UTILITY MAXIMIZATION PROBLEM UNDER MODEL UNCERTAINTY INCLUDING JUMPS

Anis Matoussi

University of Maine, Le Mans - France
and
Research Associate, CMAP- Ecole Polytechnique
"Chaire Risque Financiers"
Roscoff, March 18-23, 2010

Plan de l'exposé

(1) Introduction
(2) The minimization problem
(3) A BSDE description for the dynamic value process
(4) The discontinuous filtration case
(5) COMPARISON THEOREM AND REGULARITIES FOR THE BSDE
(6) Maximization problem
(7) The Logarithmic case

(1) Introduction

(2) THE MINIMIZATION PROBLEM
(3) A BSDE DESCRIPTION FOR THE DYNAMIC VALUE PROCESS
(4) The discontinuous filtration case
(5) COMPARISON THEOREM AND REGULARITIES FOR THE BSDE
(6) MAXIMIZATION PROBLEM
(7) The Logarithmic CASE
(1) Bordigoni G., M. A., Schweizer, M. : A Stochastic control approach to a robust utility maximization problem. Stochastic Analysis and Applications. Proceedings of the Second Abel Symposium, Oslo, 2005, Springer, 125-151 (2007).
(2) Faidi, W., M.,A., Mnif, M. : Maximization of recursive utilities : A Dynamic Programming Principle Approach. Preprint (2010).
(0 Jeanblanc, M., M. A., Ngoupeyou, A. : Robust utility maximization in a discontinuous filtration. Preprint (2010).

PROBLEM

We present a problem of utility maximization under model uncertainty :

$$
\sup _{\pi} \inf _{\mathbb{Q}} \mathbf{U}(\pi, \mathbb{Q})
$$

where

- π runs through a set of strategies (portfolios, investment decisions, ...)
- \mathbb{Q} runs through a set of models \mathcal{Q}.

ONE KNOWN MODEL CASE

- If we have a one known model \mathbb{P} : in this case, $\mathcal{Q}=\{\mathbb{P}\}$ for \mathbb{P} a given reference probability measure and $\mathbf{U}(\pi, \mathbb{P})$ has the form of a \mathbb{P}-expected utility from terminal wealth and/or consumption, namely

$$
\mathbf{U}(\pi, \mathbb{P})=\mathbb{E}\left(U\left(X_{T}^{\pi}\right)\right)
$$

where

- X^{π} is the wealth process
and
- U is some utility function.

REFERENCES : DUAL APPROACH

- Schachermayer (2001) (one single model)
- Becherer (2007) (one single model)
- Schied (2007), Schied and Wu (2005)
- Föllmer and Gundel, Gundel (2005)

REFERENCES : BSDE APPROACH

- El Karoui, Quenez and Peng (2001) : Dynamic maximum principle (one single model)
- Hu, Imkeller and Mueller (2001) (one single model)
- Barrieu and El Karoui (2007) : Pricing, Hedging and Designing Derivatives with Risk Measures (one single model)
- Lazrak-Quenez (2003), Quenez (2004), $\mathcal{Q} \neq\{\mathbb{P}\}$ but one keep $\mathbf{U}(\pi, \mathbb{Q})$ as an expected utility
- Duffie and Epstein (1992), Duffie and Skiadas (1994), Skiadas (2003), Schroder \& Skiadas $(1999,2003,2005)$: Stochastic Differential Utility and BSDE.
- Hansen \& Sargent : they discuss the problem of robust utility maximization when model uncertainty is penalized by a relative entropy term.

EXAMPLE : ROBUST CONTROL WITHOUT MAXIMIZATION

- Let us consider an agent with time-additive expected utility over consumptions paths :

$$
\mathbb{E}\left[\int_{0}^{T} e^{-\delta t} u\left(c_{t}\right) d t\right] .
$$

with respect to some model $\left(\Omega, \mathcal{F}, \mathcal{F}_{t}, \mathbb{P},\left(B_{t}\right)_{t \geq 0}\right)$ where $\left(B_{t}\right)_{t \geq 0}$ is Brownian motion under \mathbb{P}.

- Suppose that the agent has some preference to use another model \mathbb{P}^{θ} under which :

$$
B_{t}^{\theta}=B_{t}-\int_{0}^{t} \theta_{s} d s
$$

is a Brownian motion.

EXAMPLE

- The agent evaluate the distance between the two models in term of the relative entropy of \mathbb{P}^{θ} with respect to the reference measure \mathbb{P} :

$$
\mathcal{R}^{\theta}=\mathbb{E}^{\theta}\left[\int_{0}^{T} e^{-\delta t}\left|\theta_{t}\right|^{2} d t\right]
$$

- In this example, our robust control problem will take the form :

$$
V_{0}:=\inf _{\theta}\left[\mathbb{E}^{\theta}\left[\int_{0}^{T} e^{-\delta t} u\left(c_{t}\right) d t\right]+\beta \mathcal{R}^{\theta}\right] .
$$

- The answer of this problem will be that: $V_{0}=Y_{0}$ where Y is solution of BSDE or recursion equation :

$$
Y_{t}=\mathbb{E}\left[\left.\int_{t}^{T} e^{-\delta(s-t)}\left(u\left(c_{s}\right) d s-\frac{1}{2 \beta} d\langle Y\rangle_{s}\right) \right\rvert\, \mathcal{F}_{t}\right],
$$

- This an example of Stochatic differential utility (SDU) introduced by Duffie and Epstein (1992).

(1) Introduction

(2) THE MINIMIZATION PROBLEM

3 A BSDE DESCRIPTION FOR THE DYNAMIC VALUE PROCESS
(4) The discontinuous filtration case
(5) COMPARISON THEOREM AND REGULARITIES FOR THE BSDE
(6) MAXIMIZATION PROBLEM
(7) The Logarithmic CASE

Preliminary and Assumptions

Let us given :

- Final horizon : $T<\infty$
- $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ a filtered probability space where $\mathbb{F}=\left\{\mathcal{F}_{t}\right\}_{0 \leq t \leq T}$ is a filtration satisfying the usual conditions of right-continuity and \mathbb{P}-completness.
- Possible scenarios given by
$\mathcal{Q}:=\left\{\mathbb{Q}\right.$ probability measure on Ω such that $\mathbb{Q} \ll \mathbb{P}$ on $\left.\mathcal{F}_{T}\right\}$
- the density process of $\mathbb{Q} \in \mathcal{Q}$ is the càdlàg P-martingale

$$
Z_{t}^{\mathbb{Q}}=\left.\frac{d \mathbb{Q}}{d \mathbb{P}}\right|_{\mathcal{F}_{t}}=\mathbb{E}\left[\left.\frac{d \mathbb{Q}}{d \mathbb{P}} \right\rvert\, \mathcal{F}_{t}\right]
$$

- we may identify $Z^{\mathbb{Q}}$ with \mathbb{Q}.
- Discounting process : $S_{t}^{\delta}:=\exp \left(-\int_{0}^{t} \delta_{s} d s\right)$ with a discount rate process $\delta=\left\{\delta_{t}\right\}_{0 \leq t \leq T}$.

PRELIMINARY

- Let $\mathcal{U}_{t, T}^{\delta}(\mathbb{Q})$ be a quantity given by

$$
\mathcal{U}_{t, T}^{\delta}(\mathbb{Q})=\int_{t}^{T} e^{-\int_{t}^{s} \delta_{r} d r} U_{s} d s+e^{-\int_{t}^{T} \delta_{r} d r} \bar{U}_{T}
$$

- where $U=\left(U_{t}\right)_{t \in[\underline{0, T]}}$ is a utility rate process which comes from consumption and \bar{U}_{T} is the terminal utility at time T which corresponds to final wealth.
- Let $\mathcal{R}_{t, T}^{\delta}(\mathbb{Q})$ be a penalty term

$$
\mathcal{R}_{t, T}^{\delta}(\mathbb{Q})=\int_{t}^{T} \delta_{s} e^{-\int_{t}^{s} \delta_{r} d r} \log \frac{Z_{s}^{\mathbb{Q}}}{Z_{t}^{\mathbb{Q}}} d s+e^{-\int_{t}^{T} \delta_{r} d r} \log \frac{Z_{T}^{\mathbb{Q}}}{Z_{t}^{\mathbb{Q}}}
$$

for $\mathbb{Q} \ll \mathbb{P}$ on \mathcal{F}_{T}.

COST FUNCTIONAL

- We consider the cost functional

$$
c(\omega, \mathbb{Q}):=\mathcal{U}_{0, T}^{\delta}(\mathbb{Q})+\beta \mathcal{R}_{0, T}^{\delta}(\mathbb{Q})
$$

with $\beta>0$ is a constant which determines the strength of this penalty term.

- Our first goal is to

$$
\text { minimize the functional } \mathbb{Q} \longmapsto \Gamma(\mathbb{Q}):=\mathbb{E}^{\mathbb{Q}}[c(., \mathbb{Q})]
$$

over a suitable class of probability measures $\mathbb{Q} \ll \mathbb{P}$ on \mathcal{F}_{T}.

RELATIVE ENTROPY

- Under the reference probability \mathbb{P} the cost functional $\Gamma(\mathbb{Q})$ can be written :

$$
\begin{aligned}
& \Gamma(\mathbb{Q})=\mathbb{E}^{\mathbb{P}}\left[Z_{T}^{\mathbb{Q}}\left(\int_{0}^{T} S_{s}^{\delta} U_{s} d s+S_{T}^{\delta} \bar{U}_{T}\right)\right] \\
& +\beta \mathbb{E}^{\mathbb{P}}\left[\int_{0}^{T} \delta_{s} S_{s}^{\delta} Z_{s}^{\delta} \log Z_{s}^{\mathbb{Q}} d s+S_{T}^{\delta} Z_{T}^{\mathbb{Q}} \log Z_{T}^{\mathbb{Q}}\right] .
\end{aligned}
$$

- The second term is a discounted relative entropy with both an entropy rate as well a terminal entropy :

$$
H(\mathbb{Q} \mid \mathbb{P}):= \begin{cases}\mathbb{E}^{\mathbb{Q}}\left[\log Z_{T}^{\mathbb{Q}}\right], & \text { if } \mathbb{Q} \ll \mathbb{P} \text { on } \mathcal{F}_{T} \\ +\infty, & \text { if not }\end{cases}
$$

FUNCTIONAL SPACES

- $L^{\exp }$ is the space of all \mathcal{G}_{T}-measurable random variables X with

$$
\mathbb{E}^{\mathbb{P}}[\exp (\gamma|X|)]<\infty \quad \text { for all } \gamma>0
$$

- $D_{0}^{\text {exp }}$ is the space of progressively measurable processes $y=\left(y_{t}\right)$ such that

$$
\mathbb{E}^{\mathbb{P}}\left[\exp \left(\gamma \text { ess } \sup _{0 \leq t \leq T}\left|y_{t}\right|\right)\right]<\infty, \quad \text { for all } \gamma>0
$$

- $D_{1}^{e x p}$ is the space of progressively measurable processes $y=\left(y_{t}\right)$ such that

$$
\mathbb{E}^{\mathbb{P}}\left[\exp \left(\gamma \int_{0}^{T}\left|y_{s}\right| d s\right)\right]<\infty \quad \text { for all } \gamma>0
$$

FUNCTIONAL SPACES AND HYpOTHESES (I)

- $\mathcal{M}^{p}(\mathbb{P})$ is the space of all \mathbb{P}-martingales $M=\left(M_{t}\right)_{0 \leq t \leq T}$ such that $\mathbb{E}^{\mathbb{P}}\left(\sup _{0 \leq t \leq T}\left|M_{t}\right|^{p}\right)<\infty$.
- Assumption (A) : $0 \leq \delta \leq\|\delta\|_{\infty}<\infty, U \in D_{1}^{\exp }$ and $\bar{U}_{T} \in L^{\exp }$.
- Denote by \mathcal{Q}_{f} is the space of all probability measures \mathbb{Q} on $\left(\Omega, \mathcal{G}_{T}\right)$ with $\mathbb{Q} \ll \mathbb{P}$ on \mathcal{G}_{T} and $H(\mathbb{Q} \mid \mathbb{P})<+\infty$, then :
- For simplicity we will take $\beta=1$.

Theorem (Bordigoni G., M. A., Schweizer, M.)

There exists a unique \mathbb{Q}^{*} which minimizes $\Gamma(\mathbb{Q})$ over all $\mathbb{Q} \in \mathcal{Q}_{f}$:

$$
\Gamma\left(\mathbb{Q}^{*}\right)=\inf _{\mathbb{Q} \in \mathcal{Q}_{f}} \Gamma(\mathbb{Q})
$$

Furthermore, \mathbb{Q}^{*} is equivalent to \mathbb{P}.

THE CASE $: \delta=0$

- The spacial case $\delta=0$ corresponds to the cost functional
$\Gamma(Q)=\mathbb{E}^{\mathbb{Q}}\left[\mathcal{U}_{0, T}^{0}\right]+\beta H(\mathbb{Q} \mid \mathbb{P})=\beta H\left(\mathbb{Q} \mid \mathbb{P}_{\mathcal{U}}\right)-\beta \log \mathbb{E}^{\mathbb{P}}\left[\exp \left(-\frac{1}{\beta} \mathcal{U}_{0, T}^{0}\right)\right]$.
where $\mathbb{P}_{\mathcal{U}} \approx \mathbb{P}$ and $\frac{d \mathbb{P}_{\mathcal{U}}}{d \mathbb{P}}=c \exp \left(-\frac{1}{\beta} \mathcal{U}_{0, T}^{0}\right)$.
- Csiszar (1997) have proved the existence and uniqueness of the optimal measure $\mathbb{Q}^{*} \approx \mathbb{P}_{\mathcal{U}}$ which minimize the relative entropy $H\left(\mathbb{Q} \mid \mathbb{P}_{\mathcal{U}}\right)$.
- I. Csiszár : I-divergence geometry of probability distributions and minimization problems. Annals of Probability 3, p. 146-158 (1975).

(1) Introduction

2 The minimization problem
(3) A BSDE DESCRIPTION FOR THE DYNAMIC VALUE PROCESS
(4) The discontinuous filtration case
(5) COMPARISON THEOREM AND REGULARITIES FOR THE BSDE
(6) MAXIMIZATION PROBLEM
(7) THE LOGARITHMIC CASE

DYNAMIC STOCHASTIC CONTROL PROBLEM

We embed the minimization of $\Gamma(Q)$ in a stochastic control problem :

- The minimal conditional cost

$$
J(\tau, \mathbb{Q}):=\mathbb{Q}-\text { ess inf } \mathbb{Q}^{\prime} \in \mathcal{D}(\mathbb{Q}, \tau) \Gamma\left(\tau, \mathbb{Q}^{\prime}\right)
$$

with $\Gamma(\tau, \mathbb{Q}):=\mathbb{E}_{Q}\left[c(\cdot, \mathbb{Q}) \mid \mathcal{F}_{\tau}\right]$,

- $\mathcal{D}(\mathbb{Q}, \tau)=\left\{\boldsymbol{Z}^{\mathbb{Q}^{\prime}} \mid \mathbb{Q}^{\prime} \in \mathcal{Q}_{f}\right.$ et $\mathbb{Q}^{\prime}=\mathbb{Q}$ sur $\left.\mathcal{F}_{\tau}\right\}$ and $\tau \in \mathcal{S}$.
- So, we can write our optimization problem as

$$
\inf _{\mathbb{Q} \in \mathcal{Q}_{f}} \Gamma(\mathbb{Q})=\inf _{\mathbb{Q} \in \mathcal{Q}_{f}} \mathbb{E}^{\mathbb{Q}}[c(\cdot, \mathbb{Q})]=\mathbb{E}^{\mathbb{P}}[J(0, \mathbb{Q})]
$$

- We obtain the following martingale optimality principle from stochastic control :

DYNAMIC STOCHASTIC CONTROL PROBLEM

We have obtained by following El Karoui (1981) :

Proposition (Bordigoni G., M. A., Schweizer, M.)

(1) The family $\left\{J(\tau, \mathbb{Q}) \mid \tau \in \mathcal{S}, \mathbb{Q} \in \mathcal{Q}_{f}\right\}$ is a submartingale system;
(2) $\tilde{\mathbb{Q}} \in \mathcal{Q}_{f}$ is optimal if and only if $\{J(\tau, \tilde{\mathbb{Q}}) \mid \tau \in \mathcal{S}\}$ is a $\tilde{\mathbb{Q}}$-martingale system;
(3) For each $\mathbb{Q} \in \mathcal{Q}_{f}$, there exists an adapted RCLL process $J^{\mathbb{Q}}=\left(J_{t}^{\mathbb{Q}}\right)_{0 \leq t \leq T}$ which is a right closed \mathbb{Q}-submartingale such that

$$
J_{\tau}^{\mathbb{Q}}=J(\tau, \mathbb{Q})
$$

SEMIMARTINGALE DECOMPOSITION OF THE VALUE PROCESS

- We define for all $\mathbb{Q}^{\prime} \in \mathcal{Q}_{f}^{e}$ and $\tau \in \mathcal{S}$:

$$
\tilde{V}\left(\tau, \mathbb{Q}^{\prime}\right):=\mathbb{E}^{\mathbb{Q}^{\prime}}\left[\mathcal{U}_{\tau, T}^{\delta} \mid \mathcal{F}_{\tau}\right]+\beta \mathbb{E}_{\mathbb{Q}^{\prime}}\left[\mathcal{R}_{\tau, T}^{\delta}\left(\mathbb{Q}^{\prime}\right) \mid \mathcal{F}_{\tau}\right]
$$

- The value of the control problem started at time τ instead of 0 is :

$$
V(\tau, \mathbb{Q}):=\mathbb{Q}-\operatorname{ess}_{\inf _{\mathbb{Q}^{\prime} \in \mathcal{D}(\mathbb{Q}, \tau)}} \tilde{V}\left(\tau, \mathbb{Q}^{\prime}\right)
$$

- So we can equally well take the ess inf under $\mathbb{P} \approx \mathbb{Q}$ and over all $\mathbb{Q}^{\prime} \in \mathcal{Q}_{f}$ and $V(\tau) \equiv V\left(\tau, Q^{\prime}\right)$ and one proves that V is \mathbb{P}-special semimartingale with canonical decomposition

$$
V=V_{0}+M^{V}+A^{V}
$$

SEmimartingale BSDE : CONTINUOUS FILTRATION CASE

- We assume tha $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \leq T}$ is continuous.
- Let first consider the following quadratic semimartingale BSDE with :

DEFInition (B ORDIGONI G., M. A., SchwEIZER, M.)

A solution of the BSDE is a pair of processes (Y, M) such that Y is a \mathbb{P}-semimartingale and M is a locally square-integrable locally martingale with $M_{0}=0$ such that :

$$
\left\{\begin{aligned}
-d Y_{t} & =\left(U_{t}-\delta_{t} Y_{t}\right) d t-\frac{1}{2 \beta} d<M>_{t}-d M_{t} \\
& Y_{T}=\bar{U}_{T}
\end{aligned}\right.
$$

- Note that Y is then automatically \mathbb{P}-special, and that if M is continuous, so is Y.

BSDE : BROWNIAN FILTRATION

REMARK

- If $\mathbb{F}=\mathbb{F}^{W}$, for a given Brownian mtotion, then the semimartingale $B S D E$ takes the standard form of quadratique BSDE :

$$
\left\{\begin{array}{l}
\left.-d Y_{t}=\left(U_{t}-\delta_{t} Y_{t}-\frac{1}{2 \beta}\left|Z_{t}\right|^{2}\right)\right) d t-Z_{t} \cdot d W_{t} \\
Y_{T}=\bar{U}_{T}
\end{array}\right.
$$

- Kobylanski (2000), Lepeltier et San Martin (1998), El Karoui and Hamadène (2003), Briand and Hu (2005, 2007).
- Hu, Imkeler and Mueler (06), Morlais (2008), Mania and Tevzadze (2006), Trevzadze (SPA, 2009)

Theorem (Bordigoni G., M. A., Schweizer, M.)

Assume that \mathbb{F} is continuous. Then the couple $\left(V, M^{V}\right)$ is the unique solution in $D_{0}^{\exp } \times \mathcal{M}_{0, l o c}(\mathbb{P})$ of the $B S D E$

$$
\left\{\begin{aligned}
-d Y_{t} & =\left(U_{t}-\delta_{t} Y_{t}\right) d t-\frac{1}{2 \beta} d<M>_{t}-d M_{t} \\
Y_{T} & =U_{T}^{\prime}
\end{aligned}\right.
$$

- Moreover, $\mathcal{E}\left(-\frac{1}{\beta} M^{V}\right)=Z^{\mathbb{Q}^{*}}$ is a \mathbb{P}-martingale such that it's supremum belongs to $L^{1}(\mathbb{P})$ where \mathbb{Q}^{*} is the optimal probability.
- We have also that $M^{V} \in \mathcal{M}_{0}^{p}(\mathbb{P})$ for every $p \in[0,+\infty[$

RECURSIVE RELATION

LEMMA

Let (Y, M) be a solution of BSDE with M continuous. Assume that $Y \in D_{0}^{\exp }$ or $\mathcal{E}\left(-\frac{1}{\beta} M\right)$ is \mathbb{P}-martingale.
For any pair of stopping times $\sigma \leq \tau$, then we have the recursive relation

$$
Y_{\sigma}=-\beta \log \mathbb{E}^{\mathbb{P}}\left[\left.\exp \left(\frac{1}{\beta} \int_{\sigma}^{\tau}\left(\delta_{s} Y_{s}-\alpha U_{s}\right) d s-\frac{1}{\beta} Y_{\tau}\right) \right\rvert\, \mathcal{F}_{\sigma}\right]
$$

- As a consequence one gets the uniqueness result for the semimartingale BSDE.
- In the case where $\delta=0$, then this yields to the entropic dynamic risk measure.

PLAN

(1) Introduction

(2) The minimization problem

3 A BSDE DESCRIPTION FOR THE DYNAMIC VALUE PROCESS
4 The discontinuous filtration case
(5) COMPARISON THEOREM AND REGULARITIES FOR THE BSDE
(6) MAXIMIZATION PROBLEM
(7) The Logarithmic case

THE MODEL (I)

- We consider a filtered probability space $(\Omega, \mathcal{G}, \mathbb{G}, \mathbb{P})$. All the processes are taken \mathbb{G}-adapted, and are defined on the time interval $[0, T]$.
- Any special \mathbb{G}-semimartingale Y admits a canonical decomposition $Y=Y_{0}+A+M^{Y, c}+Y^{Y, d}$ where A is a predictable finite variation process, Y^{c} is a continuous martingale and $M^{Y, d}$ is a pure discontinuous martingale.
- For each $i=1, \ldots, n, H^{i}$ is a counting process and there exist a positive adapted process λ^{i}, called the \mathbb{P} intensity of H^{i}, such that the process N^{i} with $N_{t}^{i}:=H_{t}^{i}-\int_{0}^{t} \lambda_{s}^{i} d s$ is a martingale.
- We assume that the processes $H^{i}, i=1, \ldots, d$ have no common jumps.

THE MODEL

- Any discontinuous martingale admits a representation of the

$$
d M_{t}^{Y, d}=\sum_{i=1}^{d} \hat{Y}_{t}^{i} d N_{t}^{i}
$$

where $\hat{Y}^{i}, i=1, \ldots, d$ are predictable processes.

THE MODEL :EXAMPLE FROM CREDIT RISK

EXAMPLE (UNDER IMMERSION PROPERTY)

- We assume that \mathbb{G} is the filtration generated by a continuous reference filtration \mathbb{F} and d positive random times $\tau_{1}, \cdots, \tau_{d}$ which are the default times of d firms : $\mathbb{G}=\left(\mathcal{G}_{t}\right)_{t \geq 0}$ where

$$
\mathcal{G}_{t}=\bigcap_{\epsilon>0} \mathcal{F}_{t+\epsilon} \vee \sigma\left(\tau_{1} \wedge t+\epsilon\right) \vee \sigma\left(\tau_{2} \wedge t+\epsilon\right) \cdots \vee \sigma\left(\tau_{d} \wedge t+\epsilon\right)
$$

where $\sigma\left(\tau_{i} \wedge t+\epsilon\right)$ is the generated σ-fields which is non random before the default times τ_{i} for each $i=1, \cdots, d$.

- we note $H_{t}^{i}=\mathbf{1}_{\left\{\tau_{i} \leq t\right\}}$.
- We assume that each τ_{i} is \mathbb{G}-totaly inaccessible and there exists a positive \mathbb{G}-adapted process λ^{i} such that, the process N^{i} with $N_{t}^{i}:=H_{t}^{i}-\int_{0}^{t} \lambda_{s}^{i} d s$ is a \mathbb{G}-martingale.
- Obviously, the process λ^{i} is null after the default time τ_{i}.

The model :EXAMPLE FROM CREDIT RISK

EXAMPLE

- From Kusuoka, the representation of the discontinuous martingale $M^{Y, d}$ with respect to N^{i} holds true when the filtration \mathbb{G} is generated by a Brownian motion and the default processes.

SEMIMARTINGALE BSDE WITH JUMPS

- Let first consider the following quadratic semimartingale BSDE with jumps :

DEFINITION

A solution of the BSDE is a triple of processes $\left(Y, M^{Y, c}, \widehat{Y}\right)$ such that Y is a P-semimartingale, M is a locally square-integrable locally martingale with $M_{0}=0$ and $\widehat{Y}=\left(\widehat{Y}^{1}, \cdots, \widehat{Y}^{d}\right)$ a \mathbb{R}^{d}-valued predictable locally bounded process such that :

$$
\left\{d Y_{t}=\left[\sum_{i=1}^{d} g\left(\widehat{Y}_{t}^{i}\right) \lambda_{t}^{i}-U_{t}+\delta_{t} Y_{t}\right] d t+\frac{1}{2} d\left\langle M^{Y, c}\right\rangle_{t}+d M_{t}^{Y, c}+\sum_{i=1}^{d} \widehat{Y}_{t}^{i} d N_{t}^{i}\right.
$$

$$
\begin{equation*}
Y_{T}=\bar{U}_{T} \tag{1}
\end{equation*}
$$

where $g(x)=e^{-x}+x-1$.

EXISTENCE RESULT

Theorem (Jeanblanc, M., M. A., Ngoupeyou A.)

- There exists a unique triple of process
$\left(Y, M^{Y, c}, \widehat{Y}\right) \in D_{0}^{\exp } \times \mathcal{M}_{0, l o c}(P) \times \mathcal{L}^{2}(\lambda)$ solution of the semartingale BSDE with jumps.
- Furthermore, the optimal measure \mathbb{Q}^{*} solution of our minimization problem is given :

$$
d Z_{t}^{\mathbb{Q}^{*}}=Z_{t^{-}}^{\mathbb{Q}^{*}} d L_{t}^{\mathbb{Q}^{*}}, \quad Z_{0}^{\mathbb{Q}^{*}}=1
$$

where

$$
d L_{t}^{\mathbb{Q}^{*}}=-d M_{t}^{Y, c}+\sum_{i=1}^{d}\left(e^{-\widehat{Y}_{t}^{i}}-1\right) d N_{t}^{i}
$$

PLAN

(1) Introduction

(2) THE MINIMIZATION PROBLEM
(3) A BSDE DESCRIPTION FOR THE DYNAMIC VALUE PROCESS

4 The discontinuous filtration Case
(5) COMPARISON THEOREM AND REGULARITIES FOR THE BSDE
(6) MAXIMIZATION PROBLEM
(7) The Logarithmic CASE

COMPARISON THEOREM FOR OUR BSDE

Theorem (Jeanblanc, M., M. A., Ngoupeyou A.)

Assume that for $k=1,2,\left(Y^{k}, M^{Y^{k}, c}, \widehat{Y}^{k}\right)$ is solution of the BSDE associated to $\left(\widetilde{U}^{k}, \bar{U}^{k}\right)$. Then one have

$$
Y_{t}^{1}-Y_{t}^{2} \leq \mathbb{E}^{\mathbb{Q}^{*, 2}}\left[\left.\int_{t}^{T} \frac{S_{s}^{\delta}}{S_{t}^{\delta}}\left(U_{s}^{1}-U_{s}^{2}\right) d s+\frac{S_{T}^{\delta}}{S_{t}^{\delta}}\left(\bar{U}_{T}^{1}-\bar{U}_{T}^{2}\right) \right\rvert\, \mathcal{G}_{t}\right]
$$

where $\mathbb{Q}^{*, 2}$ the probability measure equivalent to \mathbb{P} given by

$$
\frac{d Z_{t}^{\mathbb{Q}^{*, 2}}}{Z_{t^{-}}^{\mathbb{Q}^{*, 2}}}=-d M_{t}^{Y^{2}, c}+\sum_{i=1}^{d}\left(e^{-\widehat{Y}_{t}^{i, 2}}-1\right) d N_{t}^{i} .
$$

In particular, if $U^{1} \leq U^{2}$ and $\bar{U}_{T}^{1} \leq \bar{U}_{T}^{2}$, one obtains

$$
Y_{t}^{1} \leq Y_{t}^{2}, \quad d \mathbb{P} \otimes d t \text {-a.e. }
$$

IdEA OF THE PROOF (I)

Proof

We denote $\widehat{Y}^{i, 12}:=\widehat{Y}^{i, 1}-\widehat{Y}^{i, 2}$ and $M^{12, c}=M^{1, c}-M^{2, c}$. Then :

$$
\begin{align*}
Y_{t}^{12}= & \bar{U}_{T}^{12}+\int_{t}^{T}\left(\widetilde{U}_{s}^{12}-\delta_{s} Y_{s}^{12}\right) d s-\sum_{i=1}^{d} \int_{t}^{T} \widehat{Y}_{s}^{i, 12} d N_{s}^{i} \\
& -\sum_{i=1}^{d} \int_{t}^{T}\left[g\left(\widehat{Y}_{s}^{i, 1}\right)-g\left(\widehat{Y}_{s}^{i, 2}\right)\right] \lambda_{s}^{i} d s \tag{2}\\
& +\frac{1}{2} \int_{t}^{T}\left(d\left\langle M^{2, c}\right\rangle_{s}-d\left\langle M^{1, c}\right\rangle_{s}\right)-\int_{t}^{T} d M_{s}^{12, c}
\end{align*}
$$

IdEA OF THE PROOF (II)

PROOF

Note that, for any pair of continuous martingales M^{1}, M^{2}, denoting $M^{12}=M^{1}-M^{2}$:

$$
-\left\langle M^{2}, M^{12}\right\rangle-\frac{1}{2}\left\langle M^{2}\right\rangle+\frac{1}{2}\left\langle M^{1}\right\rangle=\frac{1}{2}\left\langle M^{12}\right\rangle
$$

Using the fact that the process $\left\langle M^{12}\right\rangle$ is increasing and that the function g is convex we get :

$$
\begin{aligned}
Y_{t}^{12} & \leq \bar{U}_{T}^{12}+\int_{t}^{T}\left(\widetilde{U}_{s}^{12}-\delta_{s} Y_{s}^{12}\right) d s \\
& +\sum_{i=1}^{d} \int_{t}^{T}\left(e^{-\widehat{Y}_{s}^{i, 2}}-1\right) \widehat{Y}_{s}^{i, 12} \lambda_{s}^{i} d s-\int_{t}^{T} d\left\langle M^{2, c}, M^{12, c}\right\rangle_{s} \\
& -\int_{t}^{T} d M_{s}^{12, c}-\sum_{i=1}^{d} \int_{t}^{T} \widehat{Y}_{s}^{i, 12} d N_{s}^{i}
\end{aligned}
$$

IdEA OF THE PROOF (III)

Proof

- Let N^{*} and $M^{*, c}$ be the $\mathbb{Q}^{*, 2}$-martingales obtained by Girsanov's transformation from N and M^{c}, where $d \mathbb{Q}^{*, 2}=Z^{\mathbb{Q}^{*, 2}} d \mathbb{P}$.
- Then :
$Y_{t}^{12} \leq \bar{U}_{T}^{12}+\int_{t}^{T}\left(\widetilde{U}_{s}^{12}-\delta_{s} Y_{s}^{12}\right) d s-\sum_{i=1}^{d} \int_{t}^{T} \widehat{Y}_{s}^{i, 12} d N_{s}^{i *}-\int_{t}^{T} d M_{s}^{*, c}$
which implies that

$$
Y_{t}^{12} \leq \mathbb{E}^{\mathbb{Q}^{*, 2}}\left[\int_{t}^{T} e^{-\int_{t}^{s} \delta_{r} d r} \widetilde{U}_{s}^{12} d s+e^{-\int_{t}^{T} \delta_{r} d r} \bar{U}_{T}^{12} \mid \mathcal{G}_{t}\right]
$$

CONCAVITY PROPERTY FOR THE SEMIMARTINGALE BSDE

THEOREM

Let define the map $F: D_{1}^{\exp } \times D_{0}^{\exp } \longrightarrow D_{0}^{\text {exp }}$ such that for all $(U, \bar{U}) \in D_{1}^{\exp } \times D_{0}^{\exp }$, we have

$$
F(U, \bar{U})=V
$$

where $\left(V, M^{V, c}, \hat{V}\right)$ is the solution of BSDE associated to (U, \bar{U}). Then F is concave ,namely,

$$
F\left(\theta U^{1}+(1-\theta) \widetilde{U}^{2}, \theta \bar{U}_{T}^{1}+(1-\theta) \bar{U}_{T}^{2}\right) \geq \theta F\left(U^{1}, \bar{U}_{T}^{1}\right)+(1-\theta) F\left(U^{2}, \bar{U}_{T}^{2}\right) .
$$

PLAN

(1) Introduction

(2) THE MINIMIZATION PROBLEM

3 A BSDE DESCRIPTION FOR THE DYNAMIC VALUE PROCESS
4. The discontinuous filtration Case
(5) COMPARISON THEOREM AND REGULARITIES FOR THE BSDE
(6) MAXIMIZATION PROBLEM
(7) The Logarithmic case

PROBLEM : RECURSIVE UTILITY PROBLEM

- we assume that $U_{s}=\widetilde{U}\left(c_{s}\right)$ and $\bar{U}_{T}=\bar{U}(\psi)$ where \widetilde{U} and \bar{U} are given utility functions, c is a non-negative \mathbb{G}-adapted process and ψ a \mathcal{G}_{T}-measurable non-negative random variable.
- We study the following optimization problem :

$$
\begin{aligned}
& \sup _{(c, \psi) \in \mathcal{A}(x)} \mathbb{E}^{\mathbb{Q}^{*}}\left[\int_{0}^{T} S_{s}^{\delta} U\left(c_{s}\right) d s+S_{T}^{\delta} \bar{U}(\psi)\right] \\
& +\mathbb{E}^{\mathbb{Q}^{*}}\left[\int_{0}^{T} \delta_{s} S_{s}^{\delta} \ln Z_{s}^{\mathbb{Q}^{*}} d s+S_{T}^{\delta} \ln Z_{T}^{\mathbb{Q}^{*}}\right]:=\sup _{(c, \psi) \in \mathcal{A}(x)} V_{0}^{X, \psi, c}
\end{aligned}
$$

where V_{0} is the value at initial time of the value process V, part of the solution $\left(V, M^{V}, \widehat{V}\right)$ of our BSDE, in the case $U_{s}=U\left(c_{s}\right)$ and $\bar{U}_{T}=\bar{U}(\psi)$.

PROBLEM : RECURSIVE UTILITY PROBLEM

- The set $\mathcal{A}(x)$ is the convex set of controls parameters $(c, \psi) \in \mathcal{H}^{2}([0, T]) \times \mathbf{L}^{2}\left(\Omega, \mathcal{G}_{T}\right)$ such that:

$$
\mathbb{E}^{\widetilde{\mathbb{P}}}\left[\int_{0}^{T} c_{t} d t+\psi\right] \leq x,
$$

where $\widetilde{\mathbb{P}}$ is a fixed pricing measure, i.e. a probability $\widetilde{\mathbb{P}}$ equivalent to \mathbb{P} with a Radon-Nikodym density \tilde{Z} with respect to \mathbb{P} given by :

$$
d \widetilde{Z}_{t}=\tilde{Z}_{t-}\left(\theta_{t} d M_{t}^{c}+\sum_{i=1}^{n}\left(e^{-z_{t}^{i}}-1\right) d N_{t}^{i}\right), \tilde{Z}_{0}=1 .
$$

- Here, \mathbb{Q}^{*} is the optimal model measure depends on c, ψ.
- In a complete market setting, the process c can be interpreted as a consumption, ψ as a terminal wealth, with the pricing measure $\widetilde{\mathbb{P}}$ is the risk neutral probability.

Assumptions on the utility functions

- The utility functions U and \bar{U} satisfy the usual regular conditions :
(1) Strictly increasing and concave.
(2) Continuous differentiable on the set $\{U>-\infty\}$ and $\{\bar{U}>-\infty\}$, respectively,
(3) $U^{\prime}(\infty):=\lim _{x \rightarrow \infty} U^{\prime}(x)=0$ and $\bar{U}^{\prime}(\infty):=\lim _{x \rightarrow \infty} \bar{U}^{\prime}(x)=0$,
(9) $U^{\prime}(0):=\lim _{x \rightarrow 0} U^{\prime}(x)=+\infty$ and $U^{\prime}(0):=\lim _{x \rightarrow 0} \bar{U}^{\prime}(x)=+\infty$,
(6) Asymptotic elasticity $A E(U):=\lim \sup _{x \rightarrow+\infty} \frac{x U^{\prime}(x)}{U(x)}<1$.

Properties of the value function

PROPOSITION

Let $G: \mathcal{A}(x) \longrightarrow D_{0}^{\exp }$, as $G(c, \psi)=V$ where $\left(V, M^{V, c}, \widehat{V}\right)$ is the solution of the BSDE associated with $(U(c), \bar{U}(\psi))$. Then
(1) G is strictly concave with respect to (c, ψ),
(2) Let $G_{0}(c, \psi)$ be the value at initial time of $G(c, \psi)$, i.e., $G_{0}(c, \psi)=V_{0}$. Then $G_{0}(c, \psi)$ is continuous from above with respect to (c, ψ),
(3) G_{0} is upper continuous with respect to (c, ψ).

Regularity result on the value function

THEOREM

- $\left(V^{1}, M^{1, c}, \widehat{V}^{1}\right)$ the solution associated with $\left(U\left(c^{1}\right), \bar{U}\left(\psi^{1}\right)\right)$ for a given $\left(c^{1}, \psi^{1}\right)$.
- Let $\left(V^{\epsilon}, M^{\epsilon, C}, \widehat{V}^{\epsilon}\right)$ be the solution of the BSDE associated with $\left(U\left(c^{1}+\epsilon\left(c^{2}-c^{1}\right)\right), \bar{U}\left(\psi^{1}+\epsilon\left(\psi^{2}-\psi^{1}\right)\right)\right)$ for a given $\left(c^{2}, \psi^{2}\right)$.
- Then V^{ϵ} is right differentiable in 0 with respect to ϵ and the triple $\left(\partial_{\epsilon} V, \partial_{\epsilon} \widetilde{M}^{V, c}, \partial_{\epsilon} \widehat{V}\right)$ is the solution of the following BSDE :

$$
\begin{aligned}
& \left\{\begin{array}{l}
d \partial_{\epsilon} V_{t}=\left(\delta_{t} \partial_{\epsilon} V_{t}-U^{\prime}\left(c_{t}^{1}\right)\left(c_{t}^{2}-c_{t}^{1}\right)\right) d t+d \partial_{\epsilon} \widetilde{M}_{t}^{V, c}+\sum_{i=1}^{d} \partial_{\epsilon} \widehat{V}_{t}^{i} d \widetilde{N}_{t}^{i} \\
\partial_{\epsilon} V_{T}=\bar{U}^{\prime}\left(\psi^{1}\right)\left(\psi^{2}-\psi^{1}\right)
\end{array}\right. \\
& \text { where } \widetilde{N}^{i}=N^{i}-\int_{0}\left(e^{-v_{t}^{1, i}}-1\right) \lambda_{t}^{i} d t
\end{aligned}
$$

Regularity result on the value function

THEOREM

Moreover, we obtain

$$
\partial_{\epsilon} V_{t}=\mathbb{E}^{\mathbb{P}}\left[\left.\frac{Z_{T}^{\mathbb{Q}^{*, 1}}}{Z_{t}^{\mathbb{Q}^{*, 1}}} \frac{S_{T}^{\delta}}{S_{t}^{\delta}} \bar{U}^{\prime}\left(\psi^{1}\right)\left(\psi^{2}-\psi^{1}\right)+\int_{t}^{T} \frac{Z_{s}^{\mathbb{Q}^{*, 1}}}{Z_{t}^{\mathbb{Q}^{*, 1}}} \frac{S_{s}^{\delta}}{S_{t}^{\delta}} U^{\prime}\left(c_{s}^{1}\right)\left(c_{s}^{2}-c_{s}^{1}\right) d s \right\rvert\, \mathcal{G}_{t}\right]
$$

UNCONSTRAINTED OPTIMIZATION PROBLEM

- we solve first an equivalent unconstrained problem to the optimization problem : we associate with a pair $(c, \psi) \in \mathcal{A}(x)$ the quantity

$$
X_{0}^{c, \psi}=\mathbb{E}^{\tilde{\mathbb{P}}}\left(\int_{0}^{T} c_{s} d s+\psi\right)
$$

- In a complete market setting, $X^{c, \psi}$ is the initial value of the associated wealth.
- Define by

$$
\begin{equation*}
u(x):=\sup _{x_{0}^{c, \psi} \leq x} V_{0}^{(c, \psi)} \tag{3}
\end{equation*}
$$

where $V_{0}^{(c, \psi)}=V_{0},\left(V, M^{V, c}, \widehat{V}\right)$ is the solution of the BSDE associated with $(U(c), \bar{U}(\psi))$.

UNCONSTRAINTED OPTIMIZATION PROBLEM

PROPOSITION

There exists an unique optimal pair $\left(c^{0}, \psi^{0}\right)$ which solves the unconstrainted optimization problem.

Proof

- The uniqueness is a consequence of the strictly concavity property of V_{0}.
- We shall prove the existence by using Komlòs theorem.
- We first Step prove that $\sup _{(c, \phi) \in \mathcal{A}(x)} V_{0}^{c, \phi}<+\infty$:

Because $\mathbb{P} \in \mathcal{Q}_{f}^{e}$, we have :

$$
\sup _{(c, \phi) \in \mathcal{A}(x)} V_{0}^{c, \phi} \leq \sup _{(c, \phi) \in \mathcal{A}(x)} \mathbb{E}^{\mathbb{P}}\left[\bar{U}(\phi)+\int_{0}^{T} U\left(c_{s}\right) d s\right]:=\widetilde{u}(x)
$$

Proof (2)

Proof

- Using the elasticity assumption on U and \bar{U}, we can prove that $A E(\widetilde{u})<1$, which permits to conclude that, for any $x>0$, $\widetilde{u}(x)<+\infty$.
- Let $\left(c^{n}, \phi^{n}\right) \in \mathcal{A}(x)$ be a maximizing sequence such that :

$$
\nearrow \lim _{n \rightarrow+\infty} V_{0}^{c^{n}, \phi^{n}}=\sup _{(c, \phi) \in \mathcal{A}(x)} V_{0}^{c, \phi}<+\infty
$$

where the RHS is finite.

- Then conclude by Using Komlòs theorem.

OPTIMIZATION PROBLEM

THEOREM

- There exists a constant $\nu^{*}>0$ such that :

$$
u(x)=\sup _{(c, \psi)}\left\{V_{0}^{(c, \psi)}+\nu^{*}\left(x-X^{(c, \psi)}\right)\right\}
$$

and if the maximum is attained in the above constraint problem by $\left(c^{*}, \psi^{*}\right)$ then it is attained in the unconstraint problem by $\left(c^{*}, \psi^{*}\right)$ with $X^{(c, \psi)}=x$.

- Conversely if there exists $\nu^{0}>0$ and $\left(c^{0}, \psi^{0}\right)$ such that the maximum is attained in

$$
\sup _{(c, \psi)}\left\{V_{0}^{(c, \psi)}+\nu^{0}\left(x-X_{0}^{(c, \psi)}\right)\right\}
$$

with $X_{0}^{(c, \psi)}=x$, then the maximum is attained in our constraint problem by $\left(c^{0}, \psi^{0}\right)$.

THE MAXIMUM PRINCIPLE (1)

- We now study for a fixed $\nu>0$ the following optimization problem :

$$
\begin{equation*}
\sup _{(c, \psi)} L(c, \psi) \tag{4}
\end{equation*}
$$

where the functional L is given by $L(c, \psi)=V_{0}^{(c, \psi)}-\nu X_{0}^{(c, \psi)}$

Proposition (Jeanblanc, M., M. A., Ngoupeyou A.)

The optimal consumption plan $\left(c^{0}, \psi^{0}\right)$ which solves (4) satisfies the following equations :

$$
\begin{equation*}
U^{\prime}\left(c_{t}^{0}\right)=\frac{Z_{t}^{\widetilde{\mathbb{P}}}}{Z_{t}^{\mathbb{Q}^{*}}} \frac{\nu}{\alpha S_{t}^{\delta}} \quad \bar{U}^{\prime}\left(\psi^{0}\right)=\frac{Z_{T}^{\widetilde{\mathbb{P}}}}{Z_{T}^{\mathbb{Q}^{*}}} \frac{\nu}{\bar{\alpha} S_{T}^{\delta}} \text { a.s } \tag{5}
\end{equation*}
$$

where \mathbb{Q}^{*} is the model measure associated to the optimal consumption $\left(c^{0}, \psi^{0}\right)$.

The main steps of the Proof of the Proposition

 (I)- Let consider the optimal consumption plan (c^{0}, ψ^{0}) which solve (4) and another consumption plan (c, ψ). Consider $\epsilon \in(0,1)$ then :

$$
L\left(c^{0}+\epsilon\left(c-c^{0}\right), \psi^{0}+\epsilon\left(c-c^{0}\right)\right) \leq L\left(c^{0}, \psi^{0}\right)
$$

Then

$$
\begin{aligned}
& \frac{1}{\epsilon}\left[V_{0}^{\left(0^{0}+\epsilon\left(c-c^{0}\right), \psi^{0}+\epsilon\left(\psi-\psi^{0}\right)\right)}-V_{0}^{\left(c^{0}, \psi^{0}\right)}\right] \\
& \quad-\nu \frac{1}{\epsilon}\left[X_{0}^{\left(c^{0}+\epsilon\left(c-c^{0}\right), \psi^{0}+\epsilon\left(\psi-\psi^{0}\right)\right.}-X_{0}^{\left(c^{0}, \psi^{0}\right)}\right] \leq 0
\end{aligned}
$$

Because $\left(X_{t}^{(c, \psi)}+\int_{0}^{t} c_{s} d s\right)_{t \geq 0}$ is a $\widetilde{\mathbb{P}}$ martinagle we obtain :

$$
\begin{aligned}
& \frac{1}{\epsilon}\left[X_{t}^{\left(c^{0}+\epsilon\left(c-c^{0}\right), \psi^{0}+\epsilon\left(\psi-\psi^{0}\right)\right.}-X_{t}^{\left(0^{0}, \psi^{0}\right)}\right] \\
& \quad=\mathbb{E}^{\widetilde{\mathbb{P}}}\left[\int_{t}^{T}\left(c_{s}-c_{s}^{0}\right) d s+\left(\psi-\psi^{0}\right) \mid \mathcal{F}_{t}\right]
\end{aligned}
$$

The main steps of the Proof (II)

- Then the wealth process is right differential in 0 with respect to ϵ we define

$$
\partial_{\epsilon} X_{t}^{\left(c^{0}, \psi^{0}\right)}=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}\left(X_{t}^{\left(c^{0}+\epsilon\left(c-c^{0}\right), \psi^{0}+\epsilon\left(c-c^{0}\right)\right)}-X_{t}^{\left(c^{0}, \psi^{0}\right)}\right)
$$

- We take $\lim _{\epsilon \rightarrow 0}$ above, we obtain:

$$
\partial_{\epsilon} V_{0}^{\left(c^{0}, \psi^{0}\right)}-\nu \partial_{\epsilon} X_{0}^{\left(c^{0}, \psi^{0}\right)} \leq 0
$$

The main steps of the Proof (III)

- Consider the optimal density $\left(Z^{\mathbb{Q}_{t}^{*, 1}}\right)_{t \geq 0}$ where its dynamics is given by

$$
\frac{d Z_{t}^{\mathbb{Q}^{*, 1}}}{Z_{t^{-}}^{\mathbb{Q}^{*},}}=-d M^{V, c}+\sum_{i=1}^{d}\left(e^{-\widehat{Y}^{1, i}}-1\right) d N_{t}^{i}
$$

then :
$\partial_{\epsilon} V_{t}=\mathbb{E}^{\mathbb{Q}^{*, 1}}\left[\left.\frac{S_{T}^{\delta}}{S_{t}^{\delta}} \bar{U}^{\prime}\left(X_{T}^{1}\right)\left(X_{T}^{2}-X_{T}^{1}\right)+\int_{t}^{T} \frac{S_{s}^{\delta}}{S_{t}^{\delta}} U^{\prime}\left(c_{s}^{1}\right)\left(c_{s}^{2}-c_{s}^{1}\right) d s \right\rvert\, \mathcal{G}_{t}\right]$.

The main steps of the Proof (IV)

- From the last result and the explicitly expression of $\left(\partial_{\epsilon} X_{t}^{\left(0^{0}, \psi^{0}\right.}\right)_{t \geq 0}$ we get :

$$
\begin{aligned}
& \partial_{\epsilon} V_{0}^{\left(c^{0}, \psi^{0}\right)}-\nu \partial_{\epsilon} X_{0}^{\left(c^{0}, \psi^{0}\right)} \\
& =\mathbb{E}^{\mathbb{P}}\left[S_{T}^{\delta} Z_{T}^{\mathbb{Q}^{*}, 1} \bar{U}^{\prime}\left(\psi^{0}\right)\left(\psi-\psi^{0}\right)+\int_{0}^{T} S_{s}^{\delta} Z_{s}^{\mathbb{Q}^{*}} U^{\prime}\left(c_{s}^{0}\right)\left(c_{s}-c_{s}^{0}\right) d s\right] \\
& -\nu \mathbb{E}^{\mathbb{P}}\left[Z^{\widetilde{\mathbb{P}}}\left(\psi-\psi^{0}\right)+\int_{0}^{T} Z_{s}^{\widetilde{\mathbb{P}}}\left(c_{s}-c_{s}^{0}\right) d s\right]
\end{aligned}
$$

- Using the equality above we get :

$$
\begin{aligned}
& \mathbb{E}^{\mathbb{P}}\left[\left(S_{T}^{\delta} Z_{T}^{\mathbb{Q}^{*, 1}} \bar{U}^{\prime}\left(\psi^{0}\right)-\nu Z^{\widetilde{\mathbb{P}}}\right)\left(\psi-\psi^{0}\right)\right. \\
& \left.+\int_{0}^{T}\left(S_{s}^{\delta} Z_{s}^{\mathbb{Q}^{*, 1}} U^{\prime}\left(c_{s}^{0}\right)-\nu Z_{s}^{\widetilde{\mathbb{P}}}\right)\left(c_{s}-c_{s}^{0}\right) d s\right] \leq 0
\end{aligned}
$$

The main steps of the Proof (V)

- Let define the set $\boldsymbol{A}:=\left\{\left(Z^{\mathbb{Q}^{*}} \bar{U}^{\prime}\left(\psi^{0}\right)-\nu Z^{\widetilde{\mathbb{P}}}\right)\left(\psi-\psi^{0}\right)>0\right\}$ taking $\boldsymbol{c}=c^{0}$ and $\psi=\psi^{0}+\mathbf{1}_{\mathrm{A}}$ then $\mathbb{P}(\boldsymbol{A})=0$ and we get :

$$
\left(Z^{\mathbb{Q}^{*}} \bar{U}^{\prime}\left(\psi^{0}\right)-\nu Z^{\widetilde{\mathbb{P}}}\right) \leq 0 \quad \text { a.s }
$$

- Let define for each $\epsilon>0$

$$
B:=\left\{\left(Z^{\mathbb{Q}^{*}} \bar{U}^{\prime}\left(\psi^{0}\right)-\nu Z^{\widetilde{\mathbb{P}}}\right)\left(\psi-\psi^{0}\right)<0, \psi^{0}>\epsilon\right\}
$$

- because $\left\{\psi^{0}>0\right\}$ due to Inada assumption, we can define $\psi=\psi^{0}-\mathbf{1}_{\mathbf{B}}$ then $\mathbb{P}(B)=0$ and we get

$$
\left(Z^{\mathbb{Q}^{*}} \bar{U}^{\prime}\left(\psi^{0}\right)-\nu Z^{\widetilde{\mathbb{P}}}\right) \geq 0 \quad \text { a.s }
$$

We find the optimal consumption with similar arguments.

THE MAXIMUM PRINCIPLE (2)

- we have also:

THEOREM

Let I and \bar{I} the inverse of the functions U^{\prime} and \bar{U}^{\prime}. The optimal consumption $\left(c^{0}, \psi^{0}\right)$ which solve the unconstrained problem is given by :

$$
c_{t}^{0}=I\left(\frac{\nu^{0}}{S_{t}^{\delta}} \frac{Z_{t}^{\widetilde{\mathbb{P}}}}{Z_{t}^{\mathbb{Q}^{*}}}\right), \quad d t \otimes d \mathbb{P} \text { a.s }, \quad \psi^{0}=\bar{l}\left(\frac{\nu^{0}}{S_{T}^{\delta}} \frac{Z_{T}^{\widetilde{\mathbb{P}}}}{Z_{T}^{\mathbb{Q}^{*}}}\right) \text { a.s. }
$$

where $\nu^{0}>0$ satisfies :

$$
\mathbb{E}^{\widetilde{\mathbb{P}}}\left[\int_{0}^{T} I\left(\frac{\nu^{0}}{S_{t}^{\delta}} \frac{Z_{t}^{\widetilde{\mathbb{P}}}}{Z_{t}^{\mathbb{Q}^{*}}}\right) d t+\bar{l}\left(\frac{\nu^{0}}{S_{T}^{\delta}} \frac{Z_{T}^{\widetilde{\mathbb{P}}}}{Z_{T}^{\mathbb{Q}^{*}}}\right)\right]=x
$$

The main steps of the Proof (1)

- For any initial wealth $x \in(0,+\infty)$, there exists a unique ν^{0} such that $f\left(\nu^{0}\right)=x$.
- Let $(c, \psi) \in \mathcal{A}(x)$ and $\left(V^{(c, \psi)}, M^{V, c}, v\right)\left(\operatorname{resp} .\left(V^{\left(c^{0}, \psi^{0}\right)}, M^{V^{0}, c}, v^{0}\right)\right)$ the solution of the BSDE associated with $\left(U\left(c^{0}\right), \bar{U}\left(\psi^{0}\right)\right)$ (resp. $(U(c), \bar{U}(\psi)))$ then from comparison theorem, we get :

$$
\begin{aligned}
& V_{0}^{(c, \psi)}-V_{0}^{\left(c^{0}, \psi^{0}\right)} \\
& \leq \mathbb{E}^{\mathbb{Q}^{*}}\left[S_{T}^{\delta}\left(\bar{U}(\psi)-\bar{U}\left(\psi^{0}\right)\right)+\int_{0}^{T} S_{s}^{\delta}\left(U\left(c_{s}\right)-U\left(c_{s}^{0}\right)\right) d s\right] \\
& \leq \mathbb{E}^{\mathbb{Q}^{*}}\left[S_{T}^{\delta} \bar{U}^{\prime}\left(\psi^{0}\right)\left(\psi-\psi^{0}\right)+\int_{0}^{T} S_{s}^{\delta} U^{\prime}\left(c_{s}^{0}\right)\left(c_{s}-c_{s}^{0}\right) d s\right]
\end{aligned}
$$

THE MAIN STEPS OF THE PROOF (2)

- It follows from the maximum principle that :

$$
\begin{aligned}
v_{0}^{(c, \psi)}-V_{0}^{\left(c^{0}, \psi^{0}\right)} & \leq \nu^{0} \mathbb{E}^{\mathbb{Q}^{*}}\left(\frac{z^{\widetilde{\mathbb{P}}}}{Z_{T}^{\mathbb{Q}^{*}}}\left(\psi-\psi^{0}\right)+\int_{0}^{T} \frac{Z_{s}^{\widetilde{\mathbb{P}}}}{Z_{s}^{\mathbb{Q}^{*}}}\left(c_{s}-c_{s}^{0}\right) d s\right) \\
& \leq \nu^{0}\left(\mathbb{E}^{\widetilde{\mathbb{P}}}\left(\psi+\int_{0}^{T} c_{s} d s\right)-\mathbb{E}^{\widetilde{\mathbb{P}}}\left(\psi^{0}+\int_{0}^{T} c_{s}^{0} d s\right)\right)
\end{aligned}
$$

- Since $(c, \psi) \in \mathcal{A}(x)$, then $\mathbb{E}^{\widetilde{\mathbb{P}}}\left[\psi+\int_{0}^{T} c_{s} d s\right] \leq x$.
- Using that $\mathbb{E}^{\widetilde{\mathrm{P}}}\left[\psi^{0}+\int_{0}^{T} c_{s}^{0} d s\right]=x$, we conclude :

$$
V_{0}^{(c, \psi)} \leq V_{0}^{\left(c^{0}, \psi^{0}\right)} .
$$

(1) Introduction

(2) THE MINIMIZATION PROBLEM

3 A BSDE DESCRIPTION FOR THE DYNAMIC VALUE PROCESS
(4) The discontinuous filtration case
(5) COMPARISON THEOREM AND REGULARITIES FOR THE BSDE
(6) MAXIMIZATION PROBLEM
(7) The Logarithmic case

Logarithmic Case (1)

- We assume that δ is deterministic and $U(x)=\ln (x)$ and $\bar{U}(x)=0$ (hence $I(x)=\frac{1}{x}$ for all $x \in(0,+\infty)$).
- The optimal process $c_{t}^{*}=I\left(\frac{\nu}{S_{t}^{i}} \frac{\tilde{Z}_{t}}{Z_{t}^{*}}\right)=\frac{S_{t}^{s}}{\nu} \frac{Z_{t}^{*}}{\mathcal{Z}_{t}}$.
- For any deterministic function α such that $\alpha(T)=0, V$ admits a decomposition as

$$
V_{t}=\alpha(t) \ln \left(c_{t}^{*}\right)+\gamma_{t}
$$

- where γ is a process such that $\gamma_{T}=0$.
- Recall that the Radon-Nikodym density \bar{Z}, and the Radon-Nikodym density of the optimal probability measure Z^{*} satisfy

$$
\begin{aligned}
& d \widetilde{Z}_{t}=\tilde{Z}_{t-}\left(\theta_{t} d M_{t}^{c}+\sum_{i=1}^{n}\left(e^{-z_{t}^{i}}-1\right) d N_{t}^{i}\right), \tilde{Z}_{0}=1 \\
& d Z_{t}^{*}=Z_{t-}^{*}\left(-d M_{t}^{V, c}+\sum_{i=1}^{n}\left(e^{-y_{t}^{i}}-1\right) d N_{t}^{i}\right), Z_{0}^{*}=1
\end{aligned}
$$

Logarithmic Case (2)

- In order to obtain a BSDE, we introduce $J_{t}=\frac{1}{1+\alpha(t)} \beta_{t}$.

PROPOSITION

(i) The value function V has the form

$$
V_{t}=\alpha(t) \ln \left(c_{t}^{*}\right)+(1+\alpha(t)) J_{t}
$$

where

$$
\alpha(t)=-\int_{t}^{T} e^{\int_{t}^{s} \delta(u) d u} d s
$$

and $\left(J, \bar{M}^{J, c}, \hat{J}\right)$ is the unique solution of the following Backward Stochastic Differential Equation, where $k(t)=-\frac{\alpha(t)}{1+\alpha(t)}$:

Logarithmic Case (3)

Proposition

$$
\begin{aligned}
d J_{t} & =\left((1+\delta(t))(1+k(t)) J_{t}-k(t) \delta(t)\right) d t+d \bar{M}_{t}^{J, c}+\frac{1}{2} d\left\langle\bar{M}^{J, c}\right\rangle_{t} \\
& +\frac{1}{2} k(t)(1+k(t)) \theta_{t}^{2} d\left\langle M^{c}\right\rangle_{t} \\
& +\sum_{i=1}^{n} j_{t}^{i} d \bar{N}_{t}^{i}+\sum_{i=1}^{n}\left(g\left(j_{t}^{j}\right) \bar{\lambda}_{t}^{i}+\left(k(t)\left(e^{-z_{t}^{i}}-1\right)+e^{k(t) z_{t}^{i}}-1\right) \lambda_{t}^{i}\right) d t
\end{aligned}
$$

- The processes $\bar{M}^{J, c}$ and $d \bar{N}_{t}^{i}=d H_{t}^{i}-\bar{\lambda}_{t}^{i} d t$ are $\overline{\mathbb{P}}$-martingales where $\left.\frac{d \overline{\mathbb{P}}}{d \overline{\mathbb{P}}}\right|_{\mathcal{G}_{t}}=Z_{t}^{\overline{\mathbb{P}}}$ and $\bar{\lambda}_{t}^{i}=e^{k(t) z_{t}^{i}} \lambda_{t}^{i}$ where

$$
d Z_{t}^{\overline{\mathbb{P}}}=-Z_{t^{-}}^{\overline{\mathbb{P}}}\left(k(t) \theta_{t} d M_{t}^{c}-\sum_{i=1}^{d}\left(e^{k(t) z_{t}^{i}}-1\right) d N_{t}^{i}\right)
$$

LOGARITHMIC CASE (3)

PROPOSITION

ii)

$$
\begin{aligned}
d c_{t}^{*}= & c_{t-}^{*}\left(-\delta_{t} d t-d M_{t}^{V, c}+\theta_{t} d M_{t}^{c}-\theta_{t} d\left\langle M^{c}, M^{V, c}\right\rangle_{t}\right. \\
& \left.+\sum_{i=1}^{d}\left(e^{\left(y_{t}^{i}-z_{t}^{i}\right)}-1\right) d N_{t}^{i}-\sum_{i=1}^{d}\left(g\left(y_{t}^{i}\right)-g\left(z_{t}^{i}\right)-g\left(y_{t}^{i}-z_{t}^{i}\right)\right) \lambda_{t}^{i} d t\right)
\end{aligned}
$$

DISCUSSION

- study more explicit "models" in incomplete market
- Numerical scheme
- replace the entropic penalization by other convex term !!
- consider robustness in the non-dominated case

