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PROBLEM

We present a problem of utility maximization under model uncertainty :

sup
π

inf
Q

U(π,Q),

where

π runs through a set of strategies (portfolios, investment
decisions, . . .)

Q runs through a set of models Q.



ONE KNOWN MODEL CASE

If we have a one known model P : in this case, Q = {P} for P a
given reference probability measure and U(π,P) has the form of a
P-expected utility from terminal wealth and/or consumption,
namely

U(π,P) = E
(
U(Xπ

T )
)

where
Xπ is the wealth process

and
U is some utility function.



REFERENCES : DUAL APPROACH

Schachermayer (2001) (one single model)

Becherer (2007) (one single model)

Schied (2007), Schied and Wu (2005)

Föllmer and Gundel, Gundel (2005)



REFERENCES : BSDE APPROACH

El Karoui, Quenez and Peng (2001) : Dynamic maximum principle
(one single model)

Hu, Imkeller and Mueller (2001) (one single model)

Barrieu and El Karoui (2007) : Pricing, Hedging and Designing
Derivatives with Risk Measures (one single model)

Lazrak-Quenez (2003), Quenez (2004), Q 6= {P} but one keep
U(π,Q) as an expected utility

Duffie and Epstein (1992), Duffie and Skiadas (1994), Skiadas
(2003), Schroder & Skiadas (1999, 2003, 2005) : Stochastic
Differential Utility and BSDE.

Hansen & Sargent : they discuss the problem of robust utility
maximization when model uncertainty is penalized by a relative
entropy term.



EXAMPLE : ROBUST CONTROL WITHOUT MAXIMIZATION

Let us consider an agent with time-additive expected utility over
consumptions paths :

E
[ ∫ T

0
e−δtu(ct )dt ].

with respect to some model (Ω,F ,Ft ,P, (Bt )t≥0) where (Bt )t≥0 is
Brownian motion under P.
Suppose that the agent has some preference to use another
model Pθ under which :

Bθ
t = Bt −

∫ t

0
θsds

is a Brownian motion.



EXAMPLE

The agent evaluate the distance between the two models in term
of the relative entropy of Pθ with respect to the reference measure
P :

Rθ = Eθ
[ ∫ T

0
e−δt |θt |2dt

]
In this example, our robust control problem will take the form :

V0 := inf
θ

[
Eθ
[ ∫ T

0
e−δtu(ct )dt

]
+ βRθ

]
.

The answer of this problem will be that : V0 = Y0 where Y is
solution of BSDE or recursion equation :

Yt = E
[ ∫ T

t
e−δ(s−t)(u(cs)ds − 1

2β
d〈Y 〉s

) ∣∣∣Ft

]
,

This an example of Stochatic differential utility (SDU) introduced
by Duffie and Epstein (1992).
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PRELIMINARY AND ASSUMPTIONS

Let us given :

Final horizon : T <∞

(Ω,F ,F,P) a filtered probability space where F = {Ft}0≤t≤T is a
filtration satisfying the usual conditions of right-continuity and
P-completness.

Possible scenarios given by

Q := {Q probability measure on Ω such that Q� P on FT}
the density process of Q ∈ Q is the càdlàg P-martingale

ZQ
t =

dQ
dP

∣∣
Ft

= E
[dQ

dP
∣∣ Ft

]
we may identify ZQ with Q.

Discounting process : Sδ
t := exp(−

∫ t
0 δs ds) with a discount rate

process δ = {δt}0≤t≤T .



PRELIMINARY

Let Uδt ,T (Q) be a quantity given by

Uδt ,T (Q) =

∫ T

t
e−

∫ s
t δr dr Us ds + e−

∫ T
t δr dr UT

where U = (Ut )t∈[0,T ] is a utility rate process which comes from
consumption and UT is the terminal utility at time T which
corresponds to final wealth.

Let Rδt ,T (Q) be a penalty term

Rδt ,T (Q) =

∫ T

t
δse−

∫ s
t δr dr log

ZQ
s

ZQ
t

ds + e−
∫ T

t δr dr log
ZQ

T

ZQ
t

.

for Q� P on FT .



COST FUNCTIONAL

We consider the cost functional

c(ω,Q) := Uδ0,T (Q) + βRδ0,T (Q) .

with β > 0 is a constant which determines the strength of this
penalty term.
Our first goal is to

minimize the functional Q 7−→ Γ(Q) := EQ[c(.,Q)
]

over a suitable class of probability measures Q� P on FT .



RELATIVE ENTROPY

Under the reference probability P the cost functional Γ(Q) can be
written :

Γ(Q) = EP

[
ZQ

T

(∫ T

0
Sδ

sUs ds + Sδ
T UT

)]

+ βEP

[∫ T

0
δsSδ

sZ δ
s log ZQ

s ds + Sδ
T ZQ

T log ZQ
T

]
.

The second term is a discounted relative entropy with both an
entropy rate as well a terminal entropy :

H(Q|P) :=

EQ
[
log ZQ

T

]
, if Q � P on FT

+∞, if not



FUNCTIONAL SPACES

Lexp is the space of all GT -measurable random variables X with

EP [exp (γ|X |)] <∞ for all γ > 0

Dexp
0 is the space of progressively measurable processes y = (yt )

such that

EP
[

exp
(
γ ess sup0≤t≤T |yt |

) ]
<∞, for all γ > 0 .

Dexp
1 is the space of progressively measurable processes y = (yt )

such that

EP
[

exp
(
γ

∫ T

0
|ys|ds

) ]
<∞ for all γ > 0 .



FUNCTIONAL SPACES AND HYPOTHESES (I)

Mp(P) is the space of all P-martingales M = (Mt )0≤t≤T such that
EP(sup0≤t≤T |Mt |p) <∞.

Assumption (A) : 0 ≤ δ ≤ ‖δ‖∞ <∞, U ∈ Dexp
1 and UT ∈ Lexp.

Denote by Qf is the space of all probability measures Q on (Ω,GT )
with Q << P on GT and H(Q|P) < +∞, then :
For simplicity we will take β = 1.

THEOREM (BORDIGONI G., M. A., SCHWEIZER, M.)
There exists a unique Q∗ which minimizes Γ(Q) over all Q ∈ Qf :

Γ(Q∗) = inf
Q∈Qf

Γ(Q)

Furthermore, Q∗ is equivalent to P.



THE CASE : δ = 0

The spacial case δ = 0 corresponds to the cost functional

Γ(Q) = EQ
[
U0

0,T

]
+βH(Q|P) = βH(Q|PU )−β logEP[exp

(
−1
β
U0

0,T
) ]
.

where PU ≈ P and
dPU
dP

= c exp
(
−1
β
U0

0,T

)
.

Csiszar (1997) have proved the existence and uniqueness of the
optimal measure Q∗ ≈ PU which minimize the relative entropy
H(Q|PU ).

I. Csiszár : I-divergence geometry of probability distributions and
minimization problems. Annals of Probability 3, p. 146-158 (1975).
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DYNAMIC STOCHASTIC CONTROL PROBLEM

We embed the minimization of Γ(Q) in a stochastic control problem :

The minimal conditional cost

J(τ,Q) := Q− ess infQ′∈D(Q,τ)Γ(τ,Q′)

with Γ(τ,Q) := EQ [c(·,Q) | Fτ ],

D(Q, τ) = {ZQ′ |Q′ ∈ Qf et Q′ = Q sur Fτ} and τ ∈ S.

So, we can write our optimization problem as

inf
Q∈Qf

Γ(Q) = inf
Q∈Qf

EQ [c(·,Q)] = EP [J(0,Q)].

We obtain the following martingale optimality principle from
stochastic control :



DYNAMIC STOCHASTIC CONTROL PROBLEM

We have obtained by following El Karoui (1981) :

PROPOSITION (BORDIGONI G., M. A., SCHWEIZER, M.)
1 The family {J(τ,Q) | τ ∈ S,Q ∈ Qf} is a submartingale system ;

2 Q̃ ∈ Qf is optimal if and only if {J(τ, Q̃) | τ ∈ S} is a Q̃-martingale
system ;

3 For each Q ∈ Qf , there exists an adapted RCLL process
JQ = (JQ

t )0≤t≤T which is a right closed Q-submartingale such that

JQ
τ = J(τ,Q)



SEMIMARTINGALE DECOMPOSITION OF THE VALUE

PROCESS

We define for all Q′ ∈ Qe
f and τ ∈ S :

Ṽ (τ,Q′) := EQ′
[
Uδτ,T |Fτ

]
+ βEQ′

[
Rδτ,T (Q′) |Fτ

]
The value of the control problem started at time τ instead of 0 is :

V (τ,Q) := Q− ess infQ′∈D(Q,τ)Ṽ (τ,Q′)

So we can equally well take the ess inf under P ≈ Q and over all
Q′ ∈ Qf and V (τ) ≡ V (τ,Q′) and one proves that V is P-special
semimartingale with canonical decomposition

V = V0 + MV + AV



SEMIMARTINGALE BSDE : CONTINUOUS FILTRATION

CASE

We assume tha F = (Ft )t≤T is continuous.

Let first consider the following quadratic semimartingale BSDE
with :

DEFINITION (BORDIGONI G., M. A., SCHWEIZER, M.)
A solution of the BSDE is a pair of processes (Y ,M) such that Y is a
P-semimartingale and M is a locally square-integrable locally
martingale with M0 = 0 such that :−dYt = (Ut − δtYt )dt − 1

2β
d < M >t − dMt

YT = UT

Note that Y is then automatically P-special, and that if M is continuous,
so is Y .



BSDE : BROWNIAN FILTRATION

REMARK

If F = FW , for a given Brownian mtotion, then the semimartingale
BSDE takes the standard form of quadratique BSDE : − dYt =

(
Ut − δtYt −

1
2β
|Zt |2

)
)dt − Zt · dWt

YT = UT

Kobylanski (2000), Lepeltier et San Martin (1998), El Karoui and
Hamadène (2003), Briand and Hu (2005, 2007).

Hu, Imkeler and Mueler (06), Morlais (2008), Mania and Tevzadze
(2006), Trevzadze (SPA, 2009)



AV AND MV : THE CONTINUOUS FILTRATION CASE

THEOREM (BORDIGONI G., M. A., SCHWEIZER, M.)

Assume that F is continuous. Then the couple (V ,MV ) is the unique
solution in Dexp

0 ×M0,loc(P) of the BSDE−dYt = (Ut − δtYt )dt − 1
2β

d < M >t − dMt

YT = U ′T

Moreover, E
(
− 1
βMV

)
= ZQ∗ is a P−martingale such that it’s

supremum belongs to L1(P) where Q∗ is the optimal probability.

We have also that MV ∈Mp
0(P) for every p ∈ [0,+∞[



RECURSIVE RELATION

LEMMA

Let (Y ,M) be a solution of BSDE with M continuous. Assume that
Y ∈ Dexp

0 or E
(
− 1
βM
)

is P−martingale.
For any pair of stopping times σ ≤ τ , then we have the recursive
relation

Yσ = −β logEP
[

exp
(

1
β

∫ τ

σ
(δsYs − αUs) ds − 1

β
Yτ

) ∣∣∣ Fσ]

As a consequence one gets the uniqueness result for the
semimartingale BSDE.

In the case where δ = 0, then this yields to the entropic dynamic
risk measure.
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THE MODEL (I)

We consider a filtered probability space (Ω,G,G,P). All the
processes are taken G-adapted, and are defined on the time
interval [0,T ].

Any special G-semimartingale Y admits a canonical
decomposition Y = Y0 + A + MY ,c + Y Y ,d where A is a predictable
finite variation process, Y c is a continuous martingale and MY ,d is
a pure discontinuous martingale.

For each i = 1, . . . ,n, H i is a counting process and there exist a
positive adapted process λi , called the P intensity of H i , such that
the process N i with N i

t := H i
t −
∫ t

0 λ
i
sds is a martingale.

We assume that the processes H i , i = 1, . . . ,d have no common
jumps.



THE MODEL

Any discontinuous martingale admits a representation of the

dMY ,d
t =

d∑
i=1

Ŷ i
t dN i

t

where Ŷ i , i = 1, . . . ,d are predictable processes.



THE MODEL :EXAMPLE FROM CREDIT RISK

EXAMPLE (UNDER IMMERSION PROPERTY)
We assume that G is the filtration generated by a continuous
reference filtration F and d positive random times τ1, · · · , τd which
are the default times of d firms : G = (Gt )t≥0 where

Gt =
⋂
ε>0

Ft+ε ∨ σ(τ1 ∧ t + ε) ∨ σ(τ2 ∧ t + ε) · · · ∨ σ(τd ∧ t + ε)

where σ(τi ∧ t + ε) is the generated σ-fields which is non random
before the default times τi for each i = 1, · · · ,d.
we note H i

t = 1{τi≤t}.
We assume that each τi is G-totaly inaccessible and there exists a
positive G-adapted process λi such that, the process N i with
N i

t := H i
t −
∫ t

0 λ
i
sds is a G-martingale.

Obviously, the process λi is null after the default time τi .



THE MODEL :EXAMPLE FROM CREDIT RISK

EXAMPLE

From Kusuoka, the representation of the discontinuous martingale
MY ,d with respect to N i holds true when the filtration G is
generated by a Brownian motion and the default processes.



SEMIMARTINGALE BSDE WITH JUMPS

Let first consider the following quadratic semimartingale BSDE
with jumps :

DEFINITION

A solution of the BSDE is a triple of processes (Y ,MY ,c , Ŷ ) such that
Y is a P-semimartingale, M is a locally square-integrable locally
martingale with M0 = 0 and Ŷ = (Ŷ 1, · · · , Ŷ d ) a Rd -valued predictable
locally bounded process such that :

dYt = [
d∑

i=1

g(Ŷ i
t )λi

t − Ut + δtYt ]dt +
1
2

d〈MY ,c〉t + dMY ,c
t +

d∑
i=1

Ŷ i
t dN i

t

YT = ŪT
(1)

where g(x) = e−x + x − 1.



EXISTENCE RESULT

THEOREM (JEANBLANC, M., M. A., NGOUPEYOU A.)
There exists a unique triple of process
(Y ,MY ,c , Ŷ ) ∈ Dexp

0 ×M0,loc(P)× L2(λ) solution of the
semartingale BSDE with jumps.

Furthermore, the optimal measure Q∗ solution of our minimization
problem is given :

dZQ∗
t = ZQ∗

t− dLQ∗
t , ZQ∗

0 = 1

where

dLQ∗
t = −dMY ,c

t +
d∑

i=1

(
e−Ŷ i

t − 1
)

dN i
t .
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COMPARISON THEOREM FOR OUR BSDE

THEOREM (JEANBLANC, M., M. A., NGOUPEYOU A.)

Assume that for k = 1,2, (Y k ,MY k ,c , Ŷ k ) is solution of the BSDE
associated to (Ũk , Ūk ). Then one have

Y 1
t − Y 2

t ≤ EQ∗,2
[∫ T

t

Sδ
s

Sδ
t

(
U1

s − U2
s

)
ds +

Sδ
T

Sδ
t

(
Ū1

T − Ū2
T

) ∣∣∣Gt

]

where Q∗,2 the probability measure equivalent to P given by

dZQ∗,2
t

ZQ∗,2
t−

= −dMY 2,c
t +

d∑
i=1

(
e−Ŷ i,2

t − 1
)

dN i
t .

In particular, if U1 ≤ U2 and Ū1
T ≤ Ū2

T , one obtains

Y 1
t ≤ Y 2

t , dP⊗ dt-a.e.



IDEA OF THE PROOF (I)

PROOF

We denote Ŷ i,12 := Ŷ i,1 − Ŷ i,2 and M12,c = M1,c −M2,c . Then :

Y 12
t = Ū12

T +

∫ T

t

(
Ũ12

s − δsY 12
s

)
ds −

d∑
i=1

∫ T

t
Ŷ i,12

s dN i
s

−
d∑

i=1

∫ T

t

[
g(Ŷ i,1

s )− g(Ŷ i,2
s )
]
λi

sds

+
1
2

∫ T

t

(
d〈M2,c〉s − d〈M1,c〉s

)
−
∫ T

t
dM12,c

s

(2)



IDEA OF THE PROOF (II)

PROOF

Note that, for any pair of continuous martingales M1,M2, denoting
M12 = M1 −M2 :

− 〈M2,M12〉 − 1
2
〈M2〉+

1
2
〈M1〉 =

1
2
〈M12〉

Using the fact that the process 〈M12〉 is increasing and that the
function g is convex we get :

Y 12
t ≤ Ū12

T +

∫ T

t

(
Ũ12

s − δsY 12
s

)
ds

+
d∑

i=1

∫ T

t
(e−Ŷ i,2

s − 1)Ŷ i,12
s λi

sds −
∫ T

t
d〈M2,c ,M12,c〉s

−
∫ T

t
dM12,c

s −
d∑

i=1

∫ T

t
Ŷ i,12

s dN i
s.



IDEA OF THE PROOF (III)

PROOF

Let N∗ and M∗,c be the Q∗,2-martingales obtained by Girsanov’s
transformation from N and Mc , where dQ∗,2 = ZQ∗,2dP.

Then :

Y 12
t ≤ Ū12

T +

∫ T

t

(
Ũ12

s − δsY 12
s

)
ds−

d∑
i=1

∫ T

t
Ŷ i,12

s dN i∗
s −

∫ T

t
dM∗,cs

which implies that

Y 12
t ≤ EQ∗,2

[ ∫ T

t
e−

∫ s
t δr dr Ũ12

s ds + e−
∫ T

t δr dr Ū12
T

∣∣∣Gt

]



CONCAVITY PROPERTY FOR THE SEMIMARTINGALE

BSDE

THEOREM

Let define the map F : Dexp
1 × Dexp

0 −→ Dexp
0 such that for all

(U, Ū) ∈ Dexp
1 × Dexp

0 , we have

F (U, Ū) = V

where (V ,MV ,c , V̂ ) is the solution of BSDE associated to (U, Ū). Then
F is concave ,namely,

F
(
θU1 + (1− θ)Ũ2, θŪ1

T + (1− θ)Ū2
T

)
≥ θF (U1, Ū1

T )+(1−θ)F (U2, Ū2
T ).
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PROBLEM : RECURSIVE UTILITY PROBLEM

we assume that Us = Ũ(cs) and ŪT = Ū(ψ) where Ũ and Ū are
given utility functions, c is a non-negative G-adapted process and
ψ a GT -measurable non-negative random variable.

We study the following optimization problem :

sup
(c,ψ)∈A(x)

EQ∗
[∫ T

0
Sδ

sU(cs)ds + Sδ
T Ū(ψ)

]

+ EQ∗
[∫ T

0
δsSδ

s ln ZQ∗
s ds + Sδ

T ln ZQ∗
T

]
:= sup

(c,ψ)∈A(x)

V x ,ψ,c
0

where V0 is the value at initial time of the value process V , part of
the solution (V ,MV , V̂ ) of our BSDE, in the case Us = U(cs) and
ŪT = Ū(ψ).



PROBLEM : RECURSIVE UTILITY PROBLEM

The set A(x) is the convex set of controls parameters
(c, ψ) ∈ H2([0,T ])× L2(Ω,GT ) such that :

EP̃[ ∫ T

0
ctdt + ψ

]
≤ x ,

where P̃ is a fixed pricing measure, i.e. a probability P̃ equivalent
to P with a Radon-Nikodym density Z̃ with respect to P given by :

dZ̃t = Z̃t−(θtdMc
t +

n∑
i=1

(e−z i
t − 1)dN i

t ), Z̃0 = 1 .

Here, Q∗ is the optimal model measure depends on c, ψ.

In a complete market setting, the process c can be interpreted as
a consumption, ψ as a terminal wealth, with the pricing measure P̃
is the risk neutral probability.



ASSUMPTIONS ON THE UTILITY FUNCTIONS

The utility functions U and Ū satisfy the usual regular conditions :

1 Strictly increasing and concave.

2 Continuous differentiable on the set {U > −∞} and {Ū > −∞},
respectively,

3 U ′(∞) := limx→∞U ′(x) = 0 and Ū ′(∞) := limx→∞ Ū ′(x) = 0,

4 U ′(0) := limx→0 U ′(x) = +∞ and U ′(0) := limx→0 Ū ′(x) = +∞,

5 Asymptotic elasticity AE(U) := lim sup
x→+∞

xU ′(x)

U(x)
< 1.



PROPERTIES OF THE VALUE FUNCTION

PROPOSITION

Let G : A(x) −→ Dexp
0 , as G(c, ψ) = V where (V ,MV ,c , V̂ ) is the

solution of the BSDE associated with (U(c), Ū(ψ)). Then

1 G is strictly concave with respect to (c, ψ),

2 Let G0(c, ψ) be the value at initial time of G(c, ψ), i.e.,
G0(c, ψ) = V0. Then G0(c, ψ) is continuous from above with
respect to (c, ψ),

3 G0 is upper continuous with respect to (c, ψ).



REGULARITY RESULT ON THE VALUE FUNCTION

THEOREM

(V 1,M1,c , V̂ 1) the solution associated with (U(c1), Ū(ψ1)) for a
given (c1, ψ1).

Let (V ε,Mε,c , V̂ ε) be the solution of the BSDE associated with
(U(c1 + ε(c2 − c1)), Ū(ψ1 + ε(ψ2 − ψ1))) for a given (c2, ψ2).

Then V ε is right differentiable in 0 with respect to ε and the triple
(∂εV , ∂εM̃V ,c , ∂εV̂ ) is the solution of the following BSDE :


d∂εVt =

(
δt∂εVt − U ′(c1

t )(c2
t − c1

t )
)

dt + d∂εM̃
V ,c
t +

d∑
i=1

∂εV̂ i
t dÑ i

t .

∂εVT = Ū ′(ψ1)(ψ2 − ψ1)

where Ñ i = N i −
∫ .

0(e−v1,i
t − 1)λi

tdt



REGULARITY RESULT ON THE VALUE FUNCTION

THEOREM

Moreover, we obtain

∂εVt = EP
[ZQ∗,1

T

ZQ∗,1
t

Sδ
T

Sδ
t

Ū ′(ψ1)(ψ2−ψ1)+

∫ T

t

ZQ∗,1
s

ZQ∗,1
t

Sδ
s

Sδ
t

U ′(c1
s )(c2

s−c1
s )ds

∣∣∣Gt

]
∀t ∈ [0,T ].



UNCONSTRAINTED OPTIMIZATION PROBLEM

we solve first an equivalent unconstrained problem to the
optimization problem : we associate with a pair (c, ψ) ∈ A(x) the
quantity

X c,ψ
0 = EP̃

(∫ T

0
csds + ψ

)
In a complete market setting, X c,ψ is the initial value of the
associated wealth.
Define by

u(x) := sup
X c,ψ

0 ≤x
V (c,ψ)

0 (3)

where V (c,ψ)
0 = V0, (V ,MV ,c , V̂ ) is the solution of the BSDE

associated with (U(c), Ū(ψ)).



UNCONSTRAINTED OPTIMIZATION PROBLEM

PROPOSITION

There exists an unique optimal pair (c0, ψ0) which solves the
unconstrainted optimization problem.

PROOF

The uniqueness is a consequence of the strictly concavity
property of V0.

We shall prove the existence by using Komlòs theorem.

We first Step prove that sup(c,φ)∈A(x) V c,φ
0 < +∞ :

Because P ∈ Qe
f , we have :

sup
(c,φ)∈A(x)

V c,φ
0 ≤ sup

(c,φ)∈A(x)

EP
[
Ū(φ) +

∫ T

0
U(cs)ds

]
:= ũ(x).



PROOF (2)

PROOF

Using the elasticity assumption on U and Ū, we can prove that
AE(ũ) < 1, which permits to conclude that, for any x > 0 ,
ũ(x) < +∞.

Let (cn, φn) ∈ A(x) be a maximizing sequence such that :

↗ lim
n→+∞

V cn,φn

0 = sup
(c,φ)∈A(x)

V c,φ
0 < +∞,

where the RHS is finite.

Then conclude by Using Komlòs theorem.



OPTIMIZATION PROBLEM

THEOREM

There exists a constant ν∗ > 0 such that :

u(x) = sup
(c,ψ)

{
V (c,ψ)

0 + ν∗
(

x − X (c,ψ)
)}

and if the maximum is attained in the above constraint problem by
(c∗, ψ∗) then it is attained in the unconstraint problem by (c∗, ψ∗)
with X (c,ψ) = x.
Conversely if there exists ν0 > 0 and (c0, ψ0) such that the
maximum is attained in

sup
(c,ψ)

{
V (c,ψ)

0 + ν0
(

x − X (c,ψ)
0

)}
with X (c,ψ)

0 = x, then the maximum is attained in our constraint
problem by (c0, ψ0).



THE MAXIMUM PRINCIPLE (1)

We now study for a fixed ν > 0 the following optimization problem :

sup
(c,ψ)

L(c, ψ) (4)

where the functional L is given by L(c, ψ) = V (c,ψ)
0 − νX (c,ψ)

0

PROPOSITION (JEANBLANC, M., M. A., NGOUPEYOU A.)

The optimal consumption plan (c0, ψ0) which solves (4) satisfies the
following equations :

U ′(c0
t ) =

Z P̃
t

ZQ∗
t

ν

αSδ
t

Ū ′(ψ0) =
Z P̃

T

ZQ∗
T

ν

ᾱSδ
T

a.s (5)

where Q∗ is the model measure associated to the optimal consumption
(c0, ψ0).



THE MAIN STEPS OF THE PROOF OF THE PROPOSITION

(I)

Let consider the optimal consumption plan (c0, ψ0) which solve (4)
and another consumption plan (c, ψ). Consider ε ∈ (0,1) then :

L(c0 + ε(c − c0), ψ0 + ε(c − c0)) ≤ L(c0, ψ0)

Then
1
ε

[
V (c0+ε(c−c0),ψ0+ε(ψ−ψ0))

0 − V (c0,ψ0)
0

]
− ν 1

ε

[
X (c0+ε(c−c0),ψ0+ε(ψ−ψ0)

0 − X (c0,ψ0)
0

]
≤ 0

Because
(

X (c,ψ)

t +
∫ t

0 csds
)

t≥0
is a P̃ martinagle we obtain :

1
ε

[
X (c0+ε(c−c0),ψ0+ε(ψ−ψ0)

t − X (c0,ψ0)
t

]
= EP̃

[∫ T

t
(cs − c0

s )ds + (ψ − ψ0)
∣∣∣Ft

]



THE MAIN STEPS OF THE PROOF (II)

Then the wealth process is right differential in 0 with respect to ε
we define

∂εX
(c0,ψ0)
t = lim

ε→0

1
ε

(X (c0+ε(c−c0),ψ0+ε(c−c0))
t − X (c0,ψ0)

t )

We take limε→0 above, we obtain :

∂εV
(c0,ψ0)
0 − ν∂εX (c0,ψ0)

0 ≤ 0.



THE MAIN STEPS OF THE PROOF (III)

Consider the optimal density (ZQ∗,1t )
t≥0 where its dynamics is

given by

dZQ∗,1
t

ZQ∗,1
t−

= −dMV ,c +
d∑

i=1

(
e−Ŷ 1,i − 1

)
dN i

t

then :

∂εVt = EQ∗,1
[Sδ

T

Sδ
t

Ū ′(X 1
T )(X 2

T − X 1
T ) +

∫ T

t

Sδ
s

Sδ
t

U ′(c1
s )(c2

s − c1
s )ds

∣∣∣Gt

]
.



THE MAIN STEPS OF THE PROOF (IV)

From the last result and the explicitly expression of (∂εX
(c0,ψ0

t )t≥0
we get :

∂εV
(c0,ψ0)
0 − ν∂εX (c0,ψ0)

0

= EP[Sδ
T ZQ∗,1

T Ū ′(ψ0)(ψ − ψ0) +

∫ T

0
Sδ

sZQ∗
s U ′(c0

s )(cs − c0
s )ds

]
− νEP[Z P̃(ψ − ψ0) +

∫ T

0
Z P̃

s (cs − c0
s )ds

]
Using the equality above we get :

EP[(Sδ
T ZQ∗,1

T Ū ′(ψ0)− νZ P̃)(ψ − ψ0)

+

∫ T

0

(
Sδ

sZQ∗,1
s U ′(c0

s )− νZ P̃
s
)
(cs − c0

s )ds
]
≤ 0



THE MAIN STEPS OF THE PROOF (V)

Let define the set A := {(ZQ∗Ū ′(ψ0)− νZ P̃)(ψ − ψ0) > 0} taking
c = c0 and ψ = ψ0 + 1A then P(A) = 0 and we get :

(ZQ∗Ū ′(ψ0)− νZ P̃) ≤ 0 a.s

Let define for each ε > 0

B := {(ZQ∗Ū ′(ψ0)− νZ P̃)(ψ − ψ0) < 0, ψ0 > ε}

because {ψ0 > 0} due to Inada assumption, we can define
ψ = ψ0 − 1B then P(B) = 0 and we get

(ZQ∗Ū ′(ψ0)− νZ P̃) ≥ 0 a.s

We find the optimal consumption with similar arguments.



THE MAXIMUM PRINCIPLE (2)

we have also :

THEOREM

Let I and Ī the inverse of the functions U ′ and Ū ′. The optimal
consumption (c0, ψ0) which solve the unconstrained problem is given
by :

c0
t = I

( ν0

Sδ
t

Z P̃
t

ZQ∗
t

)
, dt ⊗ dP a.s , ψ0 = Ī

( ν0

Sδ
T

Z P̃
T

ZQ∗
T

)
a.s. .

where ν0 > 0 satisfies :

EP̃[ ∫ T

0
I
( ν0

Sδ
t

Z P̃
t

ZQ∗
t

)
dt + Ī

( ν0

Sδ
T

Z P̃
T

ZQ∗
T

)]
= x .



THE MAIN STEPS OF THE PROOF (1)

For any initial wealth x ∈ (0,+∞), there exists a unique ν0 such
that f (ν0) = x .

Let (c, ψ) ∈ A(x) and (V (c,ψ),MV ,c , v)
(
resp. (V (c0,ψ0),MV 0,c , v0)

)
the solution of the BSDE associated with (U(c0), Ū(ψ0))(
resp. (U(c), Ū(ψ))

)
then from comparison theorem, we get :

V (c,ψ)
0 − V (c0,ψ0)

0

≤ EQ∗
[
Sδ

T
(
Ū(ψ)− Ū(ψ0)

)
+

∫ T

0
Sδ

s
(
U(cs)− U(c0

s )
)
ds
]

≤ EQ∗
[
Sδ

T Ū ′(ψ0)(ψ − ψ0) +

∫ T

0
Sδ

sU ′(c0
s )(cs − c0

s )ds
]
.



THE MAIN STEPS OF THE PROOF (2)

It follows from the maximum principle that :

V (c,ψ)
0 − V (c0,ψ0)

0 ≤ ν0EQ∗
(

Z P̃
T

ZQ∗
T

(ψ − ψ0) +

∫ T

0

Z P̃
s

ZQ∗
s

(cs − c0
s )ds

)

≤ ν0(EP̃
(
ψ +

∫ T

0
csds

)
− EP̃

(
ψ0 +

∫ T

0
c0

s ds
))

Since (c, ψ) ∈ A(x), then EP̃[ψ +
∫ T

0 csds
]
≤ x .

Using that EP̃[ψ0 +
∫ T

0 c0
s ds

]
= x , we conclude :

V (c,ψ)
0 ≤ V (c0,ψ0)

0 .
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LOGARITHMIC CASE (1)

We assume that δ is deterministic and U(x) = ln(x) and Ū(x) = 0
(hence I(x) = 1

x for all x ∈ (0,+∞)).

The optimal process c∗t = I
(
ν

Sδt

Z̃t
Z∗t

)
=

Sδt
ν

Z∗t
Z̃t

.
For any deterministic function α such that α(T ) = 0, V admits a
decomposition as

Vt = α(t) ln(c∗t ) + γt

where γ is a process such that γT = 0.
Recall that the Radon-Nikodym density Z̃ , and the
Radon-Nikodym density of the optimal probability measure Z ∗

satisfy

dZ̃t = Z̃t−(θtdMc
t +

n∑
i=1

(e−z i
t − 1)dN i

t ), Z̃0 = 1

dZ ∗t = Z ∗t−(−dMV ,c
t +

n∑
i=1

(e−y i
t − 1)dN i

t ), Z ∗0 = 1



LOGARITHMIC CASE (2)

In order to obtain a BSDE, we introduce Jt = 1
1+α(t)βt .

PROPOSITION

(i) The value function V has the form

Vt = α(t) ln(c∗t ) + (1 + α(t))Jt

where

α(t) = −
∫ T

t
e
∫ s

t δ(u)duds

and (J, M̄J,c , Ĵ) is the unique solution of the following Backward
Stochastic Differential Equation, where k(t) = − α(t)

1+α(t) :



LOGARITHMIC CASE (3)

PROPOSITION

dJt =
(

(1 + δ(t))(1 + k(t))Jt − k(t)δ(t)
)

dt + dM̄J,c
t +

1
2

d〈M̄J,c〉t

+
1
2

k(t)(1 + k(t))θ2
t d〈Mc〉t

+
n∑

i=1

j it dN̄ i
t +

n∑
i=1

(
g(j it )λ̄i

t +
(

k(t)(e−z i
t − 1) + ek(t)z i

t − 1
)
λi

t

)
dt

The processes M̄J,c and dN̄ i
t = dH i

t − λ̄i
tdt are P̄-martingales

where d P̄
d P̄ |Gt = Z P̄

t and λ̄i
t = ek(t)z i

tλi
t where

dZ P̄
t = −Z P̄

t−

(
k(t)θtdMc

t −
d∑

i=1

(ek(t)z i
t − 1)dN i

t

)



LOGARITHMIC CASE (3)

PROPOSITION

ii)

dc∗t = c∗t−
(
−δtdt − dMV ,c

t + θtdMc
t − θtd〈Mc ,MV ,c〉t

+
d∑

i=1

(e(y i
t−z i

t ) − 1)dN i
t −

d∑
i=1

(g(y i
t )− g(z i

t )− g(y i
t − z i

t ))λi
tdt

)



DISCUSSION

study more explicit "models" in incomplete market

Numerical scheme

replace the entropic penalization by other convex term ! !

consider robustness in the non-dominated case
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