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1 Introduction

In this lecture we base on the following references:

[1] J.-P.Aubin, and G.Da Prato:Stochastic viability and Invariance, Annali
Scuola Normale di Pisa, Vol.27 (1990), 595-694.

2] 1.Ciotir and A.Rasgcanu: Viability for Stochastic Differential Equation
Driven by Fractional Brownian Motions, J. Differential Equations 247 (2009)
1505-1528

Our aim is to establish the deterministic necessary and sufficient condi-
tions that guarantee that the solution of a given Stochastic Differential Equa-
tion(SDE) driven by the fractional Brownian motion evolves in a prescribed
set K.



2 Stochastic viability problems

We consider the following SDE

Xs=1 +/ b(r, X,.)dr +/ o(r,X,.)dB,, selt,T], as we, (1)
t t

where

e {B;,t >0} is a k- dimensional (fractional) Brownian motion defined on
a complete stochastic base (Q, F,P; {]:t}tzo)

e b:[0,7] x R‘=R? and o : [0,T] x R¥— R*** are continuous functions.



Let

K={K(s):5€[0,T]}; K(s)=K/(s)CR%

Definition

e K is viable (weak invariant) for the equation (1) if, V ¢ € [0,7T] and
V x € K (t), there exist at least one solution {X%* : s € [t,T]} of the
SDE (1) satisfies

X" e K(s) forallseltT].

e K is invariant (strong invariant) for the equation (1) if, V ¢t € [0,T] and
V x € K (t), all solutions {X5*:s € [t,T]} of the SDE (1) have the

property
X c K(s) forallscltT].

Obviously in the case when the equation has a unique solution, viability is
equivalent with invariance.



Starting with Nagumo’s pioneer work in 1943, the viability property has
been extensively studied for deterministic differential equations and inclusions.

To our knowledge the first work that gives a characterization of the viability
property in a stochastic framework was written by Aubin and Da Prato(1990)

The key point of their work consists in defining a suitable Bouligand’s
stochastic tangent cone, which generalizes the cone used in the study of the
viability property for deterministic systems.

Another approach has been developed in Buckdahn, Quincampoix, Rainer
and Rascanu (2002).

The main point of this work consist in proving that the viability property
holds if and only if the square of the distance to the constraint set is a viscosity
supersolution of a PDE associated.

I will present the main result of this first, and in our lecture we mainly use
the result of [2], which will be presented in the third section.



Theorem(Viability Criterion for SDE driven by BM)
We suppose that in the equation (1), {B:,t> 0} is a k- dimensional
Brownian motion, and

e b:[0,7T] x R* = R%, o :[0,7] x R* — R¥>** are continuous functions
such that

\b(t,aj)—b(t,y)\—k\a(t,x)—a(t,y)] §L|aﬁ—y\,Vm,yERd

o {— d%((t) (z) : [0,T] — R is lower semicontinuous(l.s.c.) Vz € R

e sup d%((t)(()) <M < o0
te[0,T]

Denote

At () (x) = STr[o (t,2) 0" (t, ) Py (x)] + (b (8, 2) , 05 (2))

¢ . 0%y (x dp (x
ijzl(aa )ij(t, ) axfng +Zbi(t,x) g QE )

o~ DN =



Then the next assertions are equivalent:

(I) Equation (1) is K—viable on |0, T].
(I1) u(t,z) = d%qt)(x) is a l.s.c. viscosity supersolution of the partical

differential equation

oU (t, x)
ot

i.e. for any o € CL2([0,T[xR?), and (t,z) € [0,T] x R? such that u — ¢ has
a local minimum at (¢, z), it holds

Op(t,x)
ot

+ AU (t,x) — C’d%{(t) (x) =0, (t,x) € [0,T] € R™. (2)




Example

Let us consider a(t) € C?([0,T];R?) and r(¢t) € C?([0,T]; R,) with r (¢) >
§d>0,te[0,T]
We put

K(t)={yeR":ly—a(t) <r(t)}, tel0,T].
Then K = {K(t) : t € |0,T]} is viable if and only if
forallt € [0, T and z € OK(t) ={y:|ly—a(t)|=7(t)},

{ o*(t,x)(x —a(t)) =0, and

2<x—al(t),bt,z) > +|o(t,z)||* < 2r(t)r'(t).



Applications:
1.security tube in the traffic control

K={K(s):se[0,T]}; where
K(s)={zeR": |z —a(s)|<r(s)}

2. comparison of the solutions
Consider the two dimensional decoupled system

2

Xt = a:—l—/ b(r, Xﬁ’x)dr+/ o(r,Xr*)dB,, s >t
t t

YhY =y —I—/ b(r, Y19 dr —I—/ o(r,Y"¥)dB,, s >t
\ t t

and
K={K(@t):t€[0,T]}; where K (t)={(z,y) eR*: 2z <y}
The viability of K means:

if x <y then Xﬁ’x < Yst’y, for all s > t.



3.controllability:
If we choose the constraint sets of the form

K={K(t):t€][0,T]}; where
( {20}, if t =0,
K(t) =< R4, ifo<t<T
| {27}, ift="T.

Then we can study the controlled problem: Given zy € R? and zr € R?, to
find a control v and X = X%%05% golution of the SDE

Xs = xg +/ b(r, X)) + u,| dr +/ o(r,X,)dB,, se€l0,T] a.s.w €,
0 0

such that
XT = XT ,

More generally, we can consider the problem:

X = x9 +/ b(r, X, u,.)dr +/ o(r,X,,U.)dB,, s€l0,T] a.s. we€{,
0 0



4. stability:
Consider the two dimensional decoupled system

e

Xbe ::1:'—|—/ b(r,Xﬁ’w)dr—F/ o(r, X*)dB,,
t t

YV =y — )\/ Yhvdr,
t

\

and
K={K (@) :t€[0,T]}; where K (t)={(z,y) eR*:z <y}
The viability of K means:

if x <y then Xﬁ’x < Yst’y = ye_A(S_t), for all s > t.



3 Viability for SDE driven by {Bm

3.1 Preliminaries

In this part we present a result concerning the viability for SDE driven by
fBm. Consider the SDE on R¢

XS:XO—I—/ b(T,XT)dT—I—/ o(r,X,)dB!, s€[0,T].
0 0

where

e B = {B;,t>0}is a k- dimensional fractional Brownian motion with
Hurst parameter % < H < 1, and the integral with respect to B is a

pathwise Riemann-Stieltjes integral;

e X is ad- dimensional random variable defined in a complete probability
space (€, F,P);

e b:[0,7] x RI=RY, o : [0, T] x R¥— R¥* are continuous functions.



Assume

(Hp) there exist some constants 3,9,0 < 3,0 < 1, and for every R > 0 there
exists Mg > 0 such that for all ¢ € [0,T]:

i) lo(t,z) —o(s,y)| < Mo ([t —s|” + |z —yl), Vr,yeR%
W) |Vao(t,y) — Veo(s,2)| < Mg (|t —s|” + |y —2°), Vlyl.|z| <R,

Remark that for all z € R%, (¢, z) has sublinear growth.

Let
aozmln{ ,B,1+5}

(Hz) There exist p € (1 — ag, 1] and for every R > 0 there exists Lr > 0 such
that Vt € (0,77,

i) Local (Holder-Lipschitz) continuity:
b(r,x) = bs,y)| < Lr(jr —s* + ]z —yl), Vx|, |y <R,
ii) Boundedness : |b(t,z)| < Lo(1+ |z]), Vo R



D.Nualart and A.Rascanu prove in Differential equations driven by frac-

tional Brownian motion. (2002), the following theorem:

Theorem:

Under the assumpations(H;) and (Hz), with 8 >1—H and § > & — 1
the SDE

Xbs=¢ +/ b(r, X58)dr +/ o (r,X*)dB,, s€t,T],
t t

has a unique solution X*¢ € L9 (Q,F,IP);WO"OO(t,T; ]Rd)) , for all o €
(1 — H, o) . Moreover, for P-almost all w € 2

X (w,+) € C'7(0,T;RY) .

The definition of W (¢, T; R%) and C1~% will be given in the follow.



Let t € [0,T] be fixed. Denote

o W>(¢t, T;R%), 0 < a < 1, the space of continuous functions f : [¢t,T] —
R? such that

||fHa,oo;[t,T] = Sup] <|f(8)| —|-/t f(isz;)ﬁ_l(j)dr> < o0.

seft,T

An equivalent norm can be defined by

f(s
Hf||a,>\;[t,T] = sup e <f ) —|-/ | ‘ dr VA > 0.
s€t,T]

o Wl (¢t T;R%), the space of continuous functions g : [t, 7] — R? such
that

e = o0l (BS0 0g0)

t<r<s<T (y — 7")2 @



o CH([t,T];RY), 0 < pu < 1, the space of u-Holder continuous functions
f:[t,T] — RY, equipped with the norm

1Lt = 1]l sup L&) =S

< 0
t<r<s§T (s — )"

where || f[| . ;p.71 = SuPsep, 77/ f (8)[. We have, for all 0 < e <
Cote([t, T); RY) ¢ W™= (t, T;R?)
o Wl(t,T;R?%) the space of measurable functions f on [t,T] such that

T s B
Hf”oé,l;[t,T] ::/t [ 7)) —I—/t 7(s) ‘ZELyl)|dy ds < 00.

(s =) (s —y)

Clearly
W (t, T;RY ¢ Wel(t, T;R%).



Definition Let 0 < a < % If f € Wol(t, T;R™*)and g € Wl_o"oo(t,T; R¥),
then defining

/: f(r)dg(r):=(=1)" /: (D2 f) (r) (D1 =%g,_) (r) dr.

the integral [, fdg exists for all s € [¢,T] and

() dg(r)| < sup [(DX=%gs_)(r) / (DS £)(5)ds| < Aalg; (6T 11
t§r<s<T
Where |
Ao(g; [t,T)) = sup  [(Di=%gs—) ()] -

F(l — Oé) t<r<s<T

D8N0 = i (s o [ 2 ay) 1m0

eim(l—a) s) — g(r *g(r
D, = S (R ) [ D=0y ) 1,0




We will present now the deterministic approach for the study of viability
for SDE(3).

More precisely, let arbitrary fixed (t,z) € [0,T] x R?. and we will consider
the deterministic differential equation on R :

X;w:H/ b(r,Xﬁw)dr+/ o (nX®)dg(r), selt,T],  (3)
t t

where )
g € W= (¢, T;R¥)
We also assume (H;p) and (Hs) be satisfied.

We recall here the main definitions and results from I.Ciotir and A.Rascanu:
Viability for SDE driven by fBM, (2009) .



Let o be arbitrary fixed such that 0 < a < ag .
Let K = {K (t): t €[0,7]} be a family of nonempty closed subsets of R?.
Definition. Let ¢t € [0,7] and z € K (¢). Let 3 <1—a < H.

The pair (b(t,x),0(t,7)) is (1 — a)-fractional g-contingent to K (t) in
(t,z) if there exist h = h"* > 0, and a function Q = Q" : [¢,t + h] — R¢
such that for all s,7 € [t,t+ h] and |z| < R :

Q(s) = Q (1) < Grls—7|"", Q(s)| < Grls — '
and
T+ (s —1)b(t,x) + o (t,2)[g(s) — g ()] +Q(s) € K (s),

where the constants Gp, GR, vr depend only on R, Lr, My, Ly, T, a, 3,
Aa (g).



Definition. Let t € [0,T] and = € K(¢). Let £ <1—a < H.

The pair (b(t,2),0 (t,2)) is (1 — a)-fractional g -tangent to K(t) in (¢, x)
if there exist h = h%* > 0, and two functions

U=U"":[t,t+h] = R% Ut)=0
V=V [t,t+h] >R V(t)=0
such that for all s,7 € [¢,t+ h] and |z] < R:
U (s) =U(r)| < Drls -7, V (s) = V()| < Drls —t|™"H1 e

and
x + /ts(b(t, x)+ U(r))dr + /:(a(t,a:) + V(r))dg(r) € K(s),

where the constants Dpg, ﬁR, depend only on R, Lr, My, Lo, T, o, 3,
Ao (9).



Theorem.
Assume (H7) and (Hs) are satisfied and 1 — 4 < a < .

The following assertions are equivalent:

(I) K is viable for the fractional differential equation , i.e. Vt € [0,7T] and
Vz € K (t), there exists a solution X% (-) € C*= ([¢t,T]; R%) for

X =t [ b XEdr [ aln X (1), s € [T
t t

such that
Xt e K(s), forallsecltT].

(IT) Vvt e [0,T] and all x € K (t) the pair(b (t,z),0 (t,x)) is (1 — a)-fractional
g -contingent to K (t) in (¢, x)

(ITI) Vt € [0,T] and all x € K (t) the pair(b(t,z),0 (t,x)) is (1 — a)-fractional
g-tangent to K (t) in (¢, x)



Therefore, choosing ¢ = B, we have similar definition for B¥-contingent
and B*-tangent. We denote B -tangent by Sy (t, z).

Then we have the theorem providing the characterization of the viability:

Theorem. Let 1 — H < a < ag and K = {K (t):t€[0,T]}, K (t) =
K (t) c RY.

Then the following assertions are equivalent:

(I) K is viable for the fractional SDE, i.e. for all ¢t € [0,7] and for all

x € K (t) there exists a solution X% (w,-) € C'= ([t,T]; R?) of the
equation

XbT =g —|—/ b(r, X5")dr —|—/ o(r, Xt*)dB, s e [t,T], a.5. w €,
t t
(4)

and
X" e K (s), VseltT].

(IT) For all t € [0,T] and all z € K (t),
(b(t,x),o (t,x)) is (1 — a)-fractional B -contingent to K (¢) in

(t,x) .



3.2 Deterministic Sufficient and Necessary Conditions.
Main Results

From the result of [2], we obtain
Corollary.

et l -H<a<oyand K={K (t):tc[0,T]}, K (t) = K (t) C R%.
Then the following assertions are equivalent:

(I) I is viable for the fractional SDE(4).

(IT) For allt € [0,T] and all z € K (t), (b(t,x),0 (t,z)) is (1 — «)-fractional
B*_contingent to K (t) in (¢, ) .

(ITI) For all t € [0,7T] and all x € K(t), (b(t,z),0 (t,x)) is (1 — a)-fractional
B _tangent to K(t) in (t,z) .



We give two Lemmas for the basic estimates which we will use later.

Lemma 1. The solution of SDE(4), X** is (1 — «)-Holder continuous and

| X5 < Co (1 + |)

Hl—a;[t,T]

where C is a constant depending only on My, Lo T, «, B, Ao (g) -

Lemma 2. Let (H;) and (Hs) be satisfied and 1 —p<a <A 3. IfYisa
Holder continuous function with

IVl oy < 1

then 3 Cg) depending on R, My, T,a, B, An (g) s.t. forall 0 <t < s < T,

< Cg) (s—4)** and

(a) /ts b(r,Y:) —b(t,Y:)] dr

< Og) (S - t)l—i—min{ﬁ—a,l—Qa} .

m |/ o(rY,) — o (6, Y] dg (r)




Following the paper of J.-P.Aubin, and G.Da Prato, :Stochastic viability
and Invariance, (1990), we obtain the theorem concerning the Stochastic
Tangent Sets to Direct Images in the {BM framework.

Theorem 3.2.1 Let ¢ be a C(® map from R? to R™. If
(b(t,x),0(t,2)) € Sk (t,x)

then
(@' (2)b(t, ), o' (x)o(t, ) € Syr ) (t, p(z)).

Main idea of Proof.

Let (b(t,z),0(t,x)) € Sk (t, ), Using the It6 formula (see Yuliya S.Mishura—
Stochastic Calculus for Fractional Brownian Motion and Related Processes(2007)),
and Lemma 1 and (Hs), we can prove

(@' (@)b(t, ), @' ()0 (t, ) € Sp(r ey (t, ().



Also we can prove the Stochastic Tangent Sets to Inverse Images in the
fBM form.

Theorem 3.2.2 Let ¢ be a C®2) map from R% to R™. Assume that there
exist a random variable h = h%* > 0, such that Vs € [t,t + h], ¢’ (Xs)T is
bounded and Lipschitz. where ¢'(X )T denote the right inverse of ¢'(Xy).
then

(b(t,x),0(t,x)) € Sk (t,x)
if and only if

(@' (2)b(t, ), ¢ (x)o(t,x)) € Spry) (t: ().

Proof. It remains to assume that (¢'(2)b(t,x), ' (z)o(t,x)) € S,k )t @(x)).
and to infer that (b(t,z),0(t,x)) € Sk (t, ).

It’s similar to the proof of Theorem 3.2.1, but here we use the right inverse
of ©'(X,). And we need ¢'(X,)" is bounded and Lipschitz. It’s very useful
for our estimates.

[]



In this part, we mainly use Theorem 3.2.2 to get the deterministic sufficient
and necessary conditions for viability when K takes some particular form.

Lemma 3. Let K be the unit sphere, then for all x € K, (b(t,z),0(t,z)) €
Sk (t,x) if and only if

(x,b(t,x)) =0, (x,0(t,x)) =0
Proof: Firstly, we take ¢(x) = |z|?, then

+__“+
2|x|?

p(z)

And it is easy to verify that p(x) satisfies our conditions. We can use the
method of Lemma 2(b) to get some estimates. Then use Theorem 3.2.2 we

can get
(x,b(t,x)) =0, (x,0(t,x)) =0



Using the same method, we can also get this following Lemma.

Lemma 4. Let K = {x € R%;r < |2| < R} then Vz, such that |z| = R,
(b(t,z),o(t,x)) € Sk (t,z) if and only if

<.CU, b(t,ﬂ?» <0, <:U7 O'(t,ﬂi‘» =0
and Vz, such that |z| =r, (b(t,x),0(t,x)) € Sk(t,x) if and only if
<ZIZ‘, b(t,ZE)> > 0, <ZC, O'(t,ﬂi‘)> =0

From Lemma 4. It’s also easy to get
Lemma 5. Let K be the unit ball, then Vx, such that |x| = 1, (b(t,x),0(t,x)) €
Sk (t,x) if and only if

(x,b(t,x)) <0, (x,o(t,x)) =0



Remark. Considering that if we want get the conditions for the viability
of K ,we only need to think about the starting point x € 0K.

From this Remark, we have

Corollary 1. Let 1 — H < a < ag and K is the unit sphere.
Then the following assertions are equivalent:

(I) K is viable for the fractional SDE.
(IT) Vt € [0,T] and all z € K ,
(x,b(t,x)) =0, (x,0(t,z)) = 0.

Corollary 2. Let 1 — H < a < ag and K is the unit ball.
Then the following assertions are equivalent:

(I) K is viable for the fractional SDE.
(IT) ¥Vt € [0,T] and all |z| =1,
(z,b(t,2)) <0,  (z,0(t x)) =0.



Example 1.
Consider the SDE on R

XS::IH—/ b(r,XT)dr—l—/ o(r,X,)dB!, s€]0,T].
0 0

where
e B={B;,t >0} is a k- dimensional fractional Brownian motion.
e b, 0 satisfy the assumptions H;, Hs.
o x> 0.
Then it has a positive solution if and only if
b(t,0) > 0,0(t,0) =0,Vt € [0,T]

In fact we take K = [0,4+00), the problem is just that K is viable for the
fractional SDE. We can use x = tan 7 (y+1) and we can get y = % arctanx —1,
it just maps [0, +o0) to [—1, 1], and we can use Corollary 2.



Example 2.
comparison of the solutions
Consider the two dimensional decoupled system

/

X$”=m+[?ﬂﬂXFWJMﬂMW+l?ﬂﬂXW+ﬂﬂﬂﬂﬂnsEhT]

5?y:y+[7ﬂﬂ%“+Jﬂﬂﬂ%+l?ﬂﬂﬁ”+ﬂﬂﬂﬂﬂuSG%T]

\

Then using the viability theorem, we can get if x < y, then

f1(t) < fa(t),  g1(t) = g2(2) vt € [0,T].
— X" <Yl”



Thank you for your attention !



