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1. BSDEs–Introduction

(Ω,F , (Ft )t≤1,P) be a complete probability space
Ft = σ(Bs , 0 ≤ s ≤ t) ∨N be a filtration
Consider the following ODE {

dYt = 0, t ∈ [0,T ],
YT = ξ ∈ IR. (1)
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1. BSDEs–Introduction

(Ω,F , (Ft )t≤1,P) be a complete probability space
Ft = σ(Bs , 0 ≤ s ≤ t) ∨N be a filtration
Consider the following terminal value problem{

dYt = 0, t ∈ [0,T ],
YT = ξ ∈ L2(Ω,FT ; IR).

(1)
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(Ω,F , (Ft )t≤1,P) be a complete probability space
Ft = σ(Bs , 0 ≤ s ≤ t) ∨N be a filtration
Consider the following terminal value problem{

dYt = 0, t ∈ [0,T ],
YT = ξ ∈ L2(Ω,FT ; IR).

(1)

We want to FIND Ft -ADAPTED solution Y for equation (1).

El Hassan Essaky Multidisciplinary Faculty (Cadi Ayyad University Multidisciplinary Faculty Safi, Morocco ITN—Roscof, March 18-23, 2010)Existence-uniqueness of solution for BSDE 2 / 34



2/34

1. BSDEs–Introduction

(Ω,F , (Ft )t≤1,P) be a complete probability space
Ft = σ(Bs , 0 ≤ s ≤ t) ∨N be a filtration
Consider the following terminal value problem{

dYt = 0, t ∈ [0,T ],
YT = ξ ∈ L2(Ω,FT ; IR).

(1)

We want to FIND Ft -ADAPTED solution Y for equation (1).
This is IMPOSSIBLE, since the only solution is

Yt = ξ, for all t ∈ [0,T ], (2)

which is not Ft−adapted.
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1. BSDEs–Introduction

(Ω,F , (Ft )t≤1,P) be a complete probability space
Ft = σ(Bs , 0 ≤ s ≤ t) ∨N be a filtration
Consider the following terminal value problem{

dYt = 0, t ∈ [0,T ],
YT = ξ ∈ L2(Ω,FT ; IR).

(1)

We want to FINDFt -ADAPTED solution Y for equation (1).
This is IMPOSSIBLE, since the only solution is

Yt = ξ, for all t ∈ [0,T ], (2)

which is not Ft−adapted.
A natural way of making (2) Ft−adapted is to redefine Y. as follows

Yt = IE(ξ|Ft ), t ∈ [0,T ]. (3)

Then Y. is Ft−adapted and satisfies YT = ξ, but not equation (1).
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1. BSDEs–Introduction

MRT =⇒ there exists an Ft−adapted process Z square integrable s.t

Yt = Y0 +

∫ t

0
ZsdBs . (4)

It follows that

YT = ξ = Y0 +

∫ T

0
ZsdBs . (5)

Combining (4) and (5), one has

Yt = ξ −
∫ T

t
ZsdBs , (6)

whose differential form is {
dYt = ZtdBt , t ∈ [0,T ],
YT = ξ.

(7)

Comparing (1) and (7), the term ”ZtdBt ” has been added.
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1. BSDEs–Introduction

BSDE is an equation of the following type:

Yt = ξ +

∫ T

t
f (s,Ys ,Zs )ds −

∫ T

t
ZsdBs , 0 ≤ t ≤ T . (8)

T : TERMINAL TIME
f : Ω× [0,T ]× IRd × IRd×n → IRd : GENERATOR or COEFFICIENT
ξ : TERMINAL CONDITION FT−adapted process with value in IRd .
UNKNOWNS ARE : Y ∈ IRd and Z ∈ IRd×n.
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1. BSDEs–Introduction

Denote by L the set of IRd × IRd×n–valued processes (Y ,Z) defined on IR+ × Ω which are
Ft –adapted and such that:

‖(Y ,Z)‖2 = IE
(

sup
0≤t≤T

|Yt |2 +

∫ T

0
|Zs |2ds

)
< +∞.

The couple (L, ‖.‖) is then a Banach space.

Definition

A solution of equation (8) is a pair of processes (Y ,Z) which belongs to the space (L, ‖.‖) and
satisfies equation (8).
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2. BSDEs with Lipshitz coefficient

Consider the following assumptions:
For all (y , z) ∈ IRd × IRd×n : (ω, t) −→ f (ω, t, y , z) is Ft− progressively measurable
f (., 0, 0) ∈ L2([0,T ]× Ω, IRd )

f is Lipschitz : ∃K > 0 and ∀y , y ′ ∈ IRd , z, z ′ ∈ IRd×n and (ω, t) ∈ Ω× [0,T ] s.t

| f (ω, t, y , z)− f (ω, t, y ′, z ′) |≤ K
(
| y − y ′ | + | z − z ′ |

)
.

ξ ∈ L2(Ω,FT ; IRd )

Theorem : Pardoux and Peng 1990
Suppose that the above assumptions hold true. Then, there exists a unique
solution for BSDE (15).
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3. APPLICATIONS OF BSDE : FINANCE & PDE

Consider a market where only two basic assets are traded.

BOND :
STOCK :

Consider a European call option whose payoff is

(XT − K)+.

The option pricing problem is : fair price of this option at time t = 0?
Suppose that this option has a price y at time t = 0. Then the fair price for the option at time
t = 0 should be such a y that the corresponding optimal investment would result in a wealth
process Yt satisfying

YT = (XT − K)+.
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3. APPLICATIONS OF BSDE : FINANCE & PDE

Consider a market where only two basic assets are traded.

BOND : dX0
t = rX0

t dt
STOCK : dXt = bXtdt + σXtdBt

Consider a European call option whose payoff is

(XT − K)+.

The option pricing problem is : fair price of this option at time t = 0?
Suppose that this option has a price y at time t = 0. Then the fair price for the option at time
t = 0 should be such a y that the corresponding optimal investment would result in a wealth
process Yt satisfying

YT = (XT − K)+.
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3. APPLICATIONS OF BSDE : FINANCE & PDE

Denote by
Rt : the amount that the writer invests in the stock
Yt − Rt : the remaining amount which is invested in the bond

Rt determines a strategy of the investment which is called a portfolio.
By setting Zt = σRt , we obtain the following BSDE

dXt = bXtdt + σXtdBt

dYt = (rYt +
b − r
σ

Zt )︸ ︷︷ ︸
f (t,Yt ,Zt )

dt + ZtdBt , t ∈ [0,T ],

X0 = x , YT = (XT − K)+︸ ︷︷ ︸
ξ

.

(9)

Pardoux & Peng result =⇒ there exits a unique solution (Yt ,Zt ). The option price at time
t = 0 is given by Y0, and the portfolio is given by Rt = Zt

σ
.
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3. APPLICATIONS OF BSDE : FINANCE & PDE

Let u be the solution of the following system of semi-linear parabolic PDE’s:{ ∂u
∂t

(t, x) + 1
2 Tr(σσ∗∆u)(t, x) + b∇u(t, x) + f (t, x , u(t, x),∇uσ(t, x)) = 0

u(T , x) = g(x).
(10)

Introducing {(Y s,x ,Z s,x ) ; s ≤ t ≤ T} the adapted solution of the backward stochastic
differential equation { −dYt = f (t,X s,x

t ,Yt ,Zt )ds − Z∗t dBt
YT = g(X t,x

T ),
(11)

where (X s,x ) denotes the solution of the following stochastic differential equation{
dXt = b(t,Xt )dt + σ(t,Xt )dBt
Xs = x . (12)
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3. APPLICATIONS OF BSDE : FINANCE & PDE

Then we have :
u is a classical solution of PDE (10) =⇒

(Y s,x
t = u(t,X s,x

t ), Z s,x
t = ∇u(t,X s,x

t )σ(s,X s,x
t ))

is a solution the BSDE (11).
There exists a solution to the BSDE (11)=⇒u(t, x) = Y t,x

t , is a viscosity solution of PDE
(10). This formula is a generalization of Feynman-Kac formula.

Suppose that f (t, x , y , z) = c(t, x)y + h(t, x), we obtain

Y t,x
t =IE

[
g(X t,x

1 ) exp
(∫ 1

t
c(r ,X t,x

r )dr
)

+

∫ 1

t
h(s,X t,x

s ) exp
(∫ s

t
c(r ,X t,x

r )dr
)

ds
]
,

which is the classical Feynman-Kac formula.
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4. BSDEs with locally Lipschitz coefficient

Consider the following assumptions:
(A1) f is continuous in (y , z) for almost all (t, ω).
(A2) There exist K > 0 and 0 ≤ α ≤ 1 such that

| f (t, ω, y , z) |≤ K(1+ | y |α + | z |α).

(A3) For each N > 0, there exists LN such that:

| f (t, y , z)− f (t, y ′, z ′) | ≤ LN (| y − y ′ | + | z − z ′ |)
| y |, | y ′ |, | z |, | z ′ |≤ N.

(A4) ξ ∈ L2(Ω,FT ; IRd )

Theorem : Bahlali 2002
Assume moreover that there exists a positive constant L such that
LN = L +

√
log N then there exists a unique solution for the BSDE (1).
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5. BSDEs with locally monotone coefficient–Question

Question

Let f (y) := −y log | y |. Suppose that ξ ∈ L2(FT ) or ξ ∈ Lp(FT ), p > 1 and consider the
following BSDE with logarithmic nonlinearity

Yt = ξ −
∫ T

t
Ys log | Ys |ds −

∫ T

t
ZsdWs .

Does this equation has a unique solution?
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5. BSDEs with locally monotone coefficient-Assumptions

Consider the following assumptions:
(H1) f is continuous in (y , z) for almost all (t, ω),
(H2) There exist M > 0, γ < 1

2 and η ∈ L1([0,T ]× Ω) such that,

〈y , f (t, ω, y , z)〉 ≤ η + M|y |2 + γ|z|2 P − a.s., a.e. t ∈ [0,T ].

(H3) ”Almost” quadratic growth : ∃M1 > 0, 0 ≤ α < 2, α′ > 1 and η ∈ Lα′ ([0,T ]× Ω) s.t :

| f (t, ω, y , z) |≤ η + M1(| y |α + | z |α).
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5. BSDEs with locally monotone coefficient

(H4) There exists a real valued sequence (AN )N>1 and constants M > 1, r > 1 such that:
i) ∀N > 1, 1 < AN ≤ Nr .
ii) lim

N→∞
AN =∞.

iii) Locally monotone condition : For every
N ∈ IN,∀y , y ′, z, z ′such that | y |, | y ′ |, | z |, | z ′ |≤ N, we have

〈y − y ′, f (t, y , z)− f (t, y ′, z ′)〉

≤ M | y − y ′ |2 logAN + M | y − y ′ || z − z ′ |
√

log AN + MA−1
N .

Theorem : Bahlali-Essaky-Hassani-Pardoux, 2002

Let ξ be a square integrable random variable. Assume that (H1)–(H4) are
satisfied. Then the BSDE has a unique solution.
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1. Lp-solutions to BSDEs with super-Motivation

Let’s mention some considerations which have motivated the present work.
The growth conditions on the nonlinearity constitute a critical case. Indeed, it is known
that for any ε > 0, the solutions of the ordinary differential equation Xt = x +

∫ t
0 X1+ε

s ds
explode at a finite time.
The logarithmic nonlinearities appear in some PDEs arising in physics.
In terms of continuous-state branching processes, the logarithmic nonlinearity u log u
corresponds to the Neveu branching mechanism. This process was introduced by Neveu.
For instance, the super-process with Neveu’s branching mechanism is related to the
Cauchy problem, {

∂u
∂t
−∆u + u log u = 0 on (0, ∞)× IRd

u(0+) = ϕ > 0
(13)

Hence, our result can be seen as an alternative approach to the PDEs.
It is worth noting that our condition on the coefficient f is new even for the classical Itô’s
forward SDEs.

Xs = x +

∫ s

0
Xr log |Xr |dr +

∫ s

0
Xr
√
| log |Xr ||dWr , 0 ≤ s ≤ T . (14)

For instance, the problem to establish the existence of a pathwise unique solution to the
following équation (14) still remains open.
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5. BSDEs with locally monotone coefficient–Example

Example

Let f (y) := −y log | y | then for all ξ ∈ L2(FT ) the following BSDE has a unique solution

Yt = ξ −
∫ T

t
Ys log | Ys |ds −

∫ T

t
ZsdWs .

Indeed, f satisfies (H.1)-(H.3) since 〈y , f (y)〉 ≤ 1 and | f (y) |≤ 1 +
1
ε
| y |1+ε for all ε > 0.

(H.4) is satisfied for every N > e and AN = N.
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5. BSDEs with locally monotone coefficient–Idea of the proof

We define a family of semi-norms
(
ρn(f )

)
n∈IN

by,

ρn(f ) = IE
∫ T

0
sup

|y|,|z|≤n
|f (s, y , z)|ds.

We Approximate f by a sequence (fn)n>1 of Lipschitz functions :

Lemma

Let f be a process which satisfies (H.1)–(H.3). T hen there exists a sequence of
processes (fn) such that,
(a) For each n, fn is bounded and globally Lipschitz in (y , z) a.e. t and
P-a.s.ω.
There exists M′ > 0, such that:
(b) supn |fn(t, ω, y , z)| ≤ η + M′ + M1(| y |α + | z |α). P-a.s., a.e.
t ∈ [0,T ].
(c)

sup
n
< y , fn(t, ω, y , z) >≤ η + M′ + M|y |2 + γ|z|2

(d) For every N, ρN (fn − f ) −→ 0 as n −→∞.
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5. BSDEs with locally monotone coefficient–Key steps of the proof

We consider the following BSDE

Y n
t = ξ +

∫ T

t
fn(s,Y n

s ,Zn
s )ds −

∫ T

t
Zn

s dWs , 0 ≤ t ≤ T .

Lemma
There exits a universal constant ` such that
a)

IE
∫ T

0
e2Ms |Z fn

s |2ds ≤
1

1− 2γ

[
e2MT IE | ξ |2 +2IE

∫ T

0
e2Ms (η + M′)ds

]
= K1

b) IE sup
0≤t≤T

(e2Mt | Y fn
t |

2) ≤ `K1 = K2

c) IE
∫ T

0
e2Ms |fn(s,Y fn

s ,Z fn
s )|αds ≤

4α−1
[

IE
∫ T

0
e2Ms ((η + M′)α + 4)ds + Mα

1 K1 + TMα
1 K2

]
= K3

d) IE
∫ T

0
e2Ms |f (s,Y fn

s ,Z fn
s )|αds ≤ K3, where α = min(α′,

2
α

).
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Hence the following convergences hold true

Y n ⇀ Y , weakly star in L2(Ω, L∞[0,T ])

Zn ⇀ Z , weakly in L2(Ω× [0,T ])

fn(.,Y n,Zn) ⇀ Γ. weakly in Lα(Ω× [0,T ]),

Moreover

Yt = ξ +

∫ T

t
Γsds −

∫ T

t
ZsdWs , ∀t ∈ [0,T ].

We Apply Itô’s formula to (|Y n−Y m|2 + ε)p for some 0 < p < 1, instead of |Y n−Y m|2:

lim
n→+∞

(
IE sup

0≤t≤T
|Y n

t − Yt |β + IE
∫ T

0
|Zn

s − Zs |ds
)

= 0, 1 < β < 2.

We Identify Γs by proving that : lim
n

E
∫ T

0
|fn(s,Y n

s ,Zn
s )− f (s,Ys ,Zs )|ds = 0.
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6. Lp-solutions to BSDEs with locally monotone coefficient-Definition

Let p > 1 is an arbitrary fixed real number and all the considered processes are (Ft )-predictable.

Definition

A solution of equation (8 is an (Ft )-adapted and IRd+dr -valued process (Y ,Z) such that

IE sup
t≤T
|Yt |p + IE

[∫ T

0
|Zs |2ds

] p
2

+ IE
∫ T

0
|f (s,Ys ,Zs )|ds < +∞

and satisfies

Yt = ξ +

∫ T

t
f (s,Ys ,Zs )ds −

∫ T

t
ZsdBs , 0 ≤ t ≤ T . (15)
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6. Lp-solutions to BSDEs with locally monotone coefficient-Assumptions

We consider the following assumptions on (ξ, f ):
(H.0)

There are M ∈ L0(Ω; L1([0,T ]; IR+)), K ∈ L0(Ω; L2([0,T ]; IR+)) and γ ∈]0,
1 ∧ (p − 1)

2
[

such that: IE | ξ |p e
p
2

∫ T

0
λsds

<∞, where λs := 2Ms +
K2

s
2γ

(H.1) f is continuous in (y , z) for almost all (t, ω).
(H.2)

There are η and f 0 ∈ L0(Ω× [0,T ]; IR+) satisfying IE

∫ T

0
e

∫ s

0
λr dr

ηsds


p
2

<∞

and IE

∫ T

0
e

1
2

∫ s

0
λr dr

f 0
s ds


p

<∞, where λ is defined in assumption (H.0),

such that:

〈y , f (t, y , z)〉 ≤ ηt + f 0
t |y |+ Mt |y |2 + Kt |y ||z|.
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6. Lp-solutions to BSDEs with locally monotone coefficient-Assumptions

(H.3)

{
There are η ∈ Lq(Ω× [0,T ]; IR+)) (for some q > 1) and α ∈]1, p[, α′ ∈]1, p ∧ 2[
such that:
| f (t, ω, y , z) | ≤ ηt + | y |α + | z |α′ .

(H.4)



There are v ∈ Lq′ (Ω× [0,T ]; IR+)) (for some q′ > 0) and K ′ ∈ IR+ such that
for every N ∈ IN and every y , y ′ z, z ′ satisfying | y |, | y ′ |, | z |, | z ′ |≤ N

1vt (ω)≤N〈y − y ′, f (t, ω, y , z)− f (t, ω, y ′, z ′)〉

≤ K ′ log AN | y − y ′ |2 +
√

K ′ log AN | y − y ′ || z − z ′ | +K ′
log AN

AN
where AN is a increasing sequence and satisfies AN > 1, limN→∞ AN =∞
and AN ≤ Nµ for some µ > 0.
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6. Lp-solutions to BSDEs with locally monotone coefficient-Existence and Uniqueness

Theorem : Bahlali-Essaky-Hassani

If (H.0)-(H.4) hold then (8) has a unique solution (Y ,Z). Moreover we have

IE sup
t
| Yt |p e

p
2

∫ t

0
λs ds

+ IE
[∫ T

0
e
∫ s

0
λr dr | Zs |2 ds

] p
2

≤C

{
IE | ξ |p e

p
2

∫ T

0
λs ds

+ IE
(∫ T

0
e
∫ s

0
λr dr

ηsds
) p

2

+ IE
(∫ T

0
e

1
2

∫ s

0
λr dr f 0

s ds
)p
}
.

for some constant C depending only on p and γ.
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6. Lp-solutions to BSDEs with locally monotone coefficient-Examples

Example 1

Let f (y) := −y log | y | then for all ξ ∈ Lp(FT ) the following BSDE has a unique solution

Yt = ξ −
∫ T

t
Ys log | Ys |ds −

∫ T

t
ZsdWs .

Indeed, f satisfies (H.1)-(H.3) since 〈y , f (y)〉 ≤ 1 and | f (y) |≤ 1 +
1
ε
| y |1+ε for all ε > 0.

(H.4) is satisfied for every N > e with vs = 0 and AN = N.
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6. Lp-solutions to BSDEs with locally monotone coefficient-Examples

Example 2

Let g(y) := y log
| y |

1+ | y |
and h ∈ C(IRdr ; IR+)

⋂
C1(IRdr − {0}; IR+) be such that :

h(z) =

{
|z|
√
− log |z| if |z| < 1− ε0

|z|
√

log |z| if |z| > 1 + ε0,

where ε0 ∈]0, 1[. Finally, we put f (y , z) := g(y)h(z). Then for every ξ ∈ Lp(FT ) the following
BSDE has a unique solution

Yt = ξ +

∫ T

t
f (Ys ,Zs )ds −

∫ T

t
ZsdWs .

(H.4) is satisfied for every N >
√

e with vs = 0 and AN = N
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6. Lp-solutions to BSDEs with locally monotone coefficient-Examples

Example 3

Let (Xt )t≤T be an (Ft )−adapted and IRk−valued process satisfying :

Xt = X0 +

∫ t

0
b(s,Xs )ds +

∫ t

0
σ(s,Xs )dWs ,

where X0 ∈ IRk and σ, b : [0,T ]× IRk → IRkr × IRk are measurable functions such that
‖σ(s, x)‖ ≤ c and |b(s, x)| ≤ c(1 + |x |), for some constant c.

Consider the following BSDE Yt = g(XT ) +

∫ T

t
(| Xs |q Ys − Ys log | Ys |)ds −

∫ T

t
ZsdWs .

where q ∈]0, 2[ and g is a measurable function satisfying | g(x) |≤ c exp c | x |q′ , for some
constants c > 0, q′ ∈ [0, 2[.
The previous BSDE has a unique solution (Y ,Z) such that

IE sup
t
| Yt |p +IE

[∫ T

0
| Zs |2 ds

] p
2

≤ C exp (C | X0 |2).

(H.4) is satisfied with vs = exp | Xs |q and AN = N.
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6. Lp-solutions to BSDEs with locally monotone coefficient-Examples

Example 4

Let (ξ, f ) satisfying (H.0)-(H.3) and
(H’.4)

There are a positive process C satisfying IE
∫ T

0
eq′Cs ds <∞ and K ′ ∈ IR+ such that:

〈y − y ′, f (t, ω, y , z)− f (t, ω, y ′, z ′)〉 ≤ K ′ | y − y ′ |2
(

Ct (ω)+ | log(| y − y ′ |) |
)

+K ′ | y − y ′ || z − z ′ |
√

Ct (ω)+ | log | z − z ′ | |.
Then the following BSDE has a unique solution

Yt = ξ +

∫ T

t
f (s,Ys ,Zs )ds −

∫ T

t
ZsdWs .

(H.4) is satisfied with vs = exp (Cs ) and AN = N.
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6. Lp-solutions to BSDEs with locally monotone coefficient-Idea of the proof

We Approximate f by a sequence (fn)n>1 of Lipschitz functions :

fn(t, y , z) = (c1e)21{Λt ≤ n}ψ(n−2|y |2)ψ(n−2|z|2)×

m(d+dr)

∫
IRd

∫
IRdr

f (t, y − u, z − v)Πd
i=1ψ(mui )Πd

i=1Πr
j=1ψ(mvij )dudv ,

with m :=
n2p

ht
and Λt := ηt + ηt + f 0

t + Mt + Kt + 1
ht

where ht is a predictable process
such that 0 < ht ≤ 1.
We consider the following BSDE

Y n
t = ξ1{|ξ|≤n} +

∫ T

t
fn(s,Y n

s ,Zn
s )ds −

∫ T

t
Zn

s dWs , 0 ≤ t ≤ T .

We Apply Itô’s formula to ({|Y n − Y m|2 + ε}( 1
ε

)2Ct )
β
2 for some 1 < β < p ∧ 2, instead

of |Y n − Y m|2 we have:
For every p′ < p,
(Y n,Zn)→ (Y ,Z) strongly in Lp′ (Ω; C([0,T ]; IRd ))× Lp′ (Ω; L2([0,T ]; IRdr )).

For every β̂ <
2
α′
∧

p
α
∧

p
α′
∧ q

lim
n→∞

IE
∫ T

0
|fn(s,Y n

s ,Zn
s )− f (s,Ys ,Zs )|β̂ds = 0.
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1. Lp-solutions to BSDEs with super-linear growth coefficient-Application to PDEs

Consider the following system of semilinear PDE (P(g,F )){
∂u(t, x)

∂t
+ Lu(t, x) + F (t, x , u(t, x), σ∗∇u(t, x)) = 0 t ∈]0,T [, x ∈ IRk

u(T , x) = g(x) x ∈ IRk

where L :=
1
2

∑
i,j

(σσ∗)ij∂
2
ij +
∑

i

bi∂i , σ ∈ C3
b(IRk , IRkr ), b ∈ C2

b(IRk , IRk ).

Let

H1+ :=
⋃

δ≥0,β>1

{
v ∈ C([0,T ]; Lβ(IRk , e−δ|x|dx ; IRd )) :

∫ T

0

∫
IRk
|σ∗∇v(s, x)|βe−δ|x|dxds <∞

}
.

Definition

A (weak) solution of (P(g,F )) is a function u ∈ H1+ such that for every ϕ ∈ C1
c∫ T

t < u(s),
∂ϕ(s)
∂s > ds+ < u(t), ϕ(t) >

=< g , ϕ(T ) > +
∫ T

t < F (s, ., u(s), σ∗∇u(s)), ϕ(s) > ds +
∫ T

t < Lu(s), ϕ(s) > ds,
where < f (s), h(s) >=

∫
IRk f (s, x)h(s, x)dx .
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1. Lp-solutions to BSDEs with super-linear growth coefficient-Application to PDE

(A.0) g(x) ∈ Lp(IRk , e−δ|x|dx ; IRd ).

(A.1) F (t, x , ., .) is continuous a.e. (t, x)

(A.2)


There are η′ ∈ L

p
2∨1([0,T ]× IRk , e−δ|x|dtdx ; IR+)),

f 0′ ∈ Lp([0,T ]× IRk , e−δ|x|dtdx ; IR+)), and M,M′ ∈ IR+ such that

〈y ,F (t, x , y , z)〉 ≤ η′(t, x) + f 0′ (t, x)|y |+ (M + M′|x |)|y |2+
√

M + M′|x ||y ||z|.

(A.3)


There are η′ ∈ Lq([0,T ]× IRk , e−δ|x|dtdx ; IR+)) (for some q > 1), α ∈]1, p[
and α′ ∈]1, p ∧ 2[ such that

|F (t, x , y , z)| ≤ η′(t, x) + |y |α + |z|α′ .

(A.4)
There are K , r ∈ IR+ such that ∀N ∈ IN and every er|x|, | y |, | y ′ |, | z |, | z ′ |≤ N,
〈y − y ′; F (t, x , y , z)− F (t, x , y ′, z ′)〉
≤ K log N

( 1
N

+ |y − y ′|2
)

+
√

K log N|y − y ′||z − z ′|.
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1. Existence and uniqueness of solutions to PDE

Consider the diffusion process with infinitesimal operator L

X t,x
s = x +

∫ s

t
b(X t,x

r )dr +

∫ s

t
σ(X t,x

r )dWr , t ≤ s ≤ T

Theorem : Bahlali-Essaky-Hassani

Under assumption (A.0)-(A.4) we have
1) The PDE (P(g,F )) has a unique solution u on [0,T ]
2) For all t ∈ [0,T ] there exists Dt ⊂ IRk such that

i)
∫

Dc
t

1 dx = 0

ii) For all t ∈ [0,T ] and all x ∈ Dt (E (ξt,x ,f t,x )) has a unique solution (Y t,x ,Z t,x ) on [t,T ]
where ξt,x := g(X t,x

T ) and f t,x (s, y , z) := 1{s>t}F (s,X t,x
s , y , z)

3) For all t ∈ [0,T ](
u(s,X t,x

s ), σ∗∇u(s,X t,x
s )
)

=
(

Y t,x
s ,Z t,x

s
)

a.e.(s, x , ω)
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1. Existence and uniqueness of solutions to PDE-Idea of the proof

We Approximate F by a sequence (Fn)n>1 of Lipschitz functions :

Fn(t, x , y , z) = (n2pe|x|)(d+dr)(c1e)21{η′(t,x)+η′(t,x)+f 0′ (t,x)+|x|≤n}ψ(n−2|y |2)ψ(n−2|z|2)×∫
IRd

∫
IRdr F (t, x , y − u, z − v)Πd

i=1ψ(n2pe|x|ui )Πd
i=1Πr

j=1ψ(n2pe|x|vij )dudv ,

We consider (Y t,x,n,Z t,x,n) be the unique solution of BSDE (1) avec ξt,x
n := gn(X t,x

T )

and f t,x
n (s, y , z) := 1{s>t}Fn(s,X t,x

s , y , z), with gn(x) := g(x)1{|g(x)|≤n}.
There exists a unique solution un of PDE (P(gn,Fn)){

∂un(t, x)

∂t
+ Lun(t, x) + Fn(t, x , un(t, x), σ∗∇un(t, x)) = 0t ∈]0,T [, x ∈ IRk

un(T , x) = gn(x) x ∈ IRk

such that for all t

un(s,X t,x
s ) = Y t,x,n

s and σ∗∇un(s,X t,x
s ) = Z t,x,n

s a.e (s, ω, x).

We have the following convergence :

lim
n,m

sup
0≤t≤T

∫
IRk
| un(t, x)− um(t, x) |p

′
e−δ

′|x|dx = 0

lim
n,m

∫ T

0

∫
IRk
| σ∗∇un(t, x)− σ∗∇um(t, x) |p

′∧2 e−δ
′|x|dtdx = 0.
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1. Existence and uniqueness of solutions to PDE-Idea of the proof

For uniqueness we prove that the system of semilinear PDEs{
∂u(t, x)

∂t
+ Lu(t, x) + f (t, x , u(t, x),∇u(t, x)) = 0, t ∈]0,T [, x ∈ IRk

u(T , x) = g(x), x ∈ IRk

has a unique solution if and only if 0 is the unique solution of the linear system{
∂u(t, x)

∂t
+ Lu(t, x) = 0, t ∈]0,T [, x ∈ IRk

u(T , x) = 0, x ∈ IRk
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