-orbit z = (z,,)nez
to the unique z that 3(d)-tracks z. Conversely, Proposition 3.4 proves that A is
contained into the image of ©. Hence, there is a conjugacy of the dynamic on M
with some symbolic dynamical system :

g EO—)EQ

\ 10
f:r M - M

where o is the shift on Y.
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3.3 Rectangles

From now on, ¢ is some fixed constant as above (relatively to the choice of &1).
Moreover, its exact magnitude will also depend on several (but finite) conditions
that will follow. In Xy, there is the canonical partition into 1-cylinder: for &, in I’
we set

6] < {z € D, 70 =&}

There is a canonical map, [., .], from U [€n]? to £g defined in the following way :
n€lN

If y = (Yn)nez and z = (Tn)nez are in [§,], then [z,y] is the sequence z = (24)nez
defined by z, = x, for every n > 0 and z,, = y, for every n < 0. The first goal of this
subsection is to study the push forward of the 1-cylinders on M by ©. In particular,
we prove that the map © o[., .| is the map [O(.),O(.)] where the second [., .]
is the system of local coordinates on the manifold. Then, we will produce several
generations of rectangles.

Lemma 3.5. Let Yy = (Yn)nez and £ = (Tn)nez be two sequences in Xy such that

for every n >0, x, = yn. Then, if 6 is small enough such that 3(5) < g—Q, we have
K

O(z) € D3g4(O(y))-

Proof. For convenience we will set © = ©(z) and y = ©(y). By construction there
exist two points z; and z, such that {z} = D;‘ﬁ(d)(x)_ﬂ Dig5(y) and {22} =
Dig 5 (y) N Digs)(x). Let us assume that z # 2. We are going to find some
contradiction.

Because z # z1, then we must have y # 2. For n > 0 we have d(f"(x), z,) < 8(9),
d(f"(y), zn) < B(0) and lim, ;o d(f™(z), f™(22)) = 0. Hence, we may assume that

for every n > 0, d(f"(x), f"(22)) < 5(9), and so

Vn 20, f"(22) € B(zn,26(5)) and f"(y) € B(zn, 5(0)) (15)

Moreover, there are infinitely many ny in IN such that z,, € ). Therefore, property
(15) implies that, if ny, is such that for every j < ny, f7(z) belongs to the connected
component of Dgﬂ(d)(fj (y)) N B(z;,28(8)) that contains f7(y), then we must have

d"(f™ (y), J™(22)) = " d" (22, y). (16)

Therefore, there exists some n such that for every 0 < k < n, f¥(2;) belongs to the
connected component of F*(f*(y)) N B(xx,23(8)) that contains f*(y) and f"1(zy)
does not belong to the connected component of F*(f"*(y)) N B(z,.1,26(5)) that
contains f"*(y).

Because d has been chosen small enough, f"*!(z;) belongs to the connected com-
ponent of F*(f"*(y)) N B(xn41, %) that contains f**!(y) and so d(f"*!(22), Tn41)
must be greater than 2/3(J), which is absurd. Therefore z = 2; and y = z,. O
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3.3.1 First generation of rectangles

For n in IN we set T, < ©([&,]). If z is in Ty, we set W(z, T) € Diyi5(2) N T,
def

and W*(z,T,) = D344 (x) NT,. As a direct consequence of lemma 3.5 we obtain

Proposition 3.6. Let n be an integer and x and y be in T,. Let x and y be in [&,]
such that ©(z) = x and O(y) =y. Then,

W(x,T,) (resp. W*(z,T,)) is exactly the image by © of {[z,z], 2z € [€.]} (resp.
{lz, 2], z € [&]}).

Moreover, W*(z,T,) N W*(y,T,) exists and, [y,z] = O([y,z]) = W*"(z,T,) N
We(y, T,).

This proposition allows us to define 7, as a rectangle in the sense of Bowen (see
[5]). The T,,’s are called rectangles of first generation and their set is denoted by 7.
They also satisfied some restricted Markov property:

Proposition 3.7. Let T; and T be in T such that some point x belongs to T; N
FUT;). If there exists some x in 3y such that :

(1) O(z) = «,

(it) xo = &;,

then, W (f(), T3) C F(W*(x, 1)) and W*(f(2),T) > f(W* (2, T})).

Proof. Let y be in W*(x,T;). There exists some y in ©7'(y) N [§;]. Moreover
proposition 3.6 proves that y = [z,y], and so, y = ©([z, y]). If z denotes [z, y], then
2o =& and z; = ;. Hence, f(y) = © o o(z) belongs to T;.

The other part of the proof is similar. O

Remark: It is important to notice that proposition 3.7 does not prove that all
the rectangles satisfy a complete Markov property: If x is in 7,1 f~1(7;) and if there
is no z in ©7(z) N [§] No~![&], the result of the proposition would probably be
false. In view to obtain the global Markov property we have to cut these rectangles.
Before, we need to make them thinner.

3.3.2 Second generation of rectangles

The main idea of this part is to restrict the f-invariant set |J;. 73 (= ©(X)) to
some subset satisfying good properties.

Proposition 3.8. There exists some A-hyperbolic set A C A such that
(1) Leb*(A) > 0;

(2) every point x in A is a density point of A for Leb®;

(3) there ezist some ( > 0 such that for every x in A,

n—1

. 1 _ ;
limsup — > _10g ||df g3 () (F (#)]| < ¢, (17)
=0

n—-+o0o



3. Shadowing lemma and Markov rectangles 23

Proof. We first notice that, if (17) holds for some z in A (and for some fixed ¢ in
IR?,), then, it also holds for every f"(x), when n describes Z.
The first part of the proof is to show that for every x in A,

n—1

lim sup — Zlog||df|Eu ity (P (@) <0 (18)

n—-+0o0o

Let x be in A, g5 be some fixed real number in ]0, 1] and Q3 = Q3(e,) be the set of
point z in {2 such that

min(1og |14 o, = 108 | o, ~ 108 1o 1 Log 1 3 ) > €2

ef o . ol .
We set 4, “/ im inf —#{0 < k < n, fF(z) € Q3} (where #A denotes the cardinal
n

of the finite set A). Because z is A-hyperbolic, it must spend enough time in g,
and we have

1— E9
0y > T 0. (19)
X T2
Hence, inequality (19) yields
n—1
lim sup — Z]Og||df|Eu(fJ(x ( ](‘T)H < _55252/\7

n—-+00

which proves that (18) holds for every = in A.
Let us set

de ;
AY {x € A, lim sup — Zlongf‘Eu(ﬂ oy (P (@) < —g}.

n—-+0o0o

Then, A is the increasing union of all Aj¢ (when ( decreases to 0), and so, there
exists some ¢ such that Leb“(A¢) > 0. We pick such a .

Let us set Ay = U{ €Ty Ay, z2) € A|2< Jr € F*(y) N F°(z)}. Then, Ag is a
1€IN

f-invariant set of A-hyperbolic points in U R; such that (17) holds for every z in

i€N

Ag. Moreover, Leb*(Aq) > 0.

Now, if z is a density point of Ay for Leb? we check that every y in F*(z) N A is

also a density point of Aq for Leby:

This is a well-known fact in Pesin Theory that the stable holonomy is absolutely

continuous with respect to Lebesgue measure on the unstable manifolds. This again

holds in our case by definition of F*(x): there exists some n such that for every

k > n, f%(y) belongs to F£ (f*(z)). Then we can use Maiié’s method (see [12]).

Therefore, we denote by A the set of density points in Ay for Leb™. This set is

f-invariant and stable by intersections of stable and unstable leaves. Hence, every

point in A is also a density point of A for Leb". O
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For ¢+ € IN, we denote by S; the restriction of the rectangle T; to A, i.e. §; =

T,NA. If z isin S; we set W*(z, S;) wf W(xz, T;)NA and W*(z, S;) wf We(x, T;)NA.

By construction of A, if x and y are in S;, then [z,y] is also in S;. As before we
have

{[z,y]} = Wo(z, Si) N W*(y, Si) = Dig()(x) N D5 (y)-

The sets S; are called rectangles of second generation, and their set is denoted by

S.

3.4 Third generation of rectangles
3.4.1 Constants

Since the beginning we have introduced several constants. It is time now to fix
some of them. For that purpose we want first to summarize how do these constants
depend each from others.

The constant « is fixed by f. The two constants K; and K5 are also fixed.

We fix the set A, and so, the two constants €5 and A are also fixed. Then, we fix ¢
as above (note that this is done before fixing €;). We can pick some ¢, very small
compared to A and ¢ (namely ¢ < (/10).

Now, as soon as ¢; is fixed (sufficiently small as it is asked in Theorem A’s proof but
only in relation with f and A), the constant p; can be adjusted. Therefore, we can
choose the constants p, pe, v*, and v*. After we can choose ¢ such that § and 3()
are sufficiently small to satisfy the several asked conditions. Several new conditions
will also be stated later.

3.4.2 Choice of ¢;
<
3

belongs to 3 (this set has been defined in proposition 3.8). This is possible because
k* and k® vanishes at the same time.

Hence, we fix £; sufficiently small such that €23 is a closed subset of €2 which
does not intersect €2 U B(S,e1). Therefore, there exist some p3; > 0 such that
d(§23,99 U B(S,e1)) > p3, and we assume that § satisfies

We first fix e sufficiently small such that every z in A such that log ||df‘j3£(w) || < —

P3
B(0) < 10

3.4.3 Third generation of rectangles

If S; isin S, we say that it has (or it is of) order 0 if §; is in €.
We say that it has order n if either & = f¥(§;) with & in AJ(n) and 0 < k < n,
or & = fF(&) with & in Ay (n) and 0 < k < n. Because 3(§) is small enough,
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none of the rectangles of second generation and of order 0 that intersect {23 can
intersect with some rectangle of order n > 0. We say that a rectangle of order 0
that intersects €23 is of order 00. Then, each rectangle of order 00 intersects only
with a finite number of other rectangles. Hence, we can cut them as in [5]: let S; be
a rectangle of order 00 and S; be any other rectangle such that S; N S; # 0. We set

S; =0},
nS; =0},
nS; # 0},
NnS; # 0}.

Let us set S = {x € M, 3S; > = of order 00}. Then, for z in Sy we set

z,5;) N
x,S;
x, S;
x,S;

Szlj = {.’E e s, W
SEJ = {LE e s;, W

3 . u
S;lj = {LE S Si, wH

z,8;)NS; =0 and W*
z,S8;)NS; # 0 and W*
z,5;)NS; # 0 and W*
z,5;)NS; =0 and W*

~—~~ Y~
~_~~
—_— — — —

def

R(z) = {ye M,Vi,je N,z € S, =y e S}

This defines a partition R of S;. By construction it is finite, and each of its elements,
R;, is stable by the map [., .]. Hence, each R; is a rectangle; the sets R;’s are called

rectangles of third generation. If z is in R;, we set W*(z, R;) f D35 () N R; and

W(z, R;) = 4t Djg5(x) N R;. 1t is easy to check that if « is in the rectangles of
second generation S ,...S;,, then W**(z, R;) = W**(2,S;,) N R; for 1 < k < p.
Moreover, we let the reader check that proposition 3.7 yields the following result (as
in [5]):

Proposition 3.9. Let R; and R; be two rectangles of third generation, n be some
integer in IN, and x be in R; N f~™(R;). Then,

[T Wz, Ry)) D WH(f*(2)
and f"(W*(z, R;)) < W?(f"(z)

) R])a
, R;).
This means that R is a Markov partition of S;.
Remark: this construction can also be done with the first generation of rectangles
because every T; that intersects with {13 intersects only a finite number of 7}’s.

3.5 Reduced dynamical systems
3.5.1 Hyperbolic times

Let x be in &y. It is a A-hyperbolic point and so, it must return infinitely many
often in (23. Hence, every point in Sy returns infinitely many often in Sp.

Let x be in S and n be in IN* such that f™(z) is in 8. There exist two rectangles
of third generation R; and Ry such that z is in R; and f™(x) is in Rg. Then, the
Markov property ( proposition 3.9) implies that

frwe(f*(2), By)) € W(z, Ri).
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We will need some uniform distortion bound, i.e. some uniform control on
n—1 -,
1 JU(f*(2))
o T EW)

where y belongs to f~"(W"(f"(x), Rx)) and J*(z) is the unstable Jacobian det df| gu(,)(2)-

If the orbit of  comes into B(S,e1) between z and f"(x), then we do not have good
control on Hz;é J*(f(z)), and in particular on the distortion ratio

P T ()

T (fE(y)

HE\

To obtain good estimates we have to use the notion of hyperbolic times that was
introduced in [1]

Definition 3.10. Given 0 < r < 1, we say that n is a r-hyperbolic time for x if for
everyl <k <n

n

IT Nyl <

i=n—k+1
Moreover, it is known that, if

n—1

1 .
lim sup — Zlongf‘Eu(ﬁ \(f7(2))]] < 2logr,

n—-+00

then, there exist infinitely many r-hyperbolic times for x (see section 3, corollary
3.2 in [2]). Therefore, by construction of A, for p; = e~3¢ and for every z in S,
there exist infinitely many ps-hyperbolic times for z.

Lemma 3.11. There exists §' > 0 such that, if § < &', then , for every x in Sy, for
every ps-hyperbolic times for x, n, and for every y in B, 1(x,45(9)), the integer n
is also a \/p,-hyperbolic time for y.

Proof. By continuity of df and E™, there exists some 0" such that for every x in U
and for every y in B(x,¢"), then

—E&

@Il
EEmol
The definition of 5(0) proves that if ¢ is sufficiently small (namely § < ¢’ for some

d'), then 45(0) is smaller than §”. Let us assume that 6 < ¢'; let x be some point in
Sp and n be some py-hyperbolic times for z. Let y be in B, 1;(z,45(J)). Then for
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every 0 < k < n, y belongs to B(z,43(6)) C B(x,4"), which means that for every

0<k<n
1 2 ey P
de@(fk(y))(f’“(y))ﬂ

The real number ¢ is very small compared to ¢, thus (20) proves that for every
0<k<n,

675

< €°. (20)

ldf gl !l < (Vp2)"™*.
This proves that n is a \/p,-hyperbolic time for every y. O

For the rest of the proof, we assume that § is smaller than ¢’

Lemma 3.12. Let x be in Sy and n be some py-hyperbolic time for x. Then, f"(z)
15 1 Sp.

Proof. By definition of the p,-hyperbolic times, ||df‘;5£( fn(w))|| < py = e_%g, which
implies that f"(z) is in Q3 (by definition of e;). Hence, f™(z) is in Sy O

Conversely, if z and f(z) belong to Sy, then 1 is a ps-hyperbolic time. Therefore,
we say that a ps-hyperbolic time for x is a hyperbolic return time in S;. Moreover,
the Markov property of R proves that, if n is a ps;-hyperbolic time for x, then there
exists Ry € R such that f"(x) is in Ry and we have

frwWH(f*(@), Bi)) C So-

3.5.2 First return time map and special rectangle R

For z in Sy, we define some return time 7(z) by
7(z) =inf {n € N*,3y € f"(W*(f"(z), R(f™(z)))) / n is a hyperbolic return time for y} ,

where R(f™(z)) denotes the rectangle of third generation that contains f"(x). This
defines a map gy from Sy to itself by setting go(z) «f @ ().

Remark: because of the Markov property, the map gy is well defined. It is an
injection but not necessary a bijection.

Proposition 3.13. There exists at least one rectangle of third generation Ry in R
such that:

1. Leb“(Rk) > 0,

2. for each x in Ry, the set of points y in W*(x, Ry) that return infinitely many
often in Ry, by iteration of gy, has positive Leb}-measure.
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Proof. We first notice that A has positive Leb"-measure, thus, Leb*(Sy) > 0. More-
over, &y is covered by a finite number of rectangles of the third generation, every
point in &y is a density point for A and every point in Sy returns infinitely many
times in Sp.

Therefore, there exists one rectangle Ry with positive Leb"-measure, and such that
for one z in Ry, the set of points y in W*(x, Ry) that return infinitely many often
in Ry by iteration of gy, has positive Leb?-measure. Now, the Markov property and
the absolutely continuous property of the foliations yield 2 for every z in Ry. O

Let Ry be one rectangle of third generation as in proposition 3.13. We denote by

R the set of points y in Ry that return infinitely many often in Ry (by iteration of

90). We also define W*"(y, R) et W*(y, Ry) N R and W*(y, R) def We(y,Re) N R =

W*(y, Rx). Because of proposition 3.9, R is a rectangle, i.e.,
Vz,y € R, {[z,y]} = W*(z, R) N W*(y, R). (21)
Moreover,
Ve € R, Leb%(R) > 0, (22)
and Vz € R, Vn € IN such that f"(z) € R,

WH(f"(z), R) C f*(W*(z, R)), and W*(f"(z), R) > f"(W*(, R)). (23)

We denote by g the first-return-map in R (by iteration of go). By construction, there
exists some first-return-time map r such that for every z in R, g(z) = f"@ (). As
usually we denote by r"(z) the n'’-return time in R by iteration of g, namely
g"(z) = f"®(z) (this time can be different from the n** return time of x in R by
iteration of f).

4 Proof of Theorem B

4.1 SRB-measure for (R,g)

We copy the method of [9]. Let z be some point in R. We denote by p, the measure

n—1

def 1 i
n = — L bua
Hn = — > g Leb

1=0

and pick p some accumulation point of the family (u,). To prove that u is a SRB-
measure, it is sufficient to prove that there exists some constant x, such that for
every integer n, for every y in ¢"(W"(z, R)) and for every z in W*(y, R)

o T o
[Tico J2(f7(2))

We have chosen the map ¢ in relation with hyperbolic times. Hence we have some
distortion bounds.
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Lemma 4.1. There exists 0 < wy < 1 such that for every z in S and y in
95 ' (W"(go(2), R(90(2)))), and for every 0 < k < 7(2),

d*(f*(2), f*(y)) < (wo)™® *d"(g0(2), 90(y))-

Proof. If z is in S N f71(8y), then go(2) = f(2) and z is in Q3 (far away from S).

If go(2) = 7 (2) with 7(z) > 1, then by definition of gy, there exists 2’ such that

(i) 7(2) is a ps-hyperbolic time for z'.

(i) 2 is in C(2) < fTOW (7O (2), R(/(2))).

The diameter of R(f7(*)(z)) is smaller than 23(); hence, by construction of the
third generation of rectangles, C(z) is included into B;(,)+1(z,48(9)), which yields
to the fact that 7(2) is a y/ps-hyperbolic time for every point in C(z).

Therefore, the map f*=7¢) : W (f73)(2), R(f7?)(2))) = f*(C(2)) is a contraction,
and satisfies |||dfﬁ§7(z)||| < (/pa)™®~*. Thus,

T(2)—k

d“(f*(2), FE(y)) < (pa) 2 d“(90(2); 9o(¥))-
O

Lemma 4.2. There exist some constants x1 > 0 and 0 < w < 1 such that for every
n > 1, for every y in W¥(z, R), for every z in g "(W"(g"(y), R)) and for every
m < n, we obtain

r™m(z)—1

> log((f1(2))) — og(J*(F/(y)))| < xa ™.

J=0

Proof. The map x — J"(x) is Holder-continuous because the map E* is Holder-
continuous; moreover it has its values into [1, +oo[. The map ¢ — log(¢) is Lipschitz-
continuous on |1, +oo[. Thus, there exists some constants x, and «, such that

r™(z)—1 r™(z)—1
> |l @) —log((F W) < Y (@ (FH R, PO (25)

Hence, lemma 4.1 and (25) give

rm(z)—1 oo
> Hog(T(f7(2))) ~ Tog(J* (/1)) < X2 [Z pi"/2] (d"(g™(2), g™ (y))™
Lemma 4.1 also gives d*(g™(2), ¢™(y)) < p" ™ *diam(R). O

Lemma 4.2 proves that (24) holds for every n, for every y in ¢"(W"(z, R)) and
for every z in W"(y, R), with x := x1 + 2logk. Then the measure p is a SRB-
probability measure for (R, g).
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4.2 SRB-measure for (M, f)

The map g satisfies g(z) = f7*)(z) for every z in R. Let R(i) = {z € R,r(z) =i}
be the set of points in R such that the first return time equals . We set

—_

+o0 i—

m = FLpIR()).

i=1j

¥
)

Then m is at least o-finite SRB-measure. It is finite if and only if [, r »r(x)dLebp < oo.
In this case, we may normalize the measure to obtain some probablhty measure.

4.3 Markov partitions

There are several possibilities to construct a Markov partition from our cover. The
simplest at that time is to use the iterates of R: if z is in R(n), then for every
0 <k <n we set

C(f¥(x)) = FA(f (W (f"(2)), R), W (z, R)]).

This defines a countable family of rectangles which satisfy the Markov property.
Each rectangle has a diameter smaller than 23(4). This is a Markov partition of A
but A is strictly included in A.

However we could do the same with the partition R (instead of one of its elements)
and the map gq. This also defines a partition of A.

In fact, we can do it with our first generation of rectangles: we have made the rectan-
gles of the first generation thinner because we needed some control on the distortion
of the unstable-Jacobian, but the key point is that, rectangles that intersect {23 must
intersect only a finite number of other rectangles. This holds for the rectangles of
the first generation. Therefore we can cut all the rectangles which intersect with {23
like Bowen did. This gives a Markov partition of 23 N A in rectangles (77). For z
in an element of this partition (7}), there exists an integer n > 0 such that f"(x)
is again in such an element (7}). If n is the smallest positive integer which satisfies
this condition, then we set for 0 < k£ < n.

C(f* () = FA V(™) (@), T7), W* (2, T7))).

This defines a Markov partition of A with diameter smaller than the diameter of 7.
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