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Preliminaries. Framework

(Q, F,P) canonical Wiener space: for a given finite time horizon 7 > 0,
e Q=Cy([0,T];R?) (endowed with the supremum norm);

e B,(®) =0(t),t €[0,T],® € Q - the coordinate process;
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e P - the Wiener measure on (Q,B(Q)): unique probability measure
w.r.t. B is a standard BM;

o F =B(Q)VANp;

o F = (F)i)ep.r) with F = F° = 6{B;,s <1}V Np.

(@, F,F,P;B) - the complete, filtered probability space on which we
will work.

Dynamics of the game:

Initial data: # € [0,T], { € L*(Q, %, P;R4);

associated doubly controlled stochastic system:

dXst’C;u’v = b(svxéé;uﬁvvusavs)ds""G(S7X§’C;u7va’437vs)stv

. 1
Xtt’g’u’v = Cn s € [t> T]7 ( )

Player I: u € U =:L%(0,T;U);
Player II: ve ¥ =: L%(0,T;V); U,V - compact metric spaces
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and where the mappings
b:[0,T]xR"xU xV — R",
G:[0,T] xR"xU xV — R4,

are continuous over R” x U x V (for simplicity); Lipschitz in x, uni-
formly w.r.t (z,u,v), i.e., for some L € R,

|o(s,x,u,v) — & (s,x",u,v)|, |b(s,x,u,v) —b(s,x,u,v)| < [x—x'|;
|0 (s,2,u, V)], [b(s, x,u,v)] < (14 |x]).
Existence and uniqueness of the solution X" ¢ S2(t,T;R");

from standard estimates: for all p > 2 there is some C,,(=Cp 1) € Ry
s.t.

E | sup [X\5 —XISwvP | | < Cp|C—C'|P, P-as,,
s€(t,T]
E | sup [X'5P| | < Cp(1+]C[P), P-ass.

s€(t,T)
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Definition of the cost functionals

The cost functional is defined with the help of a backward SDE
(BSDE):

Associated with (¢,8) € [0,T] x L*(Q, %,P;R"),u € U and v € V, we
consider the BSDE:

dYst.(:;uy _ —f(S,X_y[7c;u7v,YS[’C;ll7v,Z§7c;u7v,I/ts,vs)dS-Q-Zé"Xc;u’vst,
Y = e, selt,T),
2)
where

¢ Final cost: @ : R"” — R Lipschitz
o Running cost: f:[0,T] x R" xR xRY x U xV — R, continuous;
Lipschitz in (x,y,z), uniformly w.r.t (¢,u,v).

Under the above assumptions: existence and uniqueness of the solution
of BSDE (2):
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(yrouy zt&uvy e §2(¢,T;R) x L&(t,T;RY).

From standard estimates for BSDEs using the corresponding results
for the controlled stochastic system: for all p > 2 there is some C,(=
CP,L) S R+ s.t.

p/2
st) | 9;1

<Cpl-C'|P, P-as.,

T
sup |YSt,C;u,v _ Y;,C/;M=V|p + (/ |Z§,C;u,v _ ZA{,C/U’W
t

|s€[1,T]

T p/2
sp 155 ([ oo pa) f’]ﬁcp(ucw-a.s.
t

LS€[1.T]

particular, for C = C21/2’

‘Ytt.,C;u,v _Ytt,C’;u,v‘ <Clg-0|, P-as.,
5 < (1 +¢)), P-as.
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Let # € [0,7], { = x € R" - deterministic initial data; u € U,v € V;
associated Cost functional for the game over the time interval [t,T] :
J(t,x;u,v) =Y (€ L2(Q, F,P)).

Remark 1: (i) If f=0:J(t,x;u v) = E[@(X;") | F);
(i) If f doesn't depend on (y, z)
J(t,x;u,v) = X5 +/ F(s, X5 g vo)ds| F).-

Which kind of game shall we study?
Objective of Player |: maximization of J(¢,x,u,v);
Objective of Player Il: minimization of J(¢,x,u,v);

the both players have the same value function, it's the game for player
I, the loss for player Il - one speaks of “2-persons zero-sum stochastic
differential games”;
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in non-zero sum games: Player i has cost functional J;(¢,x,u;,us...),
i > 1, the players want to maximize there cost functional; problem of
the existence and the characterization of Nash equilibrium points.

Game “Control against Control"?

e In general no value of the game, i.e., the result of the game depends
on which player begins, and this even if Isaacs’ condition is fulfilled
(precision later); example: pursuit games (Example at the blackboard.)

e Games “Control against Control” with value if: n =d; 6 € R"*"(x)
is independent of (u,v) and invertible (as matrix); 6! : R" — R"™" is
Lipschitz (S.HAMADENE, J.-P.LEPELTIER, S.PENG).

Game “Strategy against Control”:

This concept has been known in the deterministic differential game the-
ory (A.FRIEDMAN, W.H.FLEMING,..)nd has been translated later by
W.H.FLEMING, P.E.SOUGANIDIS (1989) to the theory of stochastic
differential games.
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Here: a generalization of the concept of W.H.FLEMING,
P.E.SOUGANIDIS (1989); a comparison of their concept with ours:
later.

Admissible controls, admissible strategies

Definition 1: (admissible controls for a game over the time interval
[£,T])

e For Player I: U7 =: L9(t,T;U);

e for Player II: ¥, 7 =: L%(t,T;V).

Notice: In difference to the concept by FLEMING, SOUGANIDIS, the
controls u € U 5,v € ’Vm are not supposed to be independent of .
Definition 2: (admissible strategies for a game over the time interval
[#,7])

e For Player II: B: U+ — V. non anticipating, i.e.,

for any F— stopping time S: Q — [t,T] and any admissible controls
uy, up € U




DY

(u; = up dsdP-a.e. on [[#,S] = B(u1) = B(u2) dsdP-a.e. on [z,S])-
Br:={B: Ur — YV r|P is nonanticipating}.

Analogously we introduce

o for Player I: 4,7 :={o: ¥+ — U r|a is nonanticipating}.

Value Functions:
Notice: From J(f,x,u,v) := ¥/"""" and the standard estimates for

1,X,U,V
) A

J(t,x,u,v) € L*(Q, F,P), (t,x,u,v) € [0,T] x R" x U X V, and:
o |J(t,x,u,v)—J(t,x ,u,v)| < Clx—x|,
o |J(t,x,u,v)| < C(1+|x]),

P-as., for all x,x' € R", (t,u,v) € [0,T]| x Ux V;

. Ytt.,c.u,v :J(t,c,u,v)(::J(t,x,u,v)|x ),P—a.s. (evt. blackboard)

=
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The above estimates for J(z,x,u,v) allow to introduce:

e Lower Value Function:

W(t,x) := essinfgep,  esssup,cq, ,J (¢, x3u, B(u));

e Upper Value Function:

U (t,x) := esssupge g, pessinf,cqy  J (1, x;0(v), V).

Remarks. e Justification of the names “upper” and “lower” value func-
tions: later we will see W < U; the proof is far from being obvious and
uses the comparison principle for the associated Bellman-lsaacs equa-
tions, it will be given later.

e The esssup, essinf should be understood as ones w.r.t. a uniformly
bounded, indexed family of F-measurable r.v.; see: Dunford/Schwartz
(1957). Consequently:




Wz,
(7,%))

o |W(t,x)—W(t,x)|+|U(t,x)—U(t,x)| <Clx—¥|, P-as.,

o |W(t,x)|+|U(t,x)| <C(1+|x]), P-a.s., for all £ € [0,T], x,x" € R™.

x),U(t,x) € L*(Q, %, P), and, for some C € R (independent of

Although W, U are a priori random variables, we have:

Proposition 1: W(t,x) = E[W(t,x)], U(t,x) = E[U(t,x)], (t,x) €
[0,T] x R", i.e., W and U admit a deterministic version with which
we identify the both functions from now on.

Corollary. W,U : [0,T] x R — R are such that
W (1,) = W (e, )|+ |U(t,5) — U e, )] < Clx— ¥,
[W(2,x)|+|U(t,x)| < C(1+|x|), for all # € [0,T], x,x' € R".
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Some Remarks preceding the proof of the proposition.

1) Concept of W.H.FLEMING, P.E.SOUGANIDIS (1989):

their running cost f(s,x,y,z) don't depend on (y,z), i.e., their cost
functional is the classical one;

more essential:
e admissible controls: instead of U, 7: "Ufj ::Lg, (¢,T;U0),
instead of ] 7: ‘V,’T = LEF), (£,T;V),
F' = (F)sepr1), F :=0{Br =B, r € [t,s]} VAN, s € [t,T];
e admissible strategies: instead of B, r: Q%t’j - the set of all non antic-
ipating mappings B: Uj , — V7,

(non anticipativity is understood in the same sense as that in the
definition of B, 7); analogous definition of 4 ;.

Their cost functional
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T
J(I7X;u7v) =k |:(D(X;'7x’u’v) +/ f(S’X&lj?X’u’vvu‘hVS) ‘ "}—l:|
t

= E @) + [T £s, X0 g, |

is automatically deterministic, and so are their upper and lower value
functions:

W(t,x):= inf sup J(t,x;u,B(u)),U(t,x):= inf inf J(t,x;0(v),V).

BeB 1 uct, v Q€A TvEV, T

Our approach in comparison with theirs:

(Ist mini-lecture:)
e Proof that W, U are deterministic is not evident, but after:

e Straight forward approach without approximation by discrete
schemes, without further technical notions (like mw-controls,
r-strategies), without using the Bellman-Isaacs equation for proving
the DPP:
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- Direct deduction of the DPP from the definition of W,U (with the
help of Peng's notion of backward semigroups);
(2nd mini-lecture:)

- Direct deduction of the Bellman-Isaacs equations for W, U from
the DPP (with the help of a scheme of 3 BSDEs, the so-called Peng's
BSDE method developed by him for control problems);

- Adaptation of a uniqueness proof for integro-PDEs (G.BARLES,
R.BUCKDAHN, E.PARDOUX) to Bellman-Isaacs equations.

2) Proof that W is deterministic for control problems (1997):

U C RY compact subset; 6, b, f don't depend on v, and are supposed
to be Lipschitz in all their variables (x,u) and (x,y,z,u), resp.;

W (t,x) := esssup,cq, ,J (t, X, u).

Then:
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\J(t,x,u) —J(t,x,u')|* < CE {/ |uAYu§|2ﬂ-}} ,P-as., uu' € Ur.
t

Let
’ N
i;p = {u = Z Idp, Okl ) t=to<tn <--<in=T,
ik, (=1

Oce €U, Ay € Fi,Bey € Ty s N > 1};

then
W(t,x) = eSSSUpuE‘u’st;pJ(LX, u).

On the other hand, for u € 717" as above:

N
Z Iy; IBkiek (T ZIA ( Z IBk.éek/I(tkfle])
Pff=1 =1 k=1

=

=Y I,.u, where u' € ‘ZII”T, 1<i<N,
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and from the uniqueness of the solutions of the controlled forward and
backward SDEs:

J(t,x,u) = Zf\’:l Iy J(t,x, u') < SUp | <j<nJ (1%, ut) < supu,EwTJ(t,x,u'),

and, consequently, since U ; C U r,

W(t,x)= sup J(t,x,u');

u/e‘ll[']
the right-hand side is deterministic and so is W (z,x).

Peng's argument doesn't work for stochastic differential games:
- One cannot restrict to continuous strategies;

- W.r.t. which norm should the spaces of admissible strategies be ap-
proximable by which “admissible step strategies”?

Here new approach for the proof that W is deterministic; even conti-
nuity of the coefficients in (u,v) is not needed.
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Proof the the upper and lower value functions are deterministic: main
tool is a Girsanov transformation argument (at the blackboard).

Dynamic Programming Principle (DPP)

Some Preparation: Stochastic Backward Semigroup, S.Peng,1997:
book on his BSDE method for stochastic control problems:

S.Peng, (1997)BSDE and stochastic optimizations; Topics in stochas-
tic analysis. J.Yan, S.Peng, S.Fang and L.Wu, Chapter 2, Science
Press. Beijing (in Chinese).

Given
(t,C) € [OvT] XLz(Q'vg:tvP;Rn)? 6>0<t+8§ T)7 ue ut,t+57 ve {Vt,t+53
n € L*(Q, F,5,P;R) - terminal condition for time horizon 7+ 3§,

we put
t,X5U,V

Gyl =Y, s€,t+3],




where (¥,Z) € S2(t,t +8) x L2(t,t + &R?) is the unique solution of
the following BSDE with time horizon ¢ -+ &:

{ ¥y = —f(s, X" ¥y, Zg,ug,vs)ds — Z55"VdBs, € [t,t+ 8],
g = M

X%V is the solution of our doubly controlled stochastic system (the
forward SDE).

Remark:

(i) (The semigroup property) For 0 <t <s<s' <t+8<T,

G (Gl = Gl

(i) G’S:““T;l""[CID(X%’x;”"’)] =Y Pas., se [£,T].
In particular, for s =1,

G;:)};”’V[CD(X'”‘)] J(t,x;u,v), P-as..
(i) (1 350,9) = 757 = G [y
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EX5UV [y XUV XU,V 15U,V
=G s Wi 1 =G g W +8,X 5 s u,v)].

The latter relation follows from the uniqueness of the solution of the
forward and the backward equations: for C:Xt’x;"’v(Q,fhP;R”),

t+h
t.x3u,v
touy  IHRX Ty i Guy .
Yt+5 — YH—h — YH—h — J(t + Sa Cu M,V)
15U,V
=J(t+8,X 5,  su,v).

(iv) If f doesn't depend on (y,z) we have the classical case of conditional
expectation:

) 140 4
G?;Cfév[n] =E |:T] +/ f(S7X§,’x’M7V,I,{S’VS)dS"7:t , P-as.
’ t

Taking now n = W(t+8,X,75"") (resp., U(t +8,X75"")) it becomes

clear from the classical DPP from control problems that our DPP shall
write as follows:
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Theorem 2 (DPP): For any 0 <t <7+8<T,x€cR",

W (t,x) =essinf esssup Gt’“:J:’SB( W (e +8, X' 7“413( s
BEQ;,)H_;; ueU ;s

U(t,x) =esssup essinf thfg) [U(t+38, tha() ).
aed ys VEViits

Remark: If f(x,y,z,u,v) is independent of (y,z) the above DPP writes:

W (t,x) = essinf esssup E[W(t+9, X”“B( ))
BEB 145 uetl,, 5

148
n F(s,X. txuﬁ u) us,vs)dsw-'t];

analogous for U(t,x).

Sketch of proof: auxiliary function:

Ws(t,x) := essinf esssup GIH“SB( )[ W(r+38, X’xuﬁ(u))]’
BG{BtHS u€Us sy
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(i) Ws(#,x) is deterministic: same Girsanov transformation argument
as for W (z,x).

(ii) For any € > 0, and for any B € B, r, there exists some u® € U
such that
Ws(1,x) <J (1,50, B(uf)) +¢€, P-ass.,

from where: Ws(z,x) < W (t,x). (Calculus at the blackboard.)

(iii) For any € > 0, there exists B¢ € B, r such that Vu € U 7 :
Ws(t,x) > J(t,x;u,B%(u)) —¢€, P-as.,

from where: Ws(z,x) > W (t,x). (Calculus at the blackboard.)

With the help of the DPP we can prove the following

Theorem 3. W(.,x) and U(.,x) are —Hdlder continuous, for all x
R": There is some C € R such that, for every x e R", .1’ € [0,T],

W (t,%) — W (' ,x)| +|U(t,x) — Ut x)| < C(1+ |x])|e — ]2

DY
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(Explanation at blackboard.)

Bellman-Isaacs equations. Existence theorem.
We consider the Hamiltonian

H<taxay7p7sauav)

1
= Etr((S(sT (t,x,u,v)S) +b(t,x,u,v).p+ f(t,x,y, p.o(t,x,u,v),u,v),

(t,%,9,p,S,u,v) € [0, T] x R* XRXR" x S" x U X V.
H™(t,x,y,p,S) := sup inf H(t,x,y, p, S, u,v);
uey vev
H(t,x,y,p,S) := inf sup H(t,x,y, p, S, u,).
veV ueu
We will show that, in viscosity sense, we have the following Bellman-
Isaacs equations:




%—V;}(t,x) +H (t,x,W,DW,D*W) =0, W(T,x) = ®(x),  (3)

and
U

j(t,x)+11r+(t,x,U,DU702U) =0,U(T,x) = d(x). (4)
More precisely,
Theorem 4 (Existence Theorem): W € C;([0,7] x R") is a viscosity
solution of equation (3), and U € C¢([0,T] x R") is a viscosity solution
of equation (4).
(Recall of the notion of viscosity solution if necessary.)
We come after back to the proof of the existence theorem.
Theorem 5 (Comparison Principle): Let u; €USC([0,7] x R") be a

viscosity subsolution of (3) (resp., of (4)) and u, €LSC([0,T] x R") be
a viscosity supersolution of (3) (resp., of (4)). Moreover, we suppose
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that both functions belong to the class of measurable functions V with
the following growth condition:

JA > 0 such that, uniformly in ¢ € [0, T],
Vit
v<r,x>exp{—Aun|xH2}(= (1,2)

‘X‘Alnm
Then u; < up, on [0,7] x R".

) — 0 as |x| — +oo.

Corollary. Let u; and uy be continuous viscosity solutions of (3) (resp.,
of (4)). Moreover, we suppose that both functions satisfy the above
growth condition. Then u; = up, on [0,7] x R™.

Remarks 1: e Barles, Buckdahn, Pardoux (1997) proved that this
growth condition is the optimal one for the uniqueness of the (vis-
cosity) solution of the heat equation.

e The proof of the uniqueness theorem adapts the argument of Barles,
Buckdahn, Pardoux (1997) to Bellman-Isaacs equations (and, hence,
also to Hamilton-Jacobi-Bellman equations).




Remarks 2: « W € C([0,7] x R") (resp., U € C¢([0,T] x R")) is the
unique viscosity solution of (3) (resp., (4)) in the class of continuous
functions with the above growth condition, and so in particular in
C,([0,T] x R").

e Notice that H~ < H™; consequently, W is a viscosity subsolution
of (4), and from the comparison principle: W < U. This justifies the
names “lower value function” for W and “upper” value function for U.
e If the Isaacs’ condition holds: H~ = H™" on [0,T] x R”" x Rx R" x S,
then the equations (3) and (4) are the same, and from the uniqueness
of the viscosity solution in C,,([0,T] x R"): W =U. One says the “game
has a value”.

e For the case that f(s,x,y,z,u,v) doesn't depend on (y,2),
W.H.FLEMING, P.E.SOUGANIDIS have got the same Bellman-Isaacs
equations as we have got. From the uniqueness of the viscosity
solutions in C,,([0,7] x R"):

W(t,x)(:= infgep SUPyeqy J(t,x;u,B(u)) = W(t,x);
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U(t,x)( i=infoc g, infyeqr, J(t,x:0(v), v)) =U(t,x).

Sketch of the proof of the existence theorem:

We prove that W is a continuous viscosity solution of the PDE

oW
= (GX) FH (1., W, DW, D*W)=0,W(T,x) =®(x), (3)
with
H™ (¢,x,y,p,S) := sup me(x YD, S, u,v);
uc vevV
and

1
H('x7y7p7S’u7 V) = Etr(GGT(x7u7 V)S) +f(x7y’p'6(x’ u’ V)?“? V)’

(x,3,p,S,u,v) ER" x R X R" x §" x U x V(for shortness but without
restriction of the method: b = 0; coefficients don't depend on time ).

Let ¢ € C},([0,T] x R") be an arbitrary but fixed test function. We
define:
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) 1
Liuy@(s,%) = 5-0(s,%) + 5 tr(60" (x, u,v)D*(s,x)),

and
F(s,%,y,2,u,v) := Ly, ,®(s,%)

+£(s,%,y+ @(s,x)), 2+ D@(s,x)6(x,u,v),u,v).
Notice:

d
—o(t,x) +H (t,x,(9,Do,D*®)(,x)) = sup inf F(t,x,0,0,u,v).
ot uelU vevV
So we have to prove that if W — ¢ < (resp., >)= (W — ¢)(¢,x) =0 then
sup,cy infyey F(2,x,0,0,u,v) > 0 (— subsolution)
(resp., sup,cp infyey F(¢,x,0,0,u,v) <0 (— supersolution)).

Peng's BSDE method: “Approximating BSDEs”
Ist BSDE: For 0 <8< T —¢ small, u € U 15, vE V15

dYSl,u7v75 _ _F(S7X§7x,u7v’Ysl7u,v,5,Zsl,u7v,57uﬁvs)ds+Z§1,u,v,8dBS’

Luvd
Yt+8 =0.
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Notice: o The BSDE admits a unique solution (Y1#»d zluwd) ¢
S2(t,1+8) x L& (1,1 + & RY).

o ¥ = G o(+ 8, X5 )] — 9(s, X ), s € 1,6+ 8], P-as.
(Idea of the proof: evtl. at the blackboard.)

The 1st BSDE will translate the DPP in BSDE property. Approximation
of the 1st BSDE:

2nd BSDE: For 0 <8< T —t small, u € Uy 115,vE V, 115

de’”””8 —F(s,x, ) g Zsz’”"v’s7 Us, vy )ds + ZSZ‘“’V’SdBS, s € [t,t+39],

ris =o.
Recall:

AY S _ (s, iRy ylad Zland ol glund g
rys" =o.




Our objective: To approximate the 1st BSDE -the key to use the DPP-
by the 2nd BSDE, and the 2nd BSDE by a deterministic ordinary

differential equation with terminal condition.}
Lemma. There is some C € Ry s.t., for all 8 € (0,7 —¢] sufficiently
small and all u € U, ,.5,vE V15

|Yt1-,u-v75 - Yf’”“”ﬁ < C&/? P-as.

(Idea of proof at blackboard.)

Let Fo(s,x,y,z) = sup,cp infyev F(s,x,y,2,u,v).
3rd BSDE: For 0 <8 < T —¢ small:
dY® = —Fy(s,x, Y% 0)ds(+0dBy), s € [t,t + 8],

0,6
Yt+6 =0.

. 2uvd 0,8
Lemma. esssupueﬂhHses&nfver,/l)HSY, T =

N\




(Proof at the blackboard.)

These 3 BSDEs allow to prove:
1)W is a subsolution: (blackboard)
2)W is a supersolution: (blackboard)

Perspectives (and work which is already done):

e 2-Person zero-sum SDG with reflection at one obstacle, at two ob-
stacles (LI JUAN, R.B., submitted, arXiv)

e 2-Person zero-sum SDG with jumps (in redaction; LI JUAN, R.B.)

e Nonzero-sum SDGs, existence of Nash equilibrium points, Non an-
ticipative Strategies with Delay (NAD-strategies); this concept al-
lows to study games “NAD-strategy against NAD-strategy” (advan-
tage: “symmetry” between both players; disadvantage: Nash equilib-
ria can be studied only by e-approximations): (P.CARDALIAGUET,
C.RAINER, R.B., 2004)




e SDG with asymmetric information (P.CARDALIGUET, C.RAINER,
submitted, web page of C.Rainer)

e  Measure-valued  differential  games  (P.CARDALIAGUET,
M.QUINCAMPOIX)

o A lot of other works.
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