
March 19, 2010
Marie Curie ITN Project
Workshop on “Stochastic Control and Finance”,
Roscoff

Viability for Stochastic Differential Equation
Driven by Fractional Brownian Motion

PHD Student: Tianyang Nie
PHD Adviser: Aurel Răşcanu
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1 Introduction

In this lecture we base on the following references:

[1] J.-P.Aubin, and G.Da Prato:Stochastic viability and Invariance, Annali
Scuola Normale di Pisa, Vol.27 (1990), 595-694.

[2] I.Ciotir and A.Răşcanu:Viability for Stochastic Differential Equation
Driven by Fractional Brownian Motions, J. Differential Equations 247 (2009)
1505-1528

Our aim is to establish the deterministic necessary and sufficient condi-
tions that guarantee that the solution of a given Stochastic Differential Equa-
tion(SDE) driven by the fractional Brownian motion evolves in a prescribed
set 𝐾.



2 Stochastic viability problems

We consider the following SDE

𝑋𝑠 = 𝑥+

∫ 𝑠

𝑡

𝑏(𝑟,𝑋𝑟)𝑑𝑟 +

∫ 𝑠

𝑡

𝜎(𝑟,𝑋𝑟)𝑑𝐵𝑟, 𝑠 ∈ [𝑡, 𝑇 ], 𝑎.𝑠. 𝜔 ∈ Ω, (1)

where

∙ {𝐵𝑡, 𝑡 ≥ 0} is a 𝑘- dimensional (fractional) Brownian motion defined on

a complete stochastic base
(
Ω,ℱ ,ℙ; {ℱ𝑡}𝑡≥0

)
.

∙ 𝑏 : [0, 𝑇 ]× ℝ𝑑→ℝ𝑑 and 𝜎 : [0, 𝑇 ]× ℝ𝑑→ ℝ𝑑×𝑘 are continuous functions.



Let
𝒦 = {𝐾 (𝑠) : 𝑠 ∈ [0, 𝑇 ]} ; 𝐾 (𝑠) = 𝐾 (𝑠) ⊂ ℝ𝑑.

Definition

∙ 𝒦 is viable (weak invariant) for the equation (1) if, ∀ 𝑡 ∈ [0, 𝑇 ] and
∀ 𝑥 ∈ 𝐾 (𝑡) , there exist at least one solution {𝑋𝑡,𝑥

𝑠 : 𝑠 ∈ [𝑡, 𝑇 ]} of the
SDE (1) satisfies

𝑋𝑡,𝑥
𝑠 ∈ 𝐾 (𝑠) for all 𝑠 ∈ [𝑡, 𝑇 ] .

∙ 𝒦 is invariant (strong invariant) for the equation (1) if, ∀ 𝑡 ∈ [0, 𝑇 ] and
∀ 𝑥 ∈ 𝐾 (𝑡), all solutions {𝑋𝑡,𝑥

𝑠 : 𝑠 ∈ [𝑡, 𝑇 ]} of the SDE (1) have the
property

𝑋𝑡,𝑥
𝑠 ∈ 𝐾 (𝑠) for all 𝑠 ∈ [𝑡, 𝑇 ] .

Obviously in the case when the equation has a unique solution, viability is
equivalent with invariance.



Starting with Nagumo’s pioneer work in 1943, the viability property has
been extensively studied for deterministic differential equations and inclusions.

To our knowledge the first work that gives a characterization of the viability
property in a stochastic framework was written by Aubin and Da Prato(1990)

The key point of their work consists in defining a suitable Bouligand’s
stochastic tangent cone, which generalizes the cone used in the study of the
viability property for deterministic systems.

Another approach has been developed in Buckdahn, Quincampoix, Rainer
and Rascanu (2002).

The main point of this work consist in proving that the viability property
holds if and only if the square of the distance to the constraint set is a viscosity
supersolution of a PDE associated.

I will present the main result of this first, and in our lecture we mainly use
the result of [2], which will be presented in the third section.



Theorem(Viability Criterion for SDE driven by BM)

We suppose that in the equation (1), {𝐵𝑡, 𝑡 ≥ 0} is a 𝑘- dimensional
Brownian motion, and

∙ 𝑏 : [0, 𝑇 ] × ℝ𝑑 → ℝ𝑑, 𝜎 : [0, 𝑇 ] × ℝ𝑑 → ℝ𝑑×𝑘 are continuous functions
such that

∣𝑏 (𝑡, 𝑥)− 𝑏 (𝑡, 𝑦)∣+ ∣𝜎 (𝑡, 𝑥)− 𝜎 (𝑡, 𝑦)∣ ≤ 𝐿 ∣𝑥− 𝑦∣ ,∀𝑥, 𝑦 ∈ ℝ𝑑

∙ 𝑡 7→ 𝑑2𝐾(𝑡)(𝑥) : [0, 𝑇 ] → ℝ is lower semicontinuous(l.s.c.) ∀𝑥 ∈ ℝ𝑑;

∙ sup
𝑡∈[0,𝑇 ]

𝑑2𝐾(𝑡)(0) ≤ 𝑀 < ∞

Denote

𝒜𝑡 (𝜑) (𝑥) =
1

2
Tr [𝜎 (𝑡, 𝑥)𝜎∗ (𝑡, 𝑥)𝜑′′

𝑥𝑥 (𝑥)] + ⟨𝑏 (𝑡, 𝑥) , 𝜑′
𝑥 (𝑥)⟩

=
1

2

𝑑∑
𝑖,𝑗=1

(𝜎𝜎∗)𝑖𝑗(𝑡, 𝑥)
∂2𝜑 (𝑥)

∂𝑥𝑖∂𝑥𝑗
+

𝑑∑
𝑖=1

𝑏𝑖(𝑡, 𝑥)
∂𝜑 (𝑥)

∂𝑥𝑖
.



Then the next assertions are equivalent:

(𝐼) Equation (1) is 𝒦–viable on [0, 𝑇 ].

(𝐼𝐼) 𝑢(𝑡, 𝑥) = 𝑑2𝐾(𝑡)(𝑥) is a l.s.c. viscosity supersolution of the partical
differential equation

∂𝑈(𝑡, 𝑥)

∂𝑡
+𝒜𝑡𝑈(𝑡, 𝑥)− 𝐶𝑑2𝐾(𝑡)(𝑥) = 0, (𝑡, 𝑥) ∈ [0, 𝑇 ] ∈ ℝ𝑚. (2)

i.e. for any 𝜑 ∈ 𝐶1,2([0, 𝑇 [×ℝ𝑑), and (𝑡, 𝑥) ∈ [0, 𝑇 ] × ℝ𝑑 such that 𝑢 − 𝜑 has
a local minimum at (𝑡, 𝑥), it holds

∂𝜑(𝑡, 𝑥)

∂𝑡
+𝒜𝑡𝜑(𝑡, 𝑥)− 𝐶𝑑2𝐾(𝑡)(𝑥) ≤ 0.



Example

Let us consider 𝑎(𝑡) ∈ 𝐶2([0, 𝑇 ];ℝ𝑑) and 𝑟(𝑡) ∈ 𝐶2([0, 𝑇 ];ℝ+) with 𝑟 (𝑡) ≥
𝛿 > 0, 𝑡 ∈ [0, 𝑇 ].

We put

𝐾(𝑡) = {𝑦 ∈ ℝ𝑛 : ∣𝑦 − 𝑎 (𝑡)∣ ≤ 𝑟(𝑡)}, 𝑡 ∈ [0, 𝑇 ].

Then 𝒦 = {𝐾(𝑡) : 𝑡 ∈ [0, 𝑇 ]} is viable if and only if

for all 𝑡 ∈ [0, 𝑇 ] and 𝑥 ∈ ∂𝐾(𝑡) = {𝑦 : ∣𝑦 − 𝑎 (𝑡) ∣ = 𝑟(𝑡)} ,{
𝜎∗(𝑡, 𝑥) (𝑥− 𝑎 (𝑡)) = 0, and

2 < 𝑥− 𝑎 (𝑡) , 𝑏(𝑡, 𝑥) > +∥𝜎(𝑡, 𝑥)∥2 ≤ 2𝑟(𝑡)𝑟′(𝑡).



Applications:
1.security tube in the traffic control

𝒦 = {𝐾 (𝑠) : 𝑠 ∈ [0, 𝑇 ]} ; where

𝐾 (𝑠) =
{
𝑥 ∈ ℝ𝑑 : ∣𝑥− 𝑎 (𝑠)∣ ≤ 𝑟 (𝑠)

}
2. comparison of the solutions

Consider the two dimensional decoupled system⎧⎨⎩
𝑋𝑡,𝑥

𝑠 = 𝑥+

∫ 𝑠

𝑡

𝑏(𝑟,𝑋𝑡,𝑥
𝑟 )𝑑𝑟 +

∫ 𝑠

𝑡

𝜎(𝑟,𝑋𝑡,𝑥
𝑟 )𝑑𝐵𝑟, 𝑠 ≥ 𝑡

𝑌 𝑡,𝑦
𝑠 = 𝑦 +

∫ 𝑠

𝑡

𝑏̃(𝑟, 𝑌 𝑡,𝑦
𝑟 )𝑑𝑟 +

∫ 𝑠

𝑡

𝜎̃(𝑟, 𝑌 𝑡,𝑦
𝑟 )𝑑𝐵𝑟, 𝑠 ≥ 𝑡

and

𝒦 = {𝐾 (𝑡) : 𝑡 ∈ [0, 𝑇 ]} ; where 𝐾 (𝑡) =
{
(𝑥, 𝑦) ∈ ℝ2 : 𝑥 ≤ 𝑦

}
The viability of 𝒦 means:

if 𝑥 ≤ 𝑦 then 𝑋𝑡,𝑥
𝑠 ≤ 𝑌 𝑡,𝑦

𝑠 , for all 𝑠 ≥ 𝑡.



3.controllability:
If we choose the constraint sets of the form

𝒦 = {𝐾 (𝑡) : 𝑡 ∈ [0, 𝑇 ]} ; where

𝐾 (𝑡) =

⎧⎨⎩
{𝑥0} , if 𝑡 = 0,

ℝ𝑑, if 0 ≤ 𝑡 < 𝑇

{𝑥𝑇 } , if 𝑡 = 𝑇.

Then we can study the controlled problem: Given 𝑥0 ∈ ℝ𝑑 and 𝑥𝑇 ∈ ℝ𝑑, to
find a control 𝑢 and 𝑋 = 𝑋0,𝑥0;𝑢 solution of the SDE

𝑋𝑠 = 𝑥0 +

∫ 𝑠

0

[𝑏(𝑟,𝑋𝑟) + 𝑢𝑟] 𝑑𝑟 +

∫ 𝑠

0

𝜎(𝑟,𝑋𝑟)𝑑𝐵𝑟, 𝑠 ∈ [0, 𝑇 ] 𝑎.𝑠. 𝜔 ∈ Ω,

such that
𝑋𝑇 = 𝑥𝑇 ,

More generally, we can consider the problem:

𝑋𝑠 = 𝑥0 +

∫ 𝑠

0

𝑏(𝑟,𝑋𝑟, 𝑢𝑟)𝑑𝑟 +

∫ 𝑠

0

𝜎(𝑟,𝑋𝑟, 𝑈𝑟)𝑑𝐵𝑟, 𝑠 ∈ [0, 𝑇 ] 𝑎.𝑠. 𝜔 ∈ Ω,



4. stability:
Consider the two dimensional decoupled system⎧⎨⎩

𝑋𝑡,𝑥
𝑠 = 𝑥+

∫ 𝑠

𝑡

𝑏(𝑟,𝑋𝑡,𝑥
𝑟 )𝑑𝑟 +

∫ 𝑠

𝑡

𝜎(𝑟,𝑋𝑡,𝑥
𝑟 )𝑑𝐵𝑟,

𝑌 𝑡,𝑦
𝑠 = 𝑦 − 𝜆

∫ 𝑠

𝑡

𝑌 𝑡,𝑦
𝑟 𝑑𝑟,

and

𝒦 = {𝐾 (𝑡) : 𝑡 ∈ [0, 𝑇 ]} ; where 𝐾 (𝑡) =
{
(𝑥, 𝑦) ∈ ℝ2 : 𝑥 ≤ 𝑦

}
The viability of 𝒦 means:

if 𝑥 ≤ 𝑦 then 𝑋𝑡,𝑥
𝑠 ≤ 𝑌 𝑡,𝑦

𝑠 = 𝑦𝑒−𝜆(𝑠−𝑡), for all 𝑠 ≥ 𝑡.



3 Viability for SDE driven by fBm

3.1 Preliminaries

In this part we present a result concerning the viability for SDE driven by
fBm. Consider the SDE on ℝ𝑑

𝑋𝑠 = 𝑋0 +

∫ 𝑠

0

𝑏(𝑟,𝑋𝑟)𝑑𝑟 +

∫ 𝑠

0

𝜎 (𝑟,𝑋𝑟) 𝑑𝐵
𝐻
𝑟 , 𝑠 ∈ [0, 𝑇 ] .

where

∙ 𝐵 = {𝐵𝑡, 𝑡 ≥ 0} is a 𝑘- dimensional fractional Brownian motion with
Hurst parameter 1

2 < 𝐻 < 1, and the integral with respect to 𝐵 is a
pathwise Riemann-Stieltjes integral;

∙ 𝑋0 is a 𝑑 - dimensional random variable defined in a complete probability
space (Ω,ℱ ,ℙ);

∙ 𝑏 : [0, 𝑇 ]× ℝ𝑑→ℝ𝑑, 𝜎 : [0, 𝑇 ]× ℝ𝑑→ ℝ𝑑×𝑘 are continuous functions.



Assume

(H1) there exist some constants 𝛽, 𝛿, 0 < 𝛽, 𝛿 ≤ 1, and for every 𝑅 ≥ 0 there
exists 𝑀𝑅 > 0 such that for all 𝑡 ∈ [0, 𝑇 ]:

𝑖) ∣𝜎(𝑡, 𝑥)− 𝜎(𝑠, 𝑦)∣ ≤ 𝑀0

(∣𝑡− 𝑠∣𝛽 + ∣𝑥− 𝑦∣) , ∀𝑥, 𝑦 ∈ ℝ𝑑,

𝑖𝑖) ∣∇𝑥𝜎(𝑡, 𝑦)−∇𝑥𝜎(𝑠, 𝑧)∣ ≤ 𝑀𝑅

(∣𝑡− 𝑠∣𝛽 + ∣𝑦 − 𝑧∣𝛿) , ∀ ∣𝑦∣ , ∣𝑧∣ ≤ 𝑅,

Remark that for all 𝑥 ∈ ℝ𝑑, 𝜎(𝑡, 𝑥) has sublinear growth.
Let

𝛼0 = min

{
1

2
, 𝛽,

𝛿

1 + 𝛿

}
.

(H2) There exist 𝜇 ∈ (1−𝛼0, 1] and for every 𝑅 ≥ 0 there exists 𝐿𝑅 > 0 such
that ∀𝑡 ∈ [0, 𝑇 ] , :

𝑖) Local (Hölder-Lipschitz) continuity:
∣𝑏(𝑟, 𝑥)− 𝑏(𝑠, 𝑦)∣ ≤ 𝐿𝑅 (∣𝑟 − 𝑠∣𝜇 + ∣𝑥− 𝑦∣) , ∀ ∣𝑥∣ , ∣𝑦∣ ≤ 𝑅,
𝑖𝑖) Boundedness : ∣𝑏(𝑡, 𝑥)∣ ≤ 𝐿0(1 + ∣𝑥∣), ∀𝑥 ∈ ℝ𝑑.



D.Nualart and A.Răşcanu prove in Differential equations driven by frac-

tional Brownian motion. (2002), the following theorem:

Theorem:

Under the assumpations(𝐻1) and (𝐻2) , with 𝛽 > 1−𝐻 and 𝛿 > 1
𝐻 − 1

the SDE

𝑋𝑡,𝜉
𝑠 = 𝜉 +

∫ 𝑠

𝑡

𝑏(𝑟,𝑋𝑡,𝜉
𝑟 )𝑑𝑟 +

∫ 𝑠

𝑡

𝜎
(
𝑟,𝑋𝑡,𝜉

𝑟

)
𝑑𝐵𝑟, 𝑠 ∈ [𝑡, 𝑇 ] ,

has a unique solution 𝑋𝑡,𝜉 ∈ 𝐿0
(
Ω,ℱ ,ℙ ;𝑊𝛼,∞(𝑡, 𝑇 ;ℝ𝑑)

)
, for all 𝛼 ∈

(1−𝐻,𝛼0) . Moreover, for ℙ-almost all 𝜔 ∈ Ω

𝑋 (𝜔, ⋅) ∈ 𝐶1−𝛼
(
0, 𝑇 ;ℝ𝑑

)
.

The definition of 𝑊𝛼,∞(𝑡, 𝑇 ;ℝ𝑑) and 𝐶1−𝛼 will be given in the follow.



Let 𝑡 ∈ [0, 𝑇 ] be fixed. Denote

∙ 𝑊𝛼,∞(𝑡, 𝑇 ;ℝ𝑑), 0 < 𝛼 < 1, the space of continuous functions 𝑓 : [𝑡, 𝑇 ] →
ℝ𝑑 such that

∥𝑓∥𝛼,∞;[𝑡,𝑇 ] := sup
𝑠∈[𝑡,𝑇 ]

(
∣𝑓(𝑠)∣+

∫ 𝑠

𝑡

∣𝑓 (𝑠)− 𝑓 (𝑟)∣
(𝑠− 𝑟)

𝛼+1 𝑑𝑟

)
< ∞.

An equivalent norm can be defined by

∥𝑓∥𝛼,𝜆;[𝑡,𝑇 ] := sup
𝑠∈[𝑡,𝑇 ]

𝑒−𝜆𝑠

(
∣𝑓(𝑠)∣+

∫ 𝑠

𝑡

∣𝑓 (𝑠)− 𝑓 (𝑟)∣
(𝑠− 𝑟)

𝛼+1 𝑑𝑟

)
∀𝜆 ≥ 0.

∙ 𝑊̃ 1−𝛼,∞(𝑡, 𝑇 ;ℝ𝑑), the space of continuous functions 𝑔 : [𝑡, 𝑇 ] → ℝ𝑑 such
that

∥𝑔∥𝑊̃ 1−𝛼,∞(𝑡,𝑇 ;ℝ𝑑) := ∣𝑔 (𝑡)∣+ sup
𝑡<𝑟<𝑠<𝑇

( ∣𝑔(𝑠)− 𝑔(𝑟)∣
(𝑠− 𝑟)1−𝛼

+

∫ 𝑠

𝑟

∣𝑔(𝑦)− 𝑔(𝑟)∣
(𝑦 − 𝑟)2−𝛼

𝑑𝑦

)
< ∞.



∙ 𝐶𝜇([𝑡, 𝑇 ];ℝ𝑑), 0 < 𝜇 < 1, the space of 𝜇-Holder continuous functions
𝑓 : [𝑡, 𝑇 ] → ℝ𝑑, equipped with the norm

∥𝑓∥𝜇;[𝑡,𝑇 ] := ∥𝑓∥∞;[𝑡,𝑇 ] + sup
𝑡≤𝑟<𝑠≤𝑇

∣𝑓 (𝑠)− 𝑓 (𝑟)∣
(𝑠− 𝑟)

𝜇 < ∞

where ∥𝑓∥∞;[𝑡,𝑇 ] := sup𝑠∈[𝑡,𝑇 ]∣𝑓(𝑠)∣. We have, for all 0 < 𝜖 < 𝛼

𝐶𝛼+𝜖([𝑡, 𝑇 ];ℝ𝑑) ⊂ 𝑊𝛼,∞(𝑡, 𝑇 ;ℝ𝑑)

∙ 𝑊𝛼,1(𝑡, 𝑇 ;ℝ𝑑) the space of measurable functions 𝑓 on [𝑡, 𝑇 ] such that

∥𝑓∥𝛼,1;[𝑡,𝑇 ] :=

∫ 𝑇

𝑡

[ ∣𝑓(𝑠)∣
(𝑠− 𝑡)

𝛼 +

∫ 𝑠

𝑡

∣𝑓(𝑠)− 𝑓(𝑦)∣
(𝑠− 𝑦)𝛼+1

𝑑𝑦

]
𝑑𝑠 < ∞.

Clearly
𝑊𝛼,∞(𝑡, 𝑇 ;ℝ𝑑) ⊂ 𝑊𝛼,1(𝑡, 𝑇 ;ℝ𝑑).



Definition Let 0 < 𝛼 < 1
2 . If 𝑓 ∈ 𝑊𝛼,1(𝑡, 𝑇 ;ℝ𝑑×𝑘) and 𝑔 ∈ 𝑊̃ 1−𝛼,∞(𝑡, 𝑇 ;ℝ𝑘),

then defining∫ 𝑠

𝑡

𝑓 (𝑟) 𝑑𝑔 (𝑟) := (−1)
𝛼
∫ 𝑠

𝑡

(
𝐷𝛼

𝑡+𝑓
)
(𝑟)
(
𝐷1−𝛼

𝑠− 𝑔𝑠−
)
(𝑟) 𝑑𝑟.

the integral
∫ 𝑠

𝑡
𝑓𝑑𝑔 exists for all 𝑠 ∈ [𝑡, 𝑇 ] and∣∣∣∣∣

∫ 𝑇

𝑡

𝑓 (𝑟) 𝑑𝑔 (𝑟)

∣∣∣∣∣ ≤ sup
𝑡≤𝑟<𝑠≤𝑇

∣(𝐷1−𝛼
𝑠− 𝑔𝑠−)(𝑟)∣

∫ 𝑇

𝑡

∣(𝐷𝛼
𝑡+𝑓)(𝑠)𝑑𝑠∣ ≤ Λ𝛼(𝑔; [𝑡, 𝑇 ]) ∥𝑓∥𝛼,1;[𝑡,𝑇 ]

Where

Λ𝛼(𝑔; [𝑡, 𝑇 ]) =
1

Γ(1− 𝛼)
sup

𝑡<𝑟<𝑠<𝑇

∣∣(𝐷1−𝛼
𝑠− 𝑔𝑠−

)
(𝑟)
∣∣ .

(𝐷𝛼
𝑡+𝑓)(𝑟) =

1

Γ(1− 𝛼)

(
𝑓(𝑟)

(𝑟 − 𝑡)𝛼
+ 𝛼

∫ 𝑟

𝑡

𝑓(𝑟)− 𝑓(𝑦)

(𝑟 − 𝑦)𝛼+1
𝑑𝑦

)
1(𝑡,𝑇 )(𝑟).

(𝐷1−𝛼
𝑠− 𝑔𝑠−)(𝑟) =

𝑒𝑖𝜋(1−𝛼)

Γ(𝛼)

(
𝑔(𝑠)− 𝑔(𝑟)

(𝑠− 𝑟)1−𝛼
+ (1− 𝛼)

∫ 𝑠

𝑟

𝑔(𝑟)− 𝑔(𝑦)

(𝑦 − 𝑟)2−𝛼
𝑑𝑦

)
1(𝑡,𝑠)(𝑟).



We will present now the deterministic approach for the study of viability
for SDE(3).

More precisely, let arbitrary fixed (𝑡, 𝑥) ∈ [0, 𝑇 ]×ℝ𝑑. and we will consider
the deterministic differential equation on ℝ𝑑 :

𝑋𝑡𝑥
𝑠 = 𝑥+

∫ 𝑠

𝑡

𝑏(𝑟,𝑋𝑡𝑥
𝑟 )𝑑𝑟 +

∫ 𝑠

𝑡

𝜎
(
𝑟,𝑋𝑡𝑥

𝑟

)
𝑑𝑔 (𝑟) , 𝑠 ∈ [𝑡, 𝑇 ] , (3)

where
𝑔 ∈ 𝑊̃ 1−𝛼,∞(𝑡, 𝑇 ;ℝ𝑘)

We also assume (𝐻1) and (𝐻2) be satisfied.

We recall here the main definitions and results from I.Ciotir and A.Răşcanu:
Viability for SDE driven by fBM, (2009) .



Let 𝛼 be arbitrary fixed such that 0 < 𝛼 < 𝛼0 .

Let 𝒦 = {𝐾 (𝑡) : 𝑡 ∈ [0, 𝑇 ]} be a family of nonempty closed subsets of ℝ𝑑.

Definition. Let 𝑡 ∈ [0, 𝑇 ] and 𝑥 ∈ 𝐾 (𝑡) . Let 1
2 < 1− 𝛼 < 𝐻.

The pair (𝑏 (𝑡, 𝑥) , 𝜎 (𝑡, 𝑥)) is (1− 𝛼)-fractional 𝑔-contingent to 𝐾 (𝑡) in
(𝑡, 𝑥) if there exist ℎ̄ = ℎ̄𝑡,𝑥 > 0, and a function 𝑄 = 𝑄𝑡,𝑥 :

[
𝑡, 𝑡+ ℎ̄

]→ ℝ𝑑

such that for all 𝑠, 𝜏 ∈ [𝑡, 𝑡+ ℎ̄
]
and ∣𝑥∣ ≤ 𝑅 :

∣𝑄 (𝑠)−𝑄 (𝜏)∣ ≤ 𝐺𝑅 ∣𝑠− 𝜏 ∣1−𝛼
, ∣𝑄 (𝑠)∣ ≤ 𝐺̃𝑅 ∣𝑠− 𝑡∣1+𝛾

and

𝑥+ (𝑠− 𝑡) 𝑏 (𝑡, 𝑥) + 𝜎 (𝑡, 𝑥) [𝑔 (𝑠)− 𝑔 (𝑡)] +𝑄 (𝑠) ∈ 𝐾 (𝑠) ,

where the constants 𝐺𝑅, 𝐺̃𝑅, 𝛾𝑅 depend only on 𝑅, 𝐿𝑅, 𝑀0, 𝐿0, 𝑇 , 𝛼, 𝛽,
Λ𝛼 (𝑔).



Definition. Let 𝑡 ∈ [0, 𝑇 ] and 𝑥 ∈ 𝐾(𝑡). Let 1
2 < 1− 𝛼 < 𝐻.

The pair (𝑏 (𝑡, 𝑥) , 𝜎 (𝑡, 𝑥)) is (1− 𝛼)-fractional 𝑔 -tangent to 𝐾(𝑡) in (𝑡, 𝑥)
if there exist ℎ̄ = ℎ̄𝑡,𝑥 > 0, and two functions

𝑈 = 𝑈 𝑡,𝑥 :
[
𝑡, 𝑡+ ℎ̄

]→ ℝ𝑑, 𝑈(𝑡) = 0

𝑉 = 𝑉 𝑡,𝑥 :
[
𝑡, 𝑡+ ℎ̄

]→ ℝ𝑑×𝑘, 𝑉 (𝑡) = 0

such that for all 𝑠, 𝜏 ∈ [𝑡, 𝑡+ ℎ̄
]
and ∣𝑥∣ ≤ 𝑅 :

∣𝑈 (𝑠)− 𝑈 (𝜏)∣ ≤ 𝐷𝑅 ∣𝑠− 𝜏 ∣1−𝛼
, ∣𝑉 (𝑠)− 𝑉 (𝜏)∣ ≤ 𝐷̃𝑅 ∣𝑠− 𝑡∣𝑚𝑖𝑛{𝛽,1−𝛼}

and

𝑥+

∫ 𝑠

𝑡

(𝑏(𝑡, 𝑥) + 𝑈(𝑟))𝑑𝑟 +

∫ 𝑠

𝑡

(𝜎(𝑡, 𝑥) + 𝑉 (𝑟))𝑑𝑔(𝑟) ∈ 𝐾(𝑠),

where the constants 𝐷𝑅, 𝐷̃𝑅, depend only on 𝑅, 𝐿𝑅, 𝑀0, 𝐿0, 𝑇 , 𝛼, 𝛽,
Λ𝛼 (𝑔).



Theorem.

Assume (𝐻1) and (𝐻2) are satisfied and 1− 𝜇 < 𝛼 < 𝛼0.

The following assertions are equivalent:

(𝐼) 𝐾 is viable for the fractional differential equation , i.e. ∀𝑡 ∈ [0, 𝑇 ] and
∀𝑥 ∈ 𝐾 (𝑡), there exists a solution 𝑋𝑡,𝑥 (⋅) ∈ 𝐶1−𝛼

(
[𝑡, 𝑇 ] ; ℝ𝑑

)
for

𝑋𝑡,𝑥
𝑠 = 𝑥+

∫ 𝑠

𝑡

𝑏(𝑟,𝑋𝑡,𝑥
𝑟 )𝑑𝑟 +

∫ 𝑠

𝑡

𝜎(𝑟,𝑋𝑡,𝑥
𝑟 )𝑑𝑔 (𝑟) , 𝑠 ∈ [𝑡, 𝑇 ],

such that
𝑋𝑡,𝑥

𝑠 ∈ 𝐾 (𝑠) , for all 𝑠 ∈ [𝑡, 𝑇 ].

(II) ∀𝑡 ∈ [0, 𝑇 ] and all 𝑥 ∈ 𝐾 (𝑡) the pair(𝑏 (𝑡, 𝑥) , 𝜎 (𝑡, 𝑥)) is (1− 𝛼)-fractional
𝑔 -contingent to 𝐾 (𝑡) in (𝑡, 𝑥)

(III) ∀𝑡 ∈ [0, 𝑇 ] and all 𝑥 ∈ 𝐾 (𝑡) the pair(𝑏 (𝑡, 𝑥) , 𝜎 (𝑡, 𝑥)) is (1− 𝛼)-fractional
𝑔-tangent to 𝐾 (𝑡) in (𝑡, 𝑥)



Therefore, choosing 𝑔 = 𝐵𝐻 , we have similar definition for 𝐵𝐻 -contingent
and 𝐵𝐻 -tangent. We denote 𝐵𝐻 -tangent by 𝑆𝐾(𝑡)(𝑡, 𝑥).

Then we have the theorem providing the characterization of the viability:
Theorem. Let 1 − 𝐻 < 𝛼 < 𝛼0 and 𝒦 = {𝐾 (𝑡) : 𝑡 ∈ [0, 𝑇 ]}, 𝐾 (𝑡) =

𝐾 (𝑡) ⊂ ℝ𝑑.
Then the following assertions are equivalent:

(I) 𝒦 is viable for the fractional SDE, i.e. for all 𝑡 ∈ [0, 𝑇 ] and for all
𝑥 ∈ 𝐾 (𝑡) there exists a solution 𝑋𝑡,𝑥 (𝜔, ⋅) ∈ 𝐶1−𝛼

(
[𝑡, 𝑇 ] ; ℝ𝑑

)
of the

equation

𝑋𝑡,𝑥
𝑠 = 𝑥+

∫ 𝑠

𝑡

𝑏(𝑟,𝑋𝑡,𝑥
𝑟 )𝑑𝑟 +

∫ 𝑠

𝑡

𝜎(𝑟,𝑋𝑡,𝑥
𝑟 )𝑑𝐵𝐻

𝑟 , 𝑠 ∈ [𝑡, 𝑇 ], 𝑎.𝑠. 𝜔 ∈ Ω,

(4)
and

𝑋𝑡,𝑥
𝑠 ∈ 𝐾 (𝑠) , ∀ 𝑠 ∈ [𝑡, 𝑇 ] .

(II) For all 𝑡 ∈ [0, 𝑇 ] and all 𝑥 ∈ 𝐾 (𝑡) ,
(𝑏 (𝑡, 𝑥) , 𝜎 (𝑡, 𝑥)) is (1− 𝛼)-fractional 𝐵𝐻 -contingent to 𝐾 (𝑡) in

(𝑡, 𝑥) .



3.2 Deterministic Sufficient and Necessary Conditions.
Main Results

From the result of [2], we obtain

Corollary.

Let 1−𝐻 < 𝛼 < 𝛼0 and 𝒦 = {𝐾 (𝑡) : 𝑡 ∈ [0, 𝑇 ]}, 𝐾 (𝑡) = 𝐾 (𝑡) ⊂ ℝ𝑑.
Then the following assertions are equivalent:

(I) 𝒦 is viable for the fractional SDE(4).

(II) For all 𝑡 ∈ [0, 𝑇 ] and all 𝑥 ∈ 𝐾 (𝑡) , (𝑏 (𝑡, 𝑥) , 𝜎 (𝑡, 𝑥)) is (1− 𝛼)-fractional
𝐵𝐻 -contingent to 𝐾 (𝑡) in (𝑡, 𝑥) .

(III) For all 𝑡 ∈ [0, 𝑇 ] and all 𝑥 ∈ 𝐾(𝑡), (𝑏 (𝑡, 𝑥) , 𝜎 (𝑡, 𝑥)) is (1− 𝛼)-fractional
𝐵𝐻 -tangent to 𝐾(𝑡) in (𝑡, 𝑥) .



We give two Lemmas for the basic estimates which we will use later.

Lemma 1. The solution of SDE(4), 𝑋𝑡,𝑥 is (1− 𝛼)-Holder continuous and∥∥𝑋𝑡,𝑥
⋅
∥∥
1−𝛼;[𝑡,𝑇 ]

≤ 𝐶0 (1 + ∣𝑥∣)

where 𝐶0 is a constant depending only on 𝑀0, 𝐿0 𝑇 , 𝛼, 𝛽, Λ𝛼 (𝑔) .

Lemma 2. Let (𝐻1) and (𝐻2) be satisfied and 1− 𝜇 ≤ 𝛼 < 𝛽 ∧ 1
2 . If 𝑌 is a

Holder continuous function with

∥𝑌 ∥1−𝛼;[𝑡,𝑇 ] ≤ 𝑅

then ∃ 𝐶
(𝑖)
𝑅 depending on 𝑅,𝑀0, 𝑇, 𝛼, 𝛽,Λ𝛼 (𝑔) s.t. for all 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝑇,

(𝑎)

∣∣∣∣∫ 𝑠

𝑡

[𝑏(𝑟, 𝑌𝑟)− 𝑏 (𝑡, 𝑌𝑡)] 𝑑𝑟

∣∣∣∣ ≤ 𝐶
(1)
𝑅 (𝑠− 𝑡)

2−𝛼
and

(𝑏)

∣∣∣∣∫ 𝑠

𝑡

[𝜎(𝑟, 𝑌𝑟)− 𝜎 (𝑡, 𝑌𝑡)] 𝑑𝑔 (𝑟)

∣∣∣∣ ≤ 𝐶
(2)
𝑅 (𝑠− 𝑡)

1+min{𝛽−𝛼,1−2𝛼}
.



Following the paper of J.-P.Aubin, and G.Da Prato, :Stochastic viability
and Invariance, (1990), we obtain the theorem concerning the Stochastic
Tangent Sets to Direct Images in the fBM framework.

Theorem 3.2.1 Let 𝜑 be a 𝐶(2) map from ℝ𝑑 to ℝ𝑚. If

(𝑏(𝑡, 𝑥), 𝜎(𝑡, 𝑥)) ∈ 𝑆𝐾(𝑡)(𝑡, 𝑥)

then
(𝜑′(𝑥)𝑏(𝑡, 𝑥), 𝜑′(𝑥)𝜎(𝑡, 𝑥)) ∈ 𝑆𝜑(𝐾(𝑡))(𝑡, 𝜑(𝑥)).

Main idea of Proof.

Let (𝑏(𝑡, 𝑥), 𝜎(𝑡, 𝑥)) ∈ 𝑆𝐾(𝑡)(𝑡, 𝑥), Using the Itô formula (see Yuliya S.Mishura–
Stochastic Calculus for Fractional Brownian Motion and Related Processes(2007)),
and Lemma 1 and (H2), we can prove

(𝜑′(𝑥)𝑏(𝑡, 𝑥), 𝜑′(𝑥)𝜎(𝑡, 𝑥)) ∈ 𝑆𝜑(𝐾(𝑡))(𝑡, 𝜑(𝑥)).

□



Also we can prove the Stochastic Tangent Sets to Inverse Images in the
fBM form.

Theorem 3.2.2 Let 𝜑 be a 𝐶(2) map from ℝ𝑑 to ℝ𝑚. Assume that there
exist a random variable ℎ̄ = ℎ̄𝑡,𝑥 > 0, such that ∀𝑠 ∈ [𝑡, 𝑡 + ℎ̄], 𝜑′(𝑋𝑠)

+ is
bounded and Lipschitz. where 𝜑′(𝑋𝑠)

+ denote the right inverse of 𝜑′(𝑋𝑠).
then

(𝑏(𝑡, 𝑥), 𝜎(𝑡, 𝑥)) ∈ 𝑆𝐾(𝑡)(𝑡, 𝑥)

if and only if

(𝜑′(𝑥)𝑏(𝑡, 𝑥), 𝜑′(𝑥)𝜎(𝑡, 𝑥)) ∈ 𝑆𝜑(𝐾(𝑡))(𝑡, 𝜑(𝑥)).

Proof. It remains to assume that (𝜑′(𝑥)𝑏(𝑡, 𝑥), 𝜑′(𝑥)𝜎(𝑡, 𝑥)) ∈ 𝑆𝜑(𝐾(𝑡))(𝑡, 𝜑(𝑥)).
and to infer that (𝑏(𝑡, 𝑥), 𝜎(𝑡, 𝑥)) ∈ 𝑆𝐾(𝑡)(𝑡, 𝑥).

It’s similar to the proof of Theorem 3.2.1, but here we use the right inverse
of 𝜑′(𝑋𝑠). And we need 𝜑′(𝑋𝑠)

+ is bounded and Lipschitz. It’s very useful
for our estimates.

□



In this part, we mainly use Theorem 3.2.2 to get the deterministic sufficient
and necessary conditions for viability when K takes some particular form.

Lemma 3. Let 𝐾 be the unit sphere, then for all 𝑥 ∈ 𝐾, (𝑏(𝑡, 𝑥), 𝜎(𝑡, 𝑥)) ∈
𝑆𝐾(𝑡, 𝑥) if and only if

⟨𝑥, 𝑏(𝑡, 𝑥)⟩ = 0, ⟨𝑥, 𝜎(𝑡, 𝑥)⟩ = 0

Proof: Firstly, we take 𝜑(𝑥) = ∣𝑥∣2, then

𝜑(𝑥)+ =
𝑥

2∣𝑥∣2

And it is easy to verify that 𝜑(𝑥) satisfies our conditions. We can use the
method of Lemma 2(b) to get some estimates. Then use Theorem 3.2.2 we
can get

⟨𝑥, 𝑏(𝑡, 𝑥)⟩ = 0, ⟨𝑥, 𝜎(𝑡, 𝑥)⟩ = 0

□



Using the same method, we can also get this following Lemma.

Lemma 4. Let 𝐾 = {𝑥 ∈ ℝ𝑑; 𝑟 ≤ ∣𝑥∣ ≤ 𝑅} then ∀𝑥, such that ∣𝑥∣ = 𝑅,
(𝑏(𝑡, 𝑥), 𝜎(𝑡, 𝑥)) ∈ 𝑆𝐾(𝑡, 𝑥) if and only if

⟨𝑥, 𝑏(𝑡, 𝑥)⟩ ≤ 0, ⟨𝑥, 𝜎(𝑡, 𝑥)⟩ = 0

and ∀𝑥, such that ∣𝑥∣ = 𝑟, (𝑏(𝑡, 𝑥), 𝜎(𝑡, 𝑥)) ∈ 𝑆𝐾(𝑡, 𝑥) if and only if

⟨𝑥, 𝑏(𝑡, 𝑥)⟩ ≥ 0, ⟨𝑥, 𝜎(𝑡, 𝑥)⟩ = 0

From Lemma 4. It’s also easy to get
Lemma 5. Let𝐾 be the unit ball, then ∀𝑥, such that ∣𝑥∣ = 1, (𝑏(𝑡, 𝑥), 𝜎(𝑡, 𝑥)) ∈

𝑆𝐾(𝑡, 𝑥) if and only if

⟨𝑥, 𝑏(𝑡, 𝑥)⟩ ≤ 0, ⟨𝑥, 𝜎(𝑡, 𝑥)⟩ = 0



Remark. Considering that if we want get the conditions for the viability
of 𝐾 ,we only need to think about the starting point 𝑥 ∈ ∂𝐾.

From this Remark, we have

Corollary 1. Let 1−𝐻 < 𝛼 < 𝛼0 and 𝐾 is the unit sphere.
Then the following assertions are equivalent:

(I) 𝐾 is viable for the fractional SDE.

(II) ∀𝑡 ∈ [0, 𝑇 ] and all 𝑥 ∈ 𝐾 ,

⟨𝑥, 𝑏(𝑡, 𝑥)⟩ = 0, ⟨𝑥, 𝜎(𝑡, 𝑥)⟩ = 0.

Corollary 2. Let 1−𝐻 < 𝛼 < 𝛼0 and 𝐾 is the unit ball.
Then the following assertions are equivalent:

(I) 𝐾 is viable for the fractional SDE.

(II) ∀𝑡 ∈ [0, 𝑇 ] and all ∣𝑥∣ = 1,

⟨𝑥, 𝑏(𝑡, 𝑥)⟩ ≤ 0, ⟨𝑥, 𝜎(𝑡, 𝑥)⟩ = 0.



Example 1.
Consider the SDE on ℝ

𝑋𝑠 = 𝑥+

∫ 𝑠

0

𝑏(𝑟,𝑋𝑟)𝑑𝑟 +

∫ 𝑠

0

𝜎 (𝑟,𝑋𝑟) 𝑑𝐵
𝐻
𝑟 , 𝑠 ∈ [0, 𝑇 ] .

where

∙ 𝐵 = {𝐵𝑡, 𝑡 ≥ 0} is a 𝑘- dimensional fractional Brownian motion.

∙ 𝑏, 𝜎 satisfy the assumptions H1,H2.

∙ 𝑥 ≥ 0.

Then it has a positive solution if and only if

𝑏(𝑡, 0) ≥ 0, 𝜎(𝑡, 0) = 0,∀𝑡 ∈ [0, 𝑇 ]

In fact we take 𝐾 = [0,+∞), the problem is just that 𝐾 is viable for the
fractional SDE. We can use 𝑥 = tan 𝜋

4 (𝑦+1) and we can get 𝑦 = 4
𝜋 arctan𝑥−1,

it just maps [0,+∞) to [−1, 1], and we can use Corollary 2.



Example 2.
comparison of the solutions

Consider the two dimensional decoupled system⎧⎨⎩
𝑋𝑡,𝑥

𝑠 = 𝑥+

∫ 𝑠

𝑡

(𝑓(𝑟)𝑋𝑡,𝑥
𝑟 + 𝑓1(𝑟))𝑑𝑟 +

∫ 𝑠

𝑡

(𝑔(𝑟)𝑋𝑡,𝑥
𝑟 + 𝑔1(𝑟))𝑑𝐵𝑟, 𝑠 ∈ [𝑡, 𝑇 ]

𝑌 𝑡,𝑦
𝑠 = 𝑦 +

∫ 𝑠

𝑡

(𝑓(𝑟)𝑌 𝑡,𝑥
𝑟 + 𝑓2(𝑟))𝑑𝑟 +

∫ 𝑠

𝑡

(𝑔(𝑟)𝑌 𝑡,𝑥
𝑟 + 𝑔2(𝑟))𝑑𝐵𝑟, 𝑠 ∈ [𝑡, 𝑇 ]

Then using the viability theorem, we can get if 𝑥 ≤ 𝑦, then

𝑓1(𝑡) ≤ 𝑓2(𝑡), 𝑔1(𝑡) = 𝑔2(𝑡) ∀𝑡 ∈ [0, 𝑇 ].

⇐⇒ 𝑋𝑡,𝑥
𝑠 ≤ 𝑌 𝑡,𝑥

𝑠 .



Thank you for your attention !


