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Example

Two-asset 1-period model : S} = 52 =1, S} =1, S? takes values
1+ and 1 —¢ > 0 with probabilities 1/2.

The filtration is generated by S.

Ki = cone{(1,2),(2,1)}, Kf = Ry1. Then K; = R,.S;.

The process Z with Zy = (1,1) and Z; = S; is a strictly consistent
price system, so the NA"-property holds.

Let v € C where C* = cone {(1,1+¢),(1,1 —¢)} C Ki.

For € €]0,1/2[ the cone C is strictly larger than Ky = Kp.

The investor the initial endowment v € C \ Ky will solvent at

T =1 though not solvent at the date zero. One can introduce
small transaction costs at time T = 1 to get the same conclusion
for a model with efficient friction.
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Arbitrage of the second kind

Setting

Let G = (G;), t=0,1,..., T, be an adapted cone-valued process,
AT =S 1%(—G, Fy).

The models admits arbitrage opportunities of the 2nd kind if there
exist s < T — 1 and an Fs-measurable d-dimensional random
variable £ such that I := {{ ¢ G} is not a null-set and

(€ + A NL(Gr, Fr) #0,

ie. £ =&+ ...+ &7 for some & € LO(Gy, Fr), s < t < T. If such
& does exist then, in the financial context where G = R an
investor having Ir€ as the initial endowments at time s, may use
the strategy (/Ir&t)s>s and get rid of all debts at time T.
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NA2 property
Rasonyi theorem (2008)

The model has no arbitrage opportunities of the 2nd kind (i.e. has
the NA2-property) if s and ¢ € LO(RY, F;) the intersection

(6 + Al N LO(GT, F1) is non-empty only if & € LO(Gs, Fs).
Alternatively, the NA2-property can be expressed as :

LORY, F)N (Al = 1°(Gs, Fs)  Vs<T,.

Theorem

Suppose that the efficient friction condition is fulfilled, i.e.

G: N (—Gy) = {0} and RY C G; for all t. Then the following
conditions are equivalent :

(a) NA2;

(b) L°%(RY, F5) N LO(Gsy1, Fs) C LO(Gs, Fs) forall s < T ;

(¢c) coneint E(GZ, 4 N O1(0)|Fs) D int G (a.s.) foralls < T ;

(d) forany s < T and n € L1(int GZ, Fs) there is Z € M/ (int G*)
such that Zg = n (PCV - "Prices are consistently extendable”.)
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Tools

Conditional expectations

A subset = € LP is called decomposable if with two its elements
&1, & it contains also &1/a + £2/ac whatever is A € F.

Proposition

Let = be a closed subset of LP(R?), p € [0,00[. Then = = LP(I)
for some I which values are closed sets if and only if = is
decomposable, .

Proposition

Let G be a sub-c-algebra of F. Let [ be a measurable mapping
which values are non-empty closed convex subsets of O1(0) C RY.
Then there is a G-measurable mapping, E(I'|G), which values are
non-empty convex compact subsets of O1(0) and the set of its
G-measurable a.s. selectors coincides with the set of G-conditional
expectations of a.s. selectors of T.
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Model

@ We are given set-valued adapted processes G = (Gt):eo, 7]
and G* = (G{)¢e[o, 7] Whose values are closed cone in R,

Gi(w)={y: yx >0Vx € G(w)}.

“Adapted” means that
{(w,x) eQAxRY: x € G(w)} € F, ® B,
@ G; are proper (EF-condition) : G; N (—G;) = {0}.
We assume also that G; dominate R, i.e. G*\{0} C int RY.
@ In financial context G; = Rt, the solvency cone in physical
units.
@ For each s €]0, T] we are given a convex cone ] of optional
R9-valued processes Y = (Yt)ee[s, 77 with Y5 = 0.
@ Assumption : if sets A" € F, form a countable partition of 2
and Y" € Y], then 3" Y a € VJ.
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Notations

o for d-dimensional processes Y and Y’ the relation Y >¢ Y’
means Y; — Y] € G; a.s. for every t;

e1=(1,...,1) eRY;
° ysTb denotes the subset of ))] formed by the processes Y
dominated from below : Y; + k1 € G; for some constant & ;

° yT (T) is the set of random variables Y1 where Y € ysfb;
Lo(T) = (V,(T) = L%(Gr, Fr)) N L°(RY, Fr) and

(T AT, ()" is |ts closure in o{L> [} ;

M[(G

*) is the set of martingales Z = (Z;)¢[s, 7] evolving in
G*, i.e. such that Z; € LY( G}, F).
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Conditions

Standing Hypotheses
©S; E€Zr <Oforall§ € Y] (T), Ze MI(G*), s€ [0, T[
9 Sy Up»sL®(—Gt, Ft) C ySTb(T) for each s € [0, T].

Properties of Interest

o NFL .ASTb(T)W N L=®(RY, Fr) = {0} for each s € [0, T.
@ NFL2 Foreach s € [0, T[and ¢ € L®(RY, F;)

(€ +AT(T)") N L=(RY, Fr) £ 0
only if £ € LOO(GS,]:)
@ MCPS For any 5 € L!(int G, Fs), there is
Ze M](G*\ {0}) with Z; = n.
@ B If £ is an F,-measurable R9-valued random variable such
that Z,& > 0 for every Z € M[(G*), then ¢ € G;.
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FTAP

NFL & MJ(G*\{0}) # 0.

Proof. («=) Let Z € M{ (G*\{0}). Then the components of Zr
are strictly positive and EZ7€ > 0 for all £ € LOO(RE‘,’F,]-'T) except
¢ = 0. On the other hand, E€Z7 < 0 for all £ € Y] ,(T) and so for
all ¢ € AT (T)".

(=) The Kreps—Yan theorem on separation of closed cones in
L>(R9, F7) implies the existence of n € L}(int RY, Fr) such that
Eén <0 for every £ € .AT (T) hence, by virtue of the
hypothesis S,, for all £ € L°°( Gt,}"t). Let us consider the
martingale Z; = E(n|F:), t > s, with strictly positive components.
Since EZ:¢§ = EEn >0, t > s, for every £ € L™°(Gy, Fy), it follows
that Z, € LY(Gy, Ft) and, therefore, Z € MT(G*\{0}).
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Main Result

Theorem

The following relations hold :
MCPS = {B, M/ (G*\{0}) # 0} < {B, NFL} & B < NFL2.

If, moreover, the sets ySTb(T) are Fatou-closed for any s € [0, T].
Then all five conditions are equivalent.

In the above formulation the Fatou-closedness means that the set
VI, (T) contains the limit on any a.s. convergent sequence of its
elements provided that the latter is bounded from below in the
sense of partial ordering induced by GT.
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Discrete-time model,1

BP If ¢ € LORY, F;) and Z£ > 0 for any Z € M[T(G*) with
Zr € LP then £ € G5 (as.),s=0,..., T

— P
NAAP Al (T) nLP(RE, Fr) = {0}.

The conditions NAAP for p € [1, 00[ are measure-invariant and any
of them is equivalent to NAA® as well as to the condition NFL
(which, in turn, is equivalent, to the existence of a bounded
process Z in MTI(G*\ {0}).

NAA2” Foreach s =0,1,..., T —1and £ € L®(RY, F;)

(€+AT(T) T) )N LORE, Fr) #0

only if £ € L>®(Gs, Fs).

Yuri Kabanov NFL2 13 / 15



NA2 (discrete time) NFL2(continuous time

Discrete-time model,2

The conditions NAA2P for p € [1,00[ are measure-invariant and
any of them is equivalent to NAA2° as well as to the condition
NFL2 (which, in turn, is equivalent to the condition B).

Thus, for the discrete-time model with efficient friction
MCPS < {B, M{(G*\{0}) # 0} < {B, NFL} < B < NFL2

Formally, all properties above are different from those in the
Résonyi theorem PCE < NA2. Recall that

AT =L 19(—G;, F)) and

NA2 For each s € [0, T[ and & € LO(RY, F)

(E+AD)NLORL, Fr) #0
only if £ € L°(Gs, Fs).
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Discrete-time model, 3

However, this equivalence follows from two simple observations.
First, NFL2 < NAZ2. Indeed, due to the coincidence of L9-closures
of AT and A/ (T), NFL2 is equivalent to :

NA2' For each s € [0, T[ and ¢ € LO(RY, Fy)

€+ AT )N IORY, Fr) £ 0

only if £ € L°(Gs, Fs).

This us aproperty stronger than NGV. On the other hand,
successive application of NGV in combination with the efficient
friction condition implies that the identity ZtT:S & =0 with

& € L%(—Gg, F¢) may hold only if all & = 0. But it is well-known
that in such a case A[ is closed in L°.

Yuri Kabanov NFL2 15 / 15



NA2 (discrete time) NFL2(continuous time

Discrete-time model, 4

Second, PCE < MCPS. The implication = is trivial. The inverse
implication can be proven by backward induction. Indeed, for

s = T there is nothing to prove. Suppose that for s =t+1< T
the claim holds. In particular, there is Z € M/, (int G) with
|Zep1| = 1. Put Zy := E(Zey1|Fy). Let n € LY(F, Gy) with

In| = 1. Take a be the Fi-measurable random variable equal to the
half of the distance of n; to OG;. Then n — aZs € L(int Gt, Ft).
By MCPS there exists Z € M/ (G \ {0}) with Z, € M] (G \ {0})
and Z, =1 — aZ;. Since Z+aZ € M/ (int G) and Z; + aZy =1,

we conclude.
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