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Q Aims




@ To derive the existence and uniqueness of the solutions to:

{—dY(t) (A(t) Y(1) + F(t, Y(1), Z(t)Q/3(1)) ) dt
(BSPDE) —Z(t) dM(t) — dN
Y(T)=¢.

@ to provide some applications to the maximum principle for a
controlled stochastic evolution system.
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@ His a separable Hilbert space.

@ (Q,F,P)is a complete probability space equipped with a right
continuous filtration {F;}+>o.

e Mc Mfdf’T](H), i.e M is a continuous square integrable
martingale in H.

@ < M > is the predictable quadratic variation of M.

@ Qy is the predictable process taking values in the space L{(H),
which is associated with the Doléans measure of M @ M.

0 <<M>>=[Ou(s)d <M>s.

@ Assume: 3 a predictable process Q satisfying O(t,w) is
symmetric, positive definite nuclear operator on H and

t
<< M>>t:/ Q(s)ds
0

@ ¢ (&(w) € H) is the terminal value.



@ F:[0,TI|xQx HxLy(H)— His
P ® B(H) ® B(L2(H))/B(H) - measurable.

Lo(H) is the space of Hilbert-Schmidt operators on H, inner
product (-, ), , norm || - ||z .

@ A(t,w) is a predictable unbounded linear operator on H.
@ The stochastic integral [, ®(s) dM(s) is defined for ¢ s.t. for

(® 0 8)/2)(t,w)(H) € Lo(H), for every he H: d o 8;/2(h) is
predictable and

]E[/ |00 8123 d < M >] < oo,

The space of integrands --» A%(H; P, M).



Notations
.

Example 1

Let m be a 1-dimensional, continuous, square integrable martingale
with respect to {F}: s.t. < m>;= fo S)dsV 0 <t< T, somects
h: [0, T] — (0, ).

M(t) = B m(t)(= jg £ dm(s)), a fixed element 5 # 0 of H.

U
M € M2°(H)
<< M>>; = 6 ® B fo ds, where 6 ® (3 is the identification of
B®ﬂlﬂ L1( )- (ﬁ®5)( = (B,k) B, ke H.
<M > =B [, h(
O = fm?
Let Q(t) = B B h(t) = << M >>t= [;Q

Q(-) is bounded since Q(t) < Q := B ® B 0rgtanTh(t)

Q1/2(1)(k) = <ﬁ|’g‘>ﬁ h'/2(t). In particular 3 € Q'/2(t)(H).
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Spaces of solutions

@ [2(0,T;H) :={¢:[0,T] x Q — H,predictable,
E[fy [¢(t)3dt] < oo }.

@ B%(H) :=13(0,T;H) x N°(H;P,M).
F

This is a separable Hilbert space, the norm:

.
(61, 92)llB2(Hy = E / \gbﬂt)\%dt}
+E / 162(t) QL1 |\2d<M>,D1/2

@ (V,H,V’)is arigged Hilbert space:
> V is a separable Hilbert space embedded continuously and
densely in H.
> By identifying H with its dual = get continuous and dense two
inclusions: V C HC V' V' is the dual space of V.
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Definition 1

Two elements M and N of M[QdfT](H) are very strongly orthogonal
(VSO) if
E[M(u) ® N(u)] = E[M(0) @ N(0)],

for all [0, T] - valued stopping times u.

In fact: Mand N are VSO & << M, N >> = 0.




Definition 2

A solution of the:

—dY(t) = (A(t) Y(t) + F(t, Y(1), Z(t)Q'/3(t))) ot

(BSPDE) { ~Z(t)dM(t) — dN(t), 0<t<T,
Y(T)=¢,

is atriple (Y, Z,N) € L3(0, T; V) x A2(H; P, M) x Mi%(H) s.t.

Vtelo,T]:

Yit) = §+/tT(A(S) Y(s) + F(s, Y(s),Z()Q"/%(s)) ) ds

/ Z(s) dM(s / dN(s

N(0) =0and Nis VSO to M.
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@ (A1) F:[0,T] x Q x H x Ly(H) — H is a mapping such that the
following properties are verified.

(i) Fis P ® B(H)® B(Lx(H))/B(H) - measurable.
(i) E[J) |F(t,0,0) dt] < oo, where F(t,0,0) = F(t,w,0,0).
(i) 3k >0suchthatVy,y’ e H, ¥V z,Zz' € Lo(H)

IF(tw,y,2) = F(t,w,y, 2V <k (ly =y’ P+ llz= Z|[3),
uniformly in (¢, w).

o (A2) ¢ € L2(Q, Fr,P; H).

@ (A3) There exists a predictable process Q satisfying Q(t,w) is
symmetric, positive definite nuclear operator on H and

t
<< M>>= / Q(s) ds.
J0



@ (A4) Every square integrable H-valued martingale with respect
{Ft, 0 <t < T} has a continuous version.

@ (A5) A(t,w) is a linear operator on H, P - measurable, belongs to
L(V; V') uniformly in (¢,w) and satisfies the following conditions:

(i) A(t,w) satisfies the coercivity condition in the sense that
2[Atw)y. Y]+ alyZ <Alylh aete[0,T], as. VyeV,

for some o, A > 0.

(i) A(t,w) is uniformly continuous, i.e. 3 ks > 0 such that for all
(t,w)

At w)yl, < kslyl,,
forevery y € V.
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Existence & Uniqueness Theorem

Theorem 1

Assume (A1)—(A5). Then there exists a unique solution (Y, Z, N) of
the

{ —dY(t) = (A(t) Y(t) + F(t, Y(), Z(£)Q/2(t))) dt
(BSPDE) —Z(t) dM(t) — dN(t), 0<t<T,
Y(T)=¢

i L3(0, T: V) x N(H; P, M) x M35 (H).




Outline

e Proof



Proof

We shall divide the proof of Theorem 1 into different cases:

Lemma 1
Suppose that F € L2(0, T; H) and (A2)—(A5) hold. Then

)
Y(t) = g+/t (A(s) Y(s) + F(s)) ds

/Zs)dM /dN

(Y,Z,N) € L5(0, T; V) x N(H; P, M) x M (H).

attains a unique solution:




Proof

Proof of Lemma 1

> The proof of Lemma 1 is achieved through the method of Galerkin’s
finite dimensional approximation, e.g. by following Pardoux and
Rozovskii.

> |t can be found in

Al-Hussein, A., Backward stochastic partial differential equations
driven by infinite dimensional martingales and applications,
Stochastics, Vol. 81, No. 6, 2009, 601-626.




Proof

Assume that (A2)—(A5) hold and F satisfies:

@ (A1) F:[0,T] x Q x Ly(H) — H is a mapping s.t.
(i) Fis P ® B(L2(H))B(H)-measurable.
(i) E [, |F(t,0,0) dt] < co.

(i) 3k > 0suchthatV z,z' € Ly(H)
F(tw,2) - F(t,w, 2V < ke (ly —y'P +12 = Z|B),

uniformly in (t,w).

Then there exists a unique solution (Y, Z, N) of the BSPDE:




continued Lemma 2

Y(t) = g+/ (A(s) Y(s) + F(s, 2(5)Q"/2(s))) ds

e /d~

in L2.(0, T; V) x N2(H; P, M) x M?°(H)




Proof

> We establish the existence of solutions to our original (BSPDE).
> Let Yo = 0, define recursively using Lemma 2 the BSPDE:
T
) = &+ [ (AS) Yols) + F(s. Yous (5). Z9)Q"/%(s))) s
/z s) dM(s /dN s), 0<t<T,

forn>1.

> The solutions (Y, Z,, Njy) lie in

[2-(0, T; V) x N2(H; P, M) x M?°(H) foreach n> 1.




Proof

continued final step

> We show {Y,}, {Z,} and {N,} are Cauchy sequences in
L2.(0, T; V), N>(H; P, M) and M?(H), respectively.

> Let Y, Z and N denote the limits of these sequences.
> Then we show the very strong orthogonality between N and M.

> Now this convergence together with (A1) and (A5)(ii) allows us to let
n — oo in the previous sequence of BSPDEs to obtain:

=
Y(t) = £+/t (A(S) Y(s) + F(s,Y(s),Z(s))) ds

/Zs)dM /dN s), 0<t<T.

> Hence (Y, Z, N) is a solution to (BSPDE).
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Some advantages

@ These types of BSPDEs seem to be fresh!

@ Yong, J. and Zhou, X. Y. [Springer 1999] insist on the condition:

to study the adjoint equation of SDEs.

@ Useful for studying the stochastic maximum principle for infinite
dimensional controlled stochastic evolution systems.



An application

Outline

e An application
@ Maximum principle for controlled stochastic evolution equations

@ An example



An application
[ IeYelelo)

Maximum principle for controlled stochastic evolution equations

Consider the following stochastic evolution equation (SEE):

AX0)(1) = (A(H) X“O(1) + W(XO(1), V(1) ) dt + GXO(D) aM(t),
{ XYO(0) = x € H. M

@ v:[0,T] xQ— U (Uis asep. Hilbert space ) is admissible if
v e l2(0,T; V).

The set of admissible controls I/ .
@ The cost functional:
-
Joer() =E[ [ geOm.v) dt+ oML (@

@ Define
J*(X) = inf{J(x,v() : v() € Uag}- (3)



An application
[e] Yolelo)

Maximum principle for controlled stochastic evolution equations

The control problem for this (SEE) is to find a control »*(-) and the
corresponding solution X* () s t.

JH(x) = J(x,v*())- (4)

@ v*(-) is an optimal control,
@ X () is an optimal solution,
@ J* is the value function,

@ the pair (X¥" () v*(.)) is called an optimal pair of the stochastic
control problem (1)-(4).
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Maximum principle for controlled stochastic evolution equations

The adjoint equation

Define the Hamiltonian
H:[0,T] x Hx Ux Hx L(H) =R,

H(t,x,v,y,2) = —g(x,v) + (V(x,v),y) + (G(x)Q"3(),z),. (5)

The adjoint equation:

—dY O(t) = [A*(t) YYO(t) + Vi H(XYO(), v(t), YYO(1), Z°0(1))] dt
{ —ZO)(t) dM(t) — dN*O)(1), (6)

YO(T) = —Va(XO(T)).

A*(t) is the adjoint operator of A(?).



An application
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Maximum principle for controlled stochastic evolution equations

Theorem 2

Given v*(-) € Uag assume 3 unique solutions X» (),
(Y»" 0, zv" () Nv"()) of the corresponding SEE (1) and its adjoint
equation (6).
Suppose that
(i) W, G, g and ¢ are given C} mappings and ¢ is convex,
(if) H(t,-,-, Y*"O)(t), 2" ()(t)) is concave for all t € [0, T]-a.s.,
(i) H1(t, X" O(t), v*(1), Y7 O(t), 27 O(1))

= max #(t, XV O/(t), v, Y O(1), 27 O)(1))

ve

fora.e. t€[0,T]-as.

Then (X¥ (), v*(-)) is an optimal pair for the problem (1)-(4).




Maximum principle for controlled stochastic evolution equations

The proof of Theorem 2 can be found in the paper:

Al-Hussein, A., Maximum principle for controlled stochastic evolution
equations, Warwick-preprint, 2009.
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An example

Let H = [2(R"), V = H'(R") and V' = H~ (R").

M is the continuous martingale given in Example 1, 5 # 0 a fixed
element of H.

U is a separable Hilbert space (space of controls).
Assume F : U — H is a bounded linear operator.

Consider the SEE:

{ dX(t) = (AX(t)+ Fu(t)) dt + (X(1), B) dM(1), @)
X(0)=xeH.

1
/\ - 513.



An application
[o] Yolelo

An example

Given a function ¢ : R" — R of H assume the cost functional:

.
Jx,v() :=E [/0 W)y dt]+E[(c,X(T)),] (8)

and the value function:
J(x) = inf{J(x,v(-)) : v € Uzg}- 9)

Take for (x,v) e Hx U :



An application
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An example

> The Hamiltonian is:

H:[0,T] x Hx Ux Hx Lx(H) =R,

H(t,x,v,y,2) = —|vE + (Fv,y) + (x,8) (Q"3(1), z), .
(t,x,v,y,2) € [0, T] x Hx U x H x Ly(H).

> Consider the adjoint BSPDE:
{ —dY(t) =[50 V(1) + (QV3(1), Z( ) Q1/3(1)), ﬁ] dt
Z(t) dM(t) — aN(t),  (10)
Y(T)=-c.
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An example

> The assumptions of Theorem 1 are satisfied for this BSPDE.
> Consequently it has a unique solution (Y, Z, N).

> Since Y(T) is non-random we can choose Z(t) = 0and N(t) =0
foreach t € [0, T]. So:

>Thus Y(t) = —S(T — t) ¢, where

(S(r) c)(o) = (27r1r)”/2/ c(x) e=1%5) dx, o eR"r>0.
Rn

> By uniqueness of solutions of the BSPDE (10) this triple (Y,0,0) is
actually its unique solution.



An application
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An example
> Now for fixed (¢, x, y, 2),
Usve H(t,x,v,y,z) € R takes its maximumat v = — 5 F* y.
> Then we can let
VH(tw) = — % F* Y(t,w) (e U), (11)
as a candidate for an optimal control.

> With this choice all the requirements in Theorem 2 are verified.
= this candidate (11) is an optimal control for the problem

(7)-(9).
> An optimal solution X is given by the solution of the equation:

dX(t) = (AX(t) — SFFY(t) dt+ (X(1),B) dM(t),
X(0) = x € H.

> The value function takes then the formula:

T4 A
J*(x):E[/O |~ g YW at] +E[ (e, X(T) ]
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