
2-Person Zero-Sum

Stochastic Differential Games

based on common work with
Li Juan, Shandong University, branch of Weihai

———————————

SIAM J. on Control Opt. 47(1), 2008; arXiv

—————————————————————————————

Preliminaries. Framework

(Ω,F ,P) canonical Wiener space: for a given finite time horizon T > 0,

• Ω = C0([0,T ];Rd) (endowed with the supremum norm);

• Bt(ω) = ω(t), t ∈ [0,T ],ω ∈Ω - the coordinate process;



• P - the Wiener measure on (Ω,B(Ω)): unique probability measure
w.r.t. B is a standard BM;

• F = B(Ω)∨NP;

• F = (F )t)t∈[0,T ] with Ft = F B
t = σ{Bs,s≤ t}∨NP.

(Ω,F ,F,P;B) - the complete, filtered probability space on which we
will work.

Dynamics of the game:

Initial data: t ∈ [0,T ], ζ ∈ L2(Ω,Ft ,P;Rd);

associated doubly controlled stochastic system:

dX t,ζ;u,v
s = b(s,X t,ζ;u,v

s ,us,vs)ds+σ(s,X t,ζ;u,v
s ,us,vs)dBs,

X t,ζ;u,v
t = ζ, s ∈ [t,T ],

(1)

Player I: u ∈U =: L0
F(0,T ;U);

Player II: v ∈ V =: L0
F(0,T ;V ); U,V - compact metric spaces



and where the mappings

b : [0,T ]×Rn×U×V → Rn,
σ : [0,T ]×Rn×U×V → Rn×d ,

are continuous over Rn×U ×V (for simplicity); Lipschitz in x, uni-
formly w.r.t (t,u,v), i.e., for some L ∈ R+,

|σ(s,x,u,v)−σ(s,x′,u,v)|, |b(s,x,u,v)−b(s,x′,u,v)| ≤ |x− x′|;
|σ(s,x,u,v)|, |b(s,x,u,v)| ≤ (1+ |x|).

Existence and uniqueness of the solution X t,ζ,u,v ∈ S 2
F(t,T ;Rn);

from standard estimates: for all p≥ 2 there is some Cp(= Cp,L) ∈ R+
s.t.

E

[
sup

s∈[t,T ]
|X t,ζ;u,v

s −X t,ζ′;u,v
s |p |Ft

]
≤Cp|ζ−ζ

′|p, P-a.s.,

E

[
sup

s∈[t,T ]
|X t,ζ;u,v

s |p |Ft

]
≤Cp(1+ |ζ|p), P-a.s.



Definition of the cost functionals

The cost functional is defined with the help of a backward SDE
(BSDE):

Associated with (t,ζ) ∈ [0,T ]×L2(Ω,Ft ,P;Rn),u ∈U and v ∈ V , we
consider the BSDE:

dY t,ζ;u,v
s = − f (s,X t,ζ;u,v

s ,Y t,ζ;u,v
s ,Zt,ζ;u,v

s ,us,vs)ds+Zt,xζ;u,v
s dBs,

Y t,ζ;u,v
T = Φ(X t,ζ;u,v

T ), s ∈ [t,T ],
(2)

where

� Final cost: Φ : Rn→ R Lipschitz

� Running cost: f : [0,T ]×Rn ×R×Rd ×U ×V → R, continuous;
Lipschitz in (x,y,z), uniformly w.r.t (t,u,v).

Under the above assumptions: existence and uniqueness of the solution
of BSDE (2):



(Y t,ζ;u,v,Zt,ζ;u,v) ∈ S 2
F(t,T ;R)×L2

F(t,T ;Rd).

From standard estimates for BSDEs using the corresponding results
for the controlled stochastic system: for all p≥ 2 there is some Cp(=
Cp,L) ∈ R+ s.t.

E

[
sup

s∈[t,T ]
|Y t,ζ;u,v

s −Y t,ζ′;u,v
s |p +

(∫ T

t
|Zt,ζ;u,v

s −Zt,ζ′;u,v
s |2ds

)p/2

|Ft

]
≤Cp|ζ−ζ′|p, P-a.s.,

E

[
sup

s∈[t,T ]
|Y t,ζ;u,v

s |p +
(∫ T

t
|Zt,ζ;u,v

s |2ds
)p/2

|Ft

]
≤Cp(1+ |ζ|p), P-a.s.

In particular, for C = C1/2
2 ,

|Y t,ζ;u,v
t −Y t,ζ′;u,v

t | ≤C|ζ−ζ
′|, P-a.s.,

|Y t,ζ;u,v
t | ≤C(1+ |ζ|), P-a.s.



Let t ∈ [0,T ], ζ = x ∈ Rn - deterministic initial data; u ∈U, v ∈ V ;

associated Cost functional for the game over the time interval [t,T ] :

J(t,x;u,v) := Y t,x;u,v
t

(
∈ L2(Ω,Ft ,P)

)
.

Remark 1: (i) If f ≡ 0 : J(t,x;u,v) = E[Φ(X t,x;u,v
T )|Ft ];

(ii) If f doesn’t depend on (y, z):

J(t,x;u,v) = E[Φ(X t,x;u,v
T )+

∫ T

t
f (s,X t,x;u,v

s ,us,vs)ds|Ft ].

Which kind of game shall we study?

Objective of Player I: maximization of J(t,x,u,v);

Objective of Player II: minimization of J(t,x,u,v);

the both players have the same value function, it’s the game for player
I, the loss for player II - one speaks of “2-persons zero-sum stochastic
differential games”;



in non-zero sum games: Player i has cost functional Ji(t,x,u1,u2...),
i≥ 1, the players want to maximize there cost functional; problem of
the existence and the characterization of Nash equilibrium points.

Game “Control against Control”?

• In general no value of the game, i.e., the result of the game depends
on which player begins, and this even if Isaacs’ condition is fulfilled
(precision later); example: pursuit games (Example at the blackboard.)

• Games “Control against Control” with value if: n = d; σ ∈ Rn×n(x)
is independent of (u,v) and invertible (as matrix); σ−1 : Rn→ Rn×n is
Lipschitz (S.HAMADENE, J.-P.LEPELTIER, S.PENG).

Game “Strategy against Control”:

This concept has been known in the deterministic differential game the-
ory (A.FRIEDMAN, W.H.FLEMING,..)nd has been translated later by
W.H.FLEMING, P.E.SOUGANIDIS (1989) to the theory of stochastic
differential games.



Here: a generalization of the concept of W.H.FLEMING,
P.E.SOUGANIDIS (1989); a comparison of their concept with ours:
later.

Admissible controls, admissible strategies

Definition 1: (admissible controls for a game over the time interval
[t,T ])

• For Player I: Ut,T =: L0
F(t,T ;U);

• for Player II: Vt,T =: L0
F(t,T ;V ).

Notice: In difference to the concept by FLEMING, SOUGANIDIS, the
controls u ∈Ut,s,v ∈ Vt,s are not supposed to be independent of Ft .

Definition 2: (admissible strategies for a game over the time interval
[t,T ])

• For Player II: β : Ut,T −→ Vt,T non anticipating, i.e.,

for any F− stopping time S : Ω→ [t,T ] and any admissible controls
u1, u2 ∈Ut,T



(u1 = u2 dsdP-a.e. on [[t,S]] =⇒ β(u1) = β(u2) dsdP-a.e. on [[t,S]]).

Bt,T := {β : Ut,T → Vt,T |β is nonanticipating}.

Analogously we introduce

• for Player I: At,T := {α : Vt,T →Ut,T |α is nonanticipating}.

Value Functions:

Notice: From J(t,x,u,v) := Y t,x,u,v
t and the standard estimates for

Y t,x,u,v
t :

J(t,x,u,v) ∈ L∞(Ω,Ft ,P), (t,x,u,v) ∈ [0,T ]×Rn×U×V , and:

• |J(t,x,u,v)− J(t,x′,u,v)| ≤C|x− x′|,
• |J(t,x,u,v)| ≤C(1+ |x|),

P-a.s., for all x,x′ ∈ Rn, (t,u,v) ∈ [0,T ]×U×V ;

• Y t,ζ,u,v
t = J(t,ζ,u,v)

(
:= J(t,x,u,v)∣∣x=ζ

)
, P-a.s. (evt. blackboard)



The above estimates for J(t,x,u,v) allow to introduce:

• Lower Value Function:

W (t,x) := essinfβ∈Bt,T esssupu∈Ut,T
J(t,x;u,β(u));

• Upper Value Function:

U(t,x) := esssupα∈At,T
essinfv∈Vt,T

J(t,x;α(v),v).

Remarks. • Justification of the names “upper” and “lower” value func-
tions: later we will see W ≤U ; the proof is far from being obvious and
uses the comparison principle for the associated Bellman-Isaacs equa-
tions, it will be given later.

• The esssup, essinf should be understood as ones w.r.t. a uniformly
bounded, indexed family of Ft -measurable r.v.; see: Dunford/Schwartz
(1957). Consequently:



W (t,x), U(t,x) ∈ L∞(Ω,Ft ,P), and, for some C ∈ R+ (independent of
(t,x)):

• |W (t,x)−W (t,x′)|+ |U(t,x)−U(t,x′)| ≤C|x− x′|, P-a.s.,

• |W (t,x)|+ |U(t,x)| ≤C(1+ |x|), P-a.s., for all t ∈ [0,T ], x,x′ ∈ Rn.

Although W, U are a priori random variables, we have:

Proposition 1: W (t,x) = E[W (t,x)], U(t,x) = E[U(t,x)], (t,x) ∈
[0,T ]×Rn, i.e., W and U admit a deterministic version with which
we identify the both functions from now on.

Corollary. W,U : [0,T ]×Rn −→ R are such that

|W (t,x)−W (t,x′)|+ |U(t,x)−U(t,x′)| ≤C|x− x′|,
|W (t,x)|+ |U(t,x)| ≤C(1+ |x|), for all t ∈ [0,T ], x,x′ ∈ Rn.



Some Remarks preceding the proof of the proposition.

1) Concept of W.H.FLEMING, P.E.SOUGANIDIS (1989):

their running cost f (s,x,y,z) don’t depend on (y,z), i.e., their cost
functional is the classical one;

more essential:

• admissible controls: instead of Ut,T : Ut
t,T := L0

Ft (t,T ;U),

instead of Vt,T : V t
t,T := L0

Ft (t,T ;V ),

Ft = (F t
s )s∈[t,T ], F t

s := σ{Br−Bt , r ∈ [t,s]}∨NP, s ∈ [t,T ];

• admissible strategies: instead of Bt,T : B t
t,T - the set of all non antic-

ipating mappings β : Ut
t,T −→ V t

t,T ,

(non anticipativity is understood in the same sense as that in the
definition of Bt,T ); analogous definition of A t

t,T .

Their cost functional



J(t,x;u,v) := E
[

Φ(X t,x,u,v
T )+

∫ T

t
f (s,X t,x,u,v

s ,us,vs) |Ft

]
= E

[
Φ(X t,x,u,v

T )+
∫ T

t f (s,X t,x,u,v
s ,us,vs)

]
is automatically deterministic, and so are their upper and lower value
functions:

W (t,x) := inf
β∈Bt,T

sup
u∈Ut,T

J(t,x;u,β(u)), U(t,x) := inf
α∈At,T

inf
v∈Vt,T

J(t,x;α(v),v).

Our approach in comparison with theirs:

(1st mini-lecture:)

• Proof that W, U are deterministic is not evident, but after:

• Straight forward approach without approximation by discrete
schemes, without further technical notions (like π-controls,
r-strategies), without using the Bellman-Isaacs equation for proving
the DPP:



- Direct deduction of the DPP from the definition of W,U (with the
help of Peng’s notion of backward semigroups);

(2nd mini-lecture:)

- Direct deduction of the Bellman-Isaacs equations for W, U from
the DPP (with the help of a scheme of 3 BSDEs, the so-called Peng’s
BSDE method developed by him for control problems);

- Adaptation of a uniqueness proof for integro-PDEs (G.BARLES,
R.BUCKDAHN, E.PARDOUX) to Bellman-Isaacs equations.

2) Proof that W is deterministic for control problems (1997):

U ⊂ RM compact subset; σ, b, f don’t depend on v, and are supposed
to be Lipschitz in all their variables (x,u) and (x,y,z,u), resp.;

W (t,x) := esssupu∈Ut,T
J(t,x,u).

Then:



|J(t,x,u)− J(t,x,u′)|2 ≤CE
[∫ T

t
|us−u′s|2 |Ft

]
, P-a.s., u,u′ ∈Ut,T .

Let

Ustep
t,T :=

{
u =

N

∑
i,k,`=1

IAi IBk,`θk,`I(tk−1,tk] : t = t0 < t1 < · · ·< tN = T,

θk,` ∈U, Ak,` ∈ Ft ,Bk,` ∈ F t
tk1

, N ≥ 1
}

;

then
W (t,x) = esssupu∈Ustep

t,T
J(t,x,u).

On the other hand, for u ∈Ustep
t,T as above:

u =
N

∑
i,k,`=1

IAi IBk,`θk,`I(tk−1,tk] =
N

∑
i=1

IAi

( N

∑
k,`=1

IBk,`θk,`I(tk−1,tk]
)

=
N

∑
i=1

IAiu
i, where ui ∈Ut

t,T , 1≤ i≤ N,



and from the uniqueness of the solutions of the controlled forward and
backward SDEs:

J(t,x,u) = ∑
N
i=1 IAiJ(t,x,ui)≤ sup1≤i≤N J(t,x,ui)≤ supu′∈Ut

t,T
J(t,x,u′),

and, consequently, since Ut
t,T ⊂Ut,T ,

W (t,x) = sup
u′∈Ut

t,T

J(t,x,u′);

the right-hand side is deterministic and so is W (t,x).

Peng’s argument doesn’t work for stochastic differential games:

- One cannot restrict to continuous strategies;

- W.r.t. which norm should the spaces of admissible strategies be ap-
proximable by which “admissible step strategies”?

Here new approach for the proof that W is deterministic; even conti-
nuity of the coefficients in (u,v) is not needed.



Proof the the upper and lower value functions are deterministic: main
tool is a Girsanov transformation argument (at the blackboard).

——————————————————–

Dynamic Programming Principle (DPP)

Some Preparation: Stochastic Backward Semigroup, S.Peng,1997:
book on his BSDE method for stochastic control problems:

S.Peng, (1997)BSDE and stochastic optimizations; Topics in stochas-
tic analysis. J.Yan, S.Peng, S.Fang and L.Wu, Chapter 2, Science
Press. Beijing (in Chinese).

Given

(t,ζ)∈ [0,T ]×L2(Ω,Ft ,P;Rn), δ > 0(t +δ≤ T ), u∈Ut,t+δ, v∈Vt,t+δ,

η ∈ L2(Ω,Ft+δ,P;R) - terminal condition for time horizon t +δ,

we put
Gt,x;u,v

s,t+δ
[η] := Ỹs, s ∈ [t, t +δ],



where (Ỹ , Z̃) ∈ S 2
F(t, t + δ)× L2

F(t, t + δ;Rd) is the unique solution of
the following BSDE with time horizon t +δ:{

dỸs = − f (s,X t,x;u,v
s ,Ỹs, Z̃s,us,vs)ds− Z̃t,x;u,v

s dBs, ∈ [t, t +δ],
Ỹt+δ = η;

X t,x;u,v is the solution of our doubly controlled stochastic system (the
forward SDE).

Remark:

(i) (The semigroup property) For 0≤ t ≤ s≤ s′ ≤ t +δ≤ T,

Gt,x;u,v
s,s′ [Gt,x;u,v

s′,t+δ
[η]] = Gt,x;u,v

s,t+δ
[η].

(ii) Gt,x;u,v
s,T [Φ(X t,x;u,v

T )] = Y t,x;u,v
s , P-a.s., s ∈ [t,T ].

In particular, for s = t,

Gt,x;u,v
t,T [Φ(X t,x;u,v

T )] = J(t,x;u,v), P-a.s..

(iii) J(t,x;u,v) = Y t,x;u,v
t = Gt,x;u,v

t,T [Φ(X t,x;u,v
T )]



= Gt,x;u,v
t,t+δ

[Y t,x;u,v
t+δ

] = Gt,x;u,v
t,t+δ

[J(t +δ,X t,x;u,v
t+δ

;u,v)].

The latter relation follows from the uniqueness of the solution of the
forward and the backward equations: for ζ = X t,x;u,v

t+h

(
Ω,Ft ,P;Rn),

Y t,x;u,v
t+δ

= Y
t+h,X t,x;u,v

t+h ;u,v
t+h = Y t+h,ζ;u,v

t+h = J(t +δ,ζ;u,v)

= J(t +δ,X t,x;u,v
t+h ;u,v).

(iv) If f doesn’t depend on (y,z) we have the classical case of conditional
expectation:

Gt,x;u,v
t,t+δ

[η] = E
[

η+
∫ t+δ

t
f (s,X t,x;u,v

s ,us,vs)ds|Ft

]
, P-a.s.

Taking now η = W (t + δ,X t,x;u,v
t+δ

) (resp., U(t + δ,X t,x;u,v
t+δ

)) it becomes
clear from the classical DPP from control problems that our DPP shall
write as follows:



Theorem 2 (DPP): For any 0≤ t < t +δ≤ T, x ∈ Rn,

W (t,x) = essinf
β∈Bt,t+δ

esssup
u∈Ut,t+δ

Gt,x;u,β(u)
t,t+δ

[W (t +δ,X t,x;u,β(u)
t+δ

)];

U(t,x) = esssup
α∈At,t+δ

essinf
v∈Vt,t+δ

Gt,x;α(v),v
t,t+δ

[U(t +δ,X t,x;α(v),v
t+δ

)].

Remark: If f (x,y,z,u,v) is independent of (y,z) the above DPP writes:

W (t,x) = essinf
β∈Bt,t+δ

esssup
u∈Ut,t+δ

E[W (t +δ,X t,x;u,β(u)
t+δ

)

+
∫ t+δ

t
f (s,X t,x;u,β(u)

s ,us,vs)ds|Ft ];

analogous for U(t,x).

Sketch of proof: auxiliary function:

Wδ(t,x) := essinf
β∈Bt,t+δ

esssup
u∈Ut,t+δ

Gt,x;u,β(u)
t,t+δ

[W (t +δ,X t,x;u,β(u)
t+δ

)];



(i) Wδ(t,x) is deterministic: same Girsanov transformation argument
as for W (t,x).

(ii) For any ε > 0, and for any β ∈ Bt,T , there exists some uε ∈Ut,T
such that

Wδ(t,x)≤ J(t,x;uε,β(uε))+ ε, P-a.s.,

from where: Wδ(t,x)≤W (t,x). (Calculus at the blackboard.)

(iii) For any ε > 0, there exists βε ∈ Bt,T such that ∀u ∈Ut,T :
Wδ(t,x)≥ J(t,x;u,βε(u))− ε, P-a.s.,

from where: Wδ(t,x)≥W (t,x). (Calculus at the blackboard.)

———————————————————

With the help of the DPP we can prove the following

Theorem 3. W (.,x) and U(.,x) are 1
2−Hölder continuous, for all x ∈

Rn: There is some C ∈ R+ such that, for every x ∈ Rn, t, t ′ ∈ [0,T ],

|W (t,x)−W (t ′,x)|+ |U(t,x)−U(t ′,x)| ≤C(1+ |x|)|t− t ′|
1
2 .



(Explanation at blackboard.)

———————————————————-

Bellman-Isaacs equations. Existence theorem.

We consider the Hamiltonian

H(t,x,y, p,S,u,v)

:=
1
2

tr(σσ
T (t,x,u,v)S)+b(t,x,u,v).p+ f (t,x,y, p.σ(t,x,u,v),u,v),

(t,x,y, p,S,u,v) ∈ [0,T ]×Rn×R×Rn×Sn×U×V.

H−(t,x,y, p,S) := sup
u∈U

inf
v∈V

H(t,x,y, p,S,u,v);

H+(t,x,y, p,S) := inf
v∈V

sup
u∈U

H(t,x,y, p,S,u,v).

We will show that, in viscosity sense, we have the following Bellman-
Isaacs equations:



∂W
∂t

(t,x)+H−(t,x,W,DW,D2W ) = 0, W (T,x) = Φ(x), (3)

and
∂U
∂t

(t,x)+H+(t,x,U,DU,D2U) = 0, U(T,x) = Φ(x). (4)

More precisely,

Theorem 4 (Existence Theorem): W ∈C`([0,T ]×Rn) is a viscosity
solution of equation (3), and U ∈C`([0,T ]×Rn) is a viscosity solution
of equation (4).

(Recall of the notion of viscosity solution if necessary.)

We come after back to the proof of the existence theorem.

Theorem 5 (Comparison Principle): Let u1 ∈USC([0,T ]×Rn) be a
viscosity subsolution of (3) (resp., of (4)) and u2 ∈LSC([0,T ]×Rn) be
a viscosity supersolution of (3) (resp., of (4)). Moreover, we suppose



that both functions belong to the class of measurable functions V with
the following growth condition:

∃A > 0 such that, uniformly in t ∈ [0,T ],

V (t,x)exp{−A[ln |x|]2}
(

=
V (t,x)
|x|A ln |x|

)
−→ 0 as |x| →+∞.

Then u1 ≤ u2, on [0,T ]×Rn.

Corollary. Let u1 and u2 be continuous viscosity solutions of (3) (resp.,
of (4)). Moreover, we suppose that both functions satisfy the above
growth condition. Then u1 = u2, on [0,T ]×Rn.

Remarks 1: • Barles, Buckdahn, Pardoux (1997) proved that this
growth condition is the optimal one for the uniqueness of the (vis-
cosity) solution of the heat equation.

• The proof of the uniqueness theorem adapts the argument of Barles,
Buckdahn, Pardoux (1997) to Bellman-Isaacs equations (and, hence,
also to Hamilton-Jacobi-Bellman equations).



Remarks 2: • W ∈ C`([0,T ]×Rn) (resp., U ∈ C`([0,T ]×Rn)) is the
unique viscosity solution of (3) (resp., (4)) in the class of continuous
functions with the above growth condition, and so in particular in
Cp([0,T ]×Rn).

• Notice that H− ≤ H+; consequently, W is a viscosity subsolution
of (4), and from the comparison principle: W ≤U . This justifies the
names “lower value function” for W and “upper” value function for U .

• If the Isaacs’ condition holds: H− = H+ on [0,T ]×Rn×R×Rn×Sn,
then the equations (3) and (4) are the same, and from the uniqueness
of the viscosity solution in Cp([0,T ]×Rn): W =U . One says the “game
has a value”.

• For the case that f (s,x,y,z,u,v) doesn’t depend on (y,z),
W.H.FLEMING, P.E.SOUGANIDIS have got the same Bellman-Isaacs
equations as we have got. From the uniqueness of the viscosity
solutions in Cp([0,T ]×Rn):

W (t,x)
(

:= infβ∈Bt
t,T

supu∈Ut
t,T

J(t,x;u,β(u))
)

= W (t,x);



U(t,x)
(

:= infα∈At
t,T

infv∈V t
t,T

J(t,x;α(v),v)
)

= U(t,x).

Sketch of the proof of the existence theorem:

We prove that W is a continuous viscosity solution of the PDE

∂W
∂t

(t,x)+H−(t,x,W,DW,D2W ) = 0, W (T,x) = Φ(x), (3)

with
H−(t,x,y, p,S) := sup

u∈U
inf
v∈V

H(x,y, p,S,u,v);

and

H(x,y, p,S,u,v) :=
1
2

tr(σσ
T (x,u,v)S)+ f (x,y, p.σ(x,u,v),u,v),

(x,y, p,S,u,v) ∈ Rn×R×Rn× Sn×U ×V (for shortness but without
restriction of the method: b = 0; coefficients don’t depend on time s).

Let ϕ ∈ C3
`,b([0,T ]×Rn) be an arbitrary but fixed test function. We

define:



Lx,u,vϕ(s,x) =
∂

∂s
ϕ(s,x)+

1
2

tr(σσ
∗(x,u,v)D2

ϕ(s,x)),

and

F(s,x,y,z,u,v) := Lx,u,vϕ(s,x)

+ f (s,x,y+ϕ(s,x)),z+Dϕ(s,x)σ(x,u,v),u,v).

Notice:
∂

∂t
ϕ(t,x)+H−(t,x,(ϕ,Dϕ,D2

ϕ)(t,x)) = sup
u∈U

inf
v∈V

F(t,x,0,0,u,v).

So we have to prove that if W−ϕ≤ (resp., ≥)= (W−ϕ)(t,x) = 0 then
supu∈U infv∈V F(t,x,0,0,u,v)≥ 0 (−→ subsolution)

(resp., supu∈U infv∈V F(t,x,0,0,u,v)≤ 0 (−→ supersolution)).

Peng’s BSDE method: “Approximating BSDEs”

1st BSDE: For 0 < δ≤ T − t small, u ∈Ut,t+δ, v ∈ Vt,t+δ:

dY 1,u,v,δ
s =−F(s,X t,x,u,v

s ,Y 1,u,v,δ
s ,Z1,u,v,δ

s ,us,vs)ds+Z1,u,v,δ
s dBs,

Y 1,u,v,δ
t+δ

= 0.



Notice: • The BSDE admits a unique solution (Y 1,u,v,δ,Z1,u,v,δ) ∈
S 2

F(t, t +δ)×L2
F(t, t +δ;Rd).

• Y 1,u,v,δ
s = Gt,x,u,v

s,t+δ
[ϕ(t +δ,X t,x,u,v

t+δ
)]−ϕ(s,X t,x,u,v

s ), s ∈ [t, t +δ], P-a.s.

(Idea of the proof: evtl. at the blackboard.)

The 1st BSDE will translate the DPP in BSDE property. Approximation
of the 1st BSDE:

2nd BSDE: For 0 < δ≤ T − t small, u ∈Ut,t+δ, v ∈ Vt,t+δ:

dY 2,u,v,δ
s =−F(s,x,Y 2,u,v,δ

s ,Z2,u,v,δ
s ,us,vs)ds+Z2,u,v,δ

s dBs, s ∈ [t, t +δ],

Y 2,u,v,δ
t+δ

= 0.{
Recall:

dY 1,u,v,δ
s =−F(s,X t,x,u,v

s ,Y 1,u,v,δ
s ,Z1,u,v,δ

s ,us,vs)ds+Z1,u,v,δ
s dBs,

Y 1,u,v,δ
t+δ

= 0.



Our objective: To approximate the 1st BSDE -the key to use the DPP-
by the 2nd BSDE, and the 2nd BSDE by a deterministic ordinary

differential equation with terminal condition.

}
Lemma. There is some C ∈ R+ s.t., for all δ ∈ (0,T − t] sufficiently
small and all u ∈Ut,t+δ, v ∈ Vt,t+δ:

|Y 1,u,v,δ
t −Y 2,u,v,δ

t | ≤Cδ
3/2, P-a.s.

(Idea of proof at blackboard.)

Let F0(s,x,y,z) = supu∈U infv∈V F(s,x,y,z,u,v).

3rd BSDE: For 0 < δ≤ T − t small:

dY 0,δ
s =−F0(s,x,Y

0,δ
s ,0)ds

(
+0dBs

)
, s ∈ [t, t +δ],

Y 0,δ
t+δ

= 0.

Lemma. esssupu∈Ut,t+δ
essinfv∈Vt,t+δ

Y 2,u,v,δ
t = Y 0,δ

t .



(Proof at the blackboard.)

————————————————–

These 3 BSDEs allow to prove:

1)W is a subsolution: (blackboard)

2)W is a supersolution: (blackboard)

Perspectives (and work which is already done):

• 2-Person zero-sum SDG with reflection at one obstacle, at two ob-
stacles (LI JUAN, R.B., submitted, arXiv)

• 2-Person zero-sum SDG with jumps (in redaction; LI JUAN, R.B.)

• Nonzero-sum SDGs, existence of Nash equilibrium points, Non an-
ticipative Strategies with Delay (NAD-strategies); this concept al-
lows to study games “NAD-strategy against NAD-strategy” (advan-
tage: “symmetry” between both players; disadvantage: Nash equilib-
ria can be studied only by ε-approximations): (P.CARDALIAGUET,
C.RAINER, R.B., 2004)



• SDG with asymmetric information (P.CARDALIGUET, C.RAINER,
submitted, web page of C.Rainer)

• Measure-valued differential games (P.CARDALIAGUET,
M.QUINCAMPOIX)

• A lot of other works.


