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PROBLEM

We present a problem of utility maximization under model uncertainty :
supinfU(m, Q),
x Q

where

e 7 runs through a set of strategies (portfolios, investment
decisions, .. .)

e Q runs through a set of models Q.



ONE KNOWN MODEL CASE

e If we have a one known model P : in this case, Q = {P} for P a
given reference probability measure and U(, P) has the form of a
P-expected utility from terminal wealth and/or consumption,
namely

U(m,P) = E(U(XF))
where

e X7 is the wealth process

and
e U is some utility function.



REFERENCES : DUAL APPROACH

Schachermayer (2001) (one single model)

@ Becherer (2007) (one single model)

Schied (2007), Schied and Wu (2005)
e Follmer and Gundel, Gundel (2005)



REFERENCES : BSDE APPROACH

e El Karoui, Quenez and Peng (2001) : Dynamic maximum principle
(one single model)

e Hu, Imkeller and Mueller (2001) (one single model)

e Barrieu and El Karoui (2007) : Pricing, Hedging and Designing
Derivatives with Risk Measures (one single model)

e Lazrak-Quenez (2003), Quenez (2004), Q # {P} but one keep
U(w, Q) as an expected utility

e Duffie and Epstein (1992), Duffie and Skiadas (1994), Skiadas
(2003), Schroder & Skiadas (1999, 2003, 2005) : Stochastic
Differential Utility and BSDE.

e Hansen & Sargent : they discuss the problem of robust utility
maximization when model uncertainty is penalized by a relative
entropy term.



EXAMPLE : ROBUST CONTROL WITHOUT MAXIMIZATION

e Let us consider an agent with time-additive expected utility over
consumptions paths :

E[/(;T e~ u(cy)d].

with respect to some model (2, 7, 7, P, (B;)t=0) where (Bt)t>o is
Brownian motion under P.

e Suppose that the agent has some preference to use another
model P? under which :

t
B! = B —/ fsds
0

is a Brownian motion.



EXAMPLE

e The agent evaluate the distance between the two models in term
of the relative entropy of P? with respect to the reference measure
P:

.
R’ = Eg[/ e"!|6;|2 ]
0

e In this example, our robust control problem will take the form :
T N
Vo = inf [E"[/ e *'u(cy)dt] +/3R9]
J0

e The answer of this problem will be that : V; = Y, where Y is
solution of BSDE or recursion equation :

v, E{/IT e,a(sft)(u(cs)ds — 21/3d<Y>s) ‘]:ti|7

e This an example of Stochatic differential utility (SDU) introduced
by Duffie and Epstein (1992).
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PRELIMINARY AND ASSUMPTIONS

Let us given :

e Final horizon : T < oo

e (Q,F,IF,P) afiltered probability space where F = {F;}o<t<T is a
filtration satisfying the usual conditions of right-continuity and
P-completness.

e Possible scenarios given by

Q := {Q probability measure on Q suchthat Q < P on Fr}

e the density process of Q € Q is the cadlag P-martingale

dQ

7=

dQ
7 =Elgp | 7l
e we may identify Z2 with Q.

e Discounting process : S := exp(— fot Jds ds) with a discount rate
process 6 = {dt}o<i<T-



PRELIMINARY

o Let](Q) be a quantity given by

T
uf’T(Q) - /t e Jr ordr Usds+ e~ ftT dr drUT

o where U = (U;)co 1) is a utility rate process which comes from

consumption and U7 is the terminal utility at time T which
corresponds to final wealth.

o Let R} ;(Q) be a penalty term

T s ZQ T ZQ
RI7(Q) = / 5se~Ji o9 |og 5 ds+ e Ji % |og 5
t Z; Z
for Q < Pon Fr.



COST FUNCTIONAL

@ We consider the cost functional

c(w,Q) := U 7(Q) + SRY 7(Q) .

with 3 > 0 is a constant which determines the strength of this
penalty term.

e Our first goal is to
minimize the functional Q +— (Q) := E%[c(.,Q)]

over a suitable class of probability measures Q <« P on Fr.



RELATIVE ENTROPY

e Under the reference probability P the cost functional I'(Q) can be
written :

r(Q)=E"

T —
z;@(/o S2Us ds + Sf;ur)]

+ BEP .

-
/ 555522 log Z2ds + 8§22 log Z2
0

e The second term is a discounted relative entropy with both an
entropy rate as well a terminal entropy :
EC [log 29] . ifQ < PonFr

+ o0, if not

H(QIP) := {



FUNCTIONAL SPACES

e [®*P is the space of all Gr-measurable random variables X with
EF [exp (7] X|)] < oo forall v > 0

o D;* is the space of progressively measurable processes y = (y;)
such that

Ep{exp (vess supogtgﬂyt])} < oo, forally>0.

° Df"p is the space of progressively measurable processes y = (¥;)
such that

.
EP[exp(y/ |ys|ds)}<oo forally > 0.
0



FUNCTIONAL SPACES AND HYPOTHESES (I)

o MP(P) is the space of all P-martingales M = (M})y, 1 such that
E*(supo< <1 |Mi[P) < oo

o Assumption (A) :0 < § < [|§]|oc < 00, U € DI and Ut € L.

e Denote by Qs is the space of all probability measures Q on (2,G7)
with Q@ << P on Gr and H(Q|P) < 4o, then :

e For simplicity we will take g = 1.

THEOREM (BORDIGONI G., M. A., SCHWEIZER, M.)
There exists a unique Q* which minimizes T'(Q) over allQ € Qs :

Q") = jnf Q)

Furthermore, Q* is equivalent to P.




THE CASE: 6 =0

e The spacial case § = 0 corresponds to the cost functional

r(Q) =EY [ué’,r] +BH(Q[P) = BH(Q|Py)—Blog EF [ exp (—;Ug,r) J-

dPy 1
where P ~ P and - % = cexp <—5ugj> :

e Csiszar (1997) have proved the existence and uniqueness of the
optimal measure Q* ~ [P, which minimize the relative entropy

H(Q|Py).

e |. Csiszar : I-divergence geometry of probability distributions and
minimization problems. Annals of Probability 3, p. 146-158 (1975).
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DYNAMIC STOCHASTIC CONTROL PROBLEM

We embed the minimization of ['(Q) in a stochastic control problem :

@ The minimal conditional cost

J(7,Q) := Q —ess infycpg,) (7, Q')
with (7, Q) := Eq[c(-, Q) | F-],
o D(Q,7)={ZY |Q € Q;etQ =Qsur F,}and 7 € S.
e So, we can write our optimization problem as

Jnf T(@) = inf B [c(, Q)] = E°[J(0, Q)]

e We obtain the following martingale optimality principle from
stochastic control :



DYNAMIC STOCHASTIC CONTROL PROBLEM

We have obtained by following El Karoui (1981) :

PROPOSITION (BORDIGONI G., M. A., SCHWEIZER, M.)

Q The family {J(7,Q) | T € S,Q € Q¢} is a submartingale system ;

© Q e 9y is optimal if and only if {J(,Q) | T € S} is a Q-martingale
system;

© ForeachQ € Qy, there exists an adapted RCLL process
J2 = (J;@)og t<T Which is a right closed Q-submartingale such that

S0 = J(r,Q)




SEMIMARTINGALE DECOMPOSITION OF THE VALUE

PROCESS

o WedefineforallQ' c Qfand 7€ S:
V(r,Q):=E? U1 | 7|+ BEq [RE (@) 7]
e The value of the control problem started at time 7 instead of O is :

V(T, @) = @ — ess |nf@/ep (Q,7) (T @ )

e So we can equally well take the ess inf under P ~ Q and over all
Q' € Qfand V(1) = V(r, @) and one proves that V is P-special
semimartingale with canonical decomposition

V=V,+M +AY



SEMIMARTINGALE BSDE : CONTINUOUS FILTRATION

CASE

e We assume tha F = (F})i< 7 is continuous.

e Let first consider the following quadratic semimartingale BSDE
with :

DEFINITION (BORDIGONI G., M. A., SCHWEIZER, M.)

A solution of the BSDE is a pair of processes (Y, M) such that Y is a
P-semimartingale and M is a locally square-integrable locally
martingale with My = 0 such that :

{ —dY; = (Us — 6, Yo)dt — ;Bd <M > — dM,
Yr =Ty

e Note that Y is then automatically P-special, and that if M is continuous,
soisY.




BSDE : BROWNIAN FILTRATION

REMARK

o IfF =TFW, for a given Brownian mtotion, then the semimartingale
BSDE takes the standard form of quadratique BSDE :

—dY; = (Ut 6t Y — ]Zt\2>)dt — Z - dW,
Yr =Ur

e Kobylanski (2000), Lepeltier et San Martin (1998), El Karoui and
Hamadéne (2003), Briand and Hu (2005, 2007).

e Hu, Imkeler and Mueler (06), Morlais (2008), Mania and Tevzadze
(2006), Trevzadze (SPA, 2009)




AND : THE CONTINUOUS FILTRATION CASE

THEOREM (BORDIGONI G., M. A., SCHWEIZER, M.)

Assume that I is continuous. Then the couple (V. M") is the unique
solution in Dy x Mg joc(P) of the BSDE

{ —dY; = (Ut = (Sth)dt— 21,3d <M >; — dM;

Yr=U;
e Moreover, £ (—%M V) = 7Y js aPP—martingale such that it'’s

supremum belohgs to L'(P) where Q* is the optimal probability.

o We have also that MV € ME(P) for every p € [0, +oc]




RECURSIVE RELATION

LEMMA
Let (Y, M) be a solution of BSDE with M continuous. Assume that
YeD®ore (—%M) is P—martingale.

For any pair of stopping times o < t, then we have the recursive
relation

Ya:—ﬁlogEP[exp <;/T(5SYS—QUS) ds—;YT> (fa}

e As a consequence one gets the uniqueness result for the
semimartingale BSDE.

e In the case where ¢ = 0, then this yields to the entropic dynamic
risk measure.
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THE MODEL (I)

e We consider a filtered probability space (2, G, G, P). All the
processes are taken G-adapted, and are defined on the time
interval [0, T].

e Any special G-semimartingale Y admits a canonical
decomposition Y = Y, + A+ MY:¢ + Y9 where Ais a predictable
finite variation process, Y° is a continuous martingale and " is
a pure discontinuous martingale.

e Foreachi=1,...,n, H is a counting process and there exist a

positive adapted process N , called the P intensity of H', such that
the process N/ with N} := H] — [ \Lds is a martingale.

e We assume that the processes H',i = 1,..., d have no common
jumps.



THE MODEL

e Any discontinuous martingale admits a representation of the
am,”? Z YidNi

where Y/ i =1,....d are predictable processes.



THE MODEL :EXAMPLE FROM CREDIT RISK

EXAMPLE (UNDER IMMERSION PROPERTY)

o We assume that G is the filtration generated by a continuous
reference filtration F and d positive random times 71, - - - , 74 which
are the default times of d firms : G = (Gt)~, where

gl‘:ﬂfﬂ-g\/O’(’ﬂ/\t+€)VJ(TzAf+€)...vU(Td/\t+€)
e>0

where o(7; \ t + €) is the generated o-fields which is non random
before the default times 7; foreachi=1,--- ,d.

o we note H} = 1y, .

o We assume that each 7; is G-totaly inaccessible and there exists a
positive G-adapted process \' such that, the process N' with
N} = Hi — |3 \ids is a G-martingale.

e Obviously, the process ' is null after the default time ;.




THE MODEL :EXAMPLE FROM CREDIT RISK

e From Kusuoka, the representation of the discontinuous martingale
MY -9 with respect to N' holds true when the filtration G is
generated by a Brownian motion and the default processes.




SEMIMARTINGALE BSDE WITH JUMPS

o Let first consider the following quadratic semimartingale BSDE
with jumps :

DEFINITION

A solution of the BSDE is a triple of processes (Y, M":¢ \7) such that
Y is a P-semimartingale, M is a IocaIIy square mtegrable locally
martingale with My = 0 and Y = (Y1, -, Y9) a R%valued predictable

locally bounded process such that :

d d
~ . . 1 . .
dYe =Y g(Y))A; — U+ 6t Yelat + §d<MY’C>t +dM° + > VidN]
. i=1
Yr=Ur
(1)

where g(x) = e ¥+ x — 1.




EXISTENCE RESULT

THEOREM (JEANBLANC, M., M. A., NGOUPEYOU A.)

e There exists a unique triple of process
(Y, MY Y) € DF® x Mo 1oc(P) x L3(\) solution of the
semartingale BSDE with jumps.

e Furthermore, the optimal measure Q* solution of our minimization
problem is given :

dz? =z%¥dly, Z§ =1

where

d —~ .
oLy = M+ 3" (67 ~ 1) dNj,
i=1
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COMPARISON THEOREM FOR OUR BSDE

THEOREM (JEANBLANC, M., M. A., NGOUPEYOU A.)

Assume that for k = 1,2, (YK, MY Y¥) is solution of the BSDE
associated to (UX, UX). Then one have

/tgj (vt - U2>ds+§(UT U2)\gf]

where Q*2 the probability measure equivalent to P given by

— M) °+Z( V1) aN

In particular, if U' < U? and U} < U2, one obtains

Y] — v2 < E®*

Y! <Y? dP®dtae.




IDEA OF THE PROOF (I)

PROOF

We denote Y12 .= Y1 — Yi2 and M12.¢ — M'-¢ — M2C. Then :

T ~
Yt12:U1T2+/ <U12 5sY12 ds — / Vit2ani
t

gj/tr[g(y”) g(Y’z)]A'ds 2)
+;/tT MZC o M1c /dM12c




IDEA OF THE PROOF (II)

PROOF

Note that, for any pair of continuous martingales M', M?, denoting
M12 M1 M2 -

_ <M2, M12> _ 1

.
5

M?) +

.
5

MY = —

2<M12>

Using the fact that the process (M'?) is increasing and that the
function g is convex we get :

T o~
Y2 < U}2+/ (U;2—65Y;2> ds
t
+Z/ 1) VEAds - / d(M2C, M%)
. dM12,C - / /\\/1712le
[ ! z RALY




IDEA OF THE PROOF (III)

PROOF

o Let N* and M*¢ be the Q*?-martingales obtained bzy Girsanov’s
transformation from N and M¢, where dQ*? = ZQ""dP.

e Then :

T d T _ T
Y2 < U}2+/t (ng—ésYgz)ds—Z/t YS”12dN;*—/t dM°
i=1

which implies that

e T s ~ T —
Y2 < EC 2{/ e [ i2ds + e i 6,drU}_2‘gt}
t




CONCAVITY PROPERTY FOR THE SEMIMARTINGALE
BSDE

THEOREM

Let define the map F : DY x DS — D® such that for all
(U, U) € DJ® x DS®, we have

F(U,U) =V

where (V,MV-¢, /) is the solution of BSDE associated to (U, U). Then
F is concave ,namely,

F (9u1 +(1—0)0R 00+ (1 — 9)0%) > 0F(U", U +(1-0)F(U?, T2)
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PROBLEM : RECURSIVE UTILITY PROBLEM

e we assume that Us = U(cs) and Ur = U(v)) where U and U are
given utility functions, ¢ is a non-negative G-adapted process and
1) a Gr-measurable non-negative random variable.

e We study the following optimization problem :

;
sup E¥ / S2U(cs)ds + S3U(v)
(c.p)eA(x) 0
T /
+ B / 58N Z¥ ds + SHZ% | = sup v
i (c,h)EA(X)

where Vj is the value at initial time of the value process V, part of
the solution (V, MY, V) of our BSDE, in the case Us = U(cs) and
Ur = U(¥).



PROBLEM : RECURSIVE UTILITY PROBLEM

e The set A(x) is the convex set of controls parameters
(c,v) € H3([0, T]) x L3(Q,G7) such that :

~ T
EP[/ cidt + 4] < x,
J0

where P is a fixed pricing measure, i.e. a probability P equivalent
to P with a Radon-Nikodym density Z with respect to P given by :

n
dZi = Z_(0:dMf +> (e % —1)dN]), Zy =1 .
i=1

e Here, Q* is the optimal model measure depends on ¢, v.

e In a complete market setting, the process ¢ can be interpreted as_
a consumption, ¢ as a terminal wealth, with the pricing measure P
is the risk neutral probability.



ASSUMPTIONS ON THE UTILITY FUNCTIONS

e The utility functions U and U satisfy the usual regular conditions :

© Strictly increasing and concave.

@ Continuous differentiable on the set {U > —oo} and {U > —oo},
respectively,

Q U'(0) := limy_ e U'(x) = 0 and U'(c0) := limy_,e0 U'(x) = 0,
o Ul(o) = limy_,o U/(X) = +o0 and U/(O) = limy_o U/(X) = 400,

!
© Asymptotic elasticity AE(U) :=lim sup xU(x) < 1.
X—too U(X)




PROPERTIES OF THE VALUE FUNCTION

PROPOSITION

Let G : A(x) — D5®, as G(c,v) = V where (V,M"¢, V) is the
solution of the BSDE associated with (U(c), U(v)). Then

© G is strictly concave with respect to (c, 1)),

@ Let Go(c, ) be the value at initial time of G(c, ), i.e.,
Go(c,v) = Vo. Then Gy(c, 1)) is continuous from above with

respect to (c, ),

© Gy is upper continuous with respect to (c, ).




REGULARITY RESULT ON THE VALUE FUNCTION

o (V' M'c V') the solution associated with (U(c'), U(4")) for a
given (c', ).

o Let (Ve M°, VC) be the solution of the BSDE associated with
(U(c" + e(c® — "), U@ + e(yp® — o)) for a given (2, 1?).

e Then V* is right differentiable in O with respect to e and the triple
(0. V,0.M"-¢ 5. V) is the solution of the following BSDE :

d
do.Vs = (8:0.Ve — U(el)(cf — o)) dt + doMy + 3 0. V]aNi,
i=1

O Vr = U2 ")

where N' = N/ — Js(e e’ — 1)\idt




REGULARITY RESULT ON THE VALUE FUNCTION

Moreover, we obtain

Q*1 S ZQ*1 S
o.v=EF[2 2o o W00 /t ot ct)(c2~cl)ds|di]




UNCONSTRAINTED OPTIMIZATION PROBLEM

e we solve first an equivalent unconstrained problem to the
optimization problem : we associate with a pair (c,¢) € A(x) the

quantity
‘ T
X5V =E" < / csds + /l/))
0

e In a complete market setting, X¢¥ is the initial value of the
associated wealth.
e Define by
u(x):= sup V&% (3)

Xc"ng

where V®") =V, (V, MY, V) is the solution of the BSDE

assomated with (U(c). U(« ))



UNCONSTRAINTED OPTIMIZATION PROBLEM

PROPOSITION

There exists an unique optimal pair (c°,°) which solves the
unconstrainted optimization problem.

PROOF

e The uniqueness is a consequence of the strictly concavity
property of V.

e We shall prove the existence by using Komlos theorem.
o We first Step prove that sUp s syc 4(x) Vo * < +00
Because P € Qf, we have :

sup  Vg?<  sup EP / U(cs ds} = U(x).
(c.)EA(X) (c.)EA(X)




PROOF (2)

e Using the elasticity assumption on U and U, we can prove that
AE(u) < 1, which permits to conclude that, for any x > 0,
u(x) < +oo.

e Let(c",¢") € A(x) be a maximizing sequence such that :

A lim VS = sup VO < 4o,
el (c,0)EA(X)

where the RHS is finite.

e Then conclude by Using Komlos theorem.




OPTIMIZATION PROBLEM

THEOREM

e There exists a constant v* > 0 such that :

u(x) = L { VO (x _ x(cvw)) }

and if the maximum is attained in the above constraint problem by
(c*,v*) then it is attained in the unconstraint problem by (c*, )
with X(¢¥) = x.

o Conversely if there exists v° > 0 and (c°, %) such that the
maximum is attained in

2“5 { Véc,w) 10 (X B Xécnb)) }

with Xéc’w) = X, then the maximum is attained in our constraint
problem by (c°, ).




THE MAXIMUM PRINCIPLE (1)

e We now study for a fixed v > 0 the following optimization problem :

sup L(c, ) (4)
(c,¥)

where the functional L is given by L(c,) = V&%) — vx{e¥)

PROPOSITION (JEANBLANC, M., M. A., NGOUPEYOU A.)

The optimal consumption plan (c°, %) which solves (4) satisfies the
following equations :

Z? v
Zt@* osz

U= 2LV as (5)

U'(c?) = -

where Q* is the model measure associated to the optimal consumption

(c%,¢°).




THE MAIN STEPS OF THE PROOF OF THE PROPOSITION

(I)

e Let consider the optimal consumption plan (¢, +°) which solve (4)

and another consumption plan (¢, v). Consider ¢ € (0, 1) then :
L(c® + e(c — %), 4% + ¢(c — ) < L(c?, 4°)

Then

T relo=e) i eev=i)) _ (e )]

€
_ ,,12 (el (w=v) |y g

) .~ . .
Because (Xt(c’w + fot csds> 0 is a P martinagle we obtain :

1 04 e(0—c0),10+e(1h—10 0 440
[Xt(c (c—c) ( )_Xt(c )]

=EP

/ (cs— ) + (1 - wO)\ﬂ]



THE MAIN STEPS OF THE PROOF (II)

e Then the wealth process is right differential in 0O with respect to ¢
we define

aext(cozwo) — Ilm 1(Xt(COJ’»e(C*CO)7¢0+6(Cfco)) _ Xt(covwo))
e—0 €

e We take lim._,q above, we obtain :

oV —va X)) <.



THE MAIN STEPS OF THE PROOF (III)

e Consider the optimal density (Z(@?J)t20 where its dynamics is
given by

*,1

az? Ve S/ 9 .
=—dM"°+) (e —1)aN
*,1 t
z? P ( )
then :

.V = EQ" Sﬁ(/’()ﬂ)(x2 ~X1)+ ' S ety - c1)ds\g}
€ S;; T T T . S;; s/\ls s t-



THE MAIN STEPS OF THE PROOF (IV)

e From the last result and the explicitly expression of (8€X,(CO’¢O)

we get :

t>0
0V — pa X
= E°[S}Z7 T U(w0)(w - v°) + /0 128 V() (0 - )as]
— VB [ZF(y - 40) + /O ' ZE(es - )
@ Using the equality above we get :
EP[(S}28 " U(w) — vZF) (w0 — v°)

T ~
s [ (828 ()~ vZ) (es - B)as] <0
0



THE MAIN STEPS OF THE PROOF (V)

o Let define the set A := {(Z¥ U'(¢'°) — v.Z%)(y) — ¥°) > 0} taking
¢ =c®and ¢ =% 4 15 then P(A) = 0 and we get :

(ZY T W) -vZFY<0  as
o Let define foreach e > 0
B:= {(ZY U(W°) —vZ) (¥ — 4°) < 0,40 > ¢}

e because {¢° > 0} due to Inada assumption, we can define
Y =% — 1g then P(B) = 0 and we get

(ZY T W) -vZF) >0 as

We find the optimal consumption with similar arguments.



THE MAXIMUM PRINCIPLE (2)

e we have also :

THEOREM

Let I and | the inverse of the functions U’ and U'. The optimal
consumption (c°,+°) which solve the unconstrained problem is given
by :

0 7P N 7R
C?:/(So Z" -), dt®dPas, I(S° H*)a.s..

where 1° > 0 satisfies :

~ T Ozﬁ 0 Z@
EP/ ISyt +1(2-S1)] = x
] (g g+ T 2]




THE MAIN STEPS OF THE PROOF (1)

e For any initial wealth x € (0, +o0), there exists a unique »° such
that f(19) = x.

o Let (¢, ) € A(x) and (V(¢¥) MY-e v) (resp. (v<c %), MV°e v0))
the solution of the BSDE associated with (U(c?), (wo))
(resp. (U(c), U(+))) then from comparison theorem, we get :

Vécﬂlf) N VéC‘%w‘))
)
< B [SHOW) - D) + [ Si(Ules) - U)o

_ T
<BY[SHU0)w 00 + | SU(E)(e: — ds].



THE MAIN STEPS OF THE PROOF (2)

o It follows from the maximum principle that :

0.0 . Z@ T Z@
Véc’d’) — Véc Y < ORQ (Zgﬁ(w — %) +/0 Z‘S* (cs — cS)ds)

< 0@ (v [ o) B (04 [ as))

e Since (¢, %) € A(x), then EF (v + fOT csds| < x.
o Using that E¥ [y + [ cgds] = x, we conclude :

c,Y) (CO P )
VeY) < Ve



PLAN

0 THE LOGARITHMIC CASE



LOGARITHMIC CASE (1)

e We assume that ¢ is deterministic and U(x) = In(x) and U(x) = 0
(hence /(x) = 1 for all x € (0, +00)).

LZ) _SZ

Sp 4 vz’

e For any deterministic function « such that «(T) = 0, V admits a
decomposition as

e The optimal process ¢; = /(

Vi = a(t)In(ct) + 7t
e where v is a process such that y7 = 0.
e Recall that the Radon-Nikodym density Z, and the
Radon-Nikodym density of the optimal probability measure Z*
satisfy

n
dZy = Z_(0:dMF + S (€74 — 1)aNj), Zp = 1

i=1

n i .
az; = Z; (—aM°+ Y (e —1)dNj), Z5 =1

i=1



LOGARITHMIC CASE (2)

e In order to obtain a BSDE, we introduce J; = ﬁf,

PROPOSITION

(i) The value function V has the form

Vi = a(t) In(c) + (1 + a(t))J;

where -
a(t) = / el d(U)dgg
t

and (J, MY, J) is the unique solution of the following Backward

Stochastic Differential Equation, where k(t) = —% ;




LOGARITHMIC CASE (3)

PROPOSITION

= (14 3()(1 + K()oh — K(D(D)) ot + IR + (),

- %k(t)(1 + k(1))02d(M°);

+Z/tht+Z<g(jt ’,+< £)( ‘25—1)+ek(f)zf—1)/\’;)dt

o The processes M?¢ and dNj = dH{ — Xidt are P-martingales
where %|g, = Zi* and X; = k(D% )| where

- - d i .
dzi = -Z% (k(t)e,dmf = (et — 1)dN;>

i=1



LOGARITHMIC CASE (3)

PROPOSITION
ii)

de; = ci (ot — dM/° + 6,dMC — 6,d(M°, M"-°),
t t t t

d . . X d i . . . .
+ > (e —1)dN; = > (9(i) — 9(21) — 9(yi — Zi))/\’tdf>

i=1 i=1




DISCUSSION

study more explicit "models" in incomplete market

Numerical scheme

replace the entropic penalization by other convex term!!

@ consider robustness in the non-dominated case
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