Fractional Brownian motion

Jorge A. León
Departamento de Control Automático
Cinvestav del IPN
Spring School "Stochastic Control in Finance", Roscoff 2010

Contents

(1) Introduction

(2) FBM and Some Properties

(3) Integral Representation
(4) Wiener Integrals
(5) Malliavin Calculus

Contents

(1) Introduction

(2) FBM and Some Properties

(3) Integral Representation
(4) Wiener Integrals
(5) Malliavin Calculus

Stochastic integration

We consider

$$
\int_{0}^{T} \cdot d B_{s}
$$

Stochastic integration

We consider

$$
\int_{0}^{T} \cdot d B_{s}
$$

Here B is a fractional Brownian motion.

Contents

(1) Introduction

(2) FBM and Some Properties

(3) Integral Representation

4 Wiener Integrals
(5) Malliavin Calculus

Fractional Brownian motion

Definition

A Gaussian stochastic process $B=\left\{B_{t} ; t \geq 0\right\}$ is called a fractional Brownian motion (fBm) of Hurst parameter $H \in(0,1)$ if it has zero mean and covariance fuction

$$
R_{H}(t, s)=E\left(B_{t} B_{s}\right)=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right) .
$$

Properties of fBm

Definition

A Gaussian stochastic process $B=\left\{B_{t} ; t \geq 0\right\}$ is called a fractional Brownian motion (fBm) of Hurst parameter $H \in(0,1)$ if it has zero mean and covariance fuction

$$
R_{H}(t, s)=E\left(B_{t} B_{s}\right)=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right) .
$$

- B is a Brownian motion for $H=1 / 2$.

Properties of fBm

Definition

A Gaussian stochastic process $B=\left\{B_{t} ; t \geq 0\right\}$ is called a fractional Brownian motion (fBm) of Hurst parameter $H \in(0,1)$ if it has zero mean and covariance fuction

$$
R_{H}(t, s)=E\left(B_{t} B_{s}\right)=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right) .
$$

- B is a Brownian motion for $H=1 / 2$.
- B has stationary increments.

Properties of fBm

Definition

A Gaussian stochastic process $B=\left\{B_{t} ; t \geq 0\right\}$ is called a fractional Brownian motion (fBm) of Hurst parameter $H \in(0,1)$ if it has zero mean and covariance fuction

$$
R_{H}(t, s)=E\left(B_{t} B_{s}\right)=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right)
$$

- B is a Brownian motion for $H=1 / 2$.
- B has stationary increments:

$$
E\left(\left|B_{t}-B_{s}\right|^{2}\right)=|t-s|^{2 H}
$$

Properties of fBm

Definition

A Gaussian stochastic process $B=\left\{B_{t} ; t \geq 0\right\}$ is called a fractional Brownian motion (fBm) of Hurst parameter $H \in(0,1)$ if it has zero mean and covariance fuction

$$
R_{H}(t, s)=E\left(B_{t} B_{s}\right)=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right) .
$$

- B is a Brownian motion for $H=1 / 2$.
- B has stationary increments :

$$
E\left(\left|B_{t}-B_{s}\right|^{2}\right)=|t-s|^{2 H} .
$$

- For any $\varepsilon \in(0, H)$ and $T>0$, there exists $G_{\varepsilon, T}$ such that

$$
\left|B_{t}-B_{s}\right| \leq G_{\varepsilon, T}|t-s|^{H-\varepsilon}, \quad t, s \in[0, T] .
$$

Properties of fBm

Definition

A Gaussian stochastic process $B=\left\{B_{t} ; t \geq 0\right\}$ is called a fractional Brownian motion (fBm) of Hurst parameter $H \in(0,1)$ if it has zero mean and covariance fuction

$$
R_{H}(t, s)=E\left(B_{t} B_{s}\right)=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right) .
$$

- B is a Brownian motion for $H=1 / 2$.
- B has stationary increments.
- B is Hölder continuous for any exponent less than H.
- B is self-similar (with index H). That is, for any $a>0$, $\left\{a^{-H} B_{a t} ; t \geq 0\right\}$ and $\left\{B_{t} ; t \geq 0\right\}$ have the same distribution.

Properties of fBm

Definition

A Gaussian stochastic process $B=\left\{B_{t} ; t \geq 0\right\}$ is called a fractional Brownian motion (fBm) of Hurst parameter $H \in(0,1)$ if it has zero mean and covariance fuction

$$
R_{H}(t, s)=E\left(B_{t} B_{s}\right)=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right) .
$$

- B has stationary increments.
- B is Hölder continuous for any exponent less than H.
- B is self-similar (with index H). That is, for any $a>0$, $\left\{a^{-H} B_{a t} ; t \geq 0\right\}$ and $\left\{B_{t} ; t \geq 0\right\}$ have the same distribution.
- The covariance of its increments on intervals decays asymptotically as a negative power of the distance between the intervals.

Properties of fBm

- B is a Brownian motion for $H=1 / 2$.
- B has stationary increments.
- B is Hölder continuous for any exponent less than H.
- B is self-similar (with index H). That is, for any $a>0$, $\left\{a^{-H} B_{a t} ; t \geq 0\right\}$ and $\left\{B_{t} ; t \geq 0\right\}$ have the same distribution.
- The covariance of its increments on intervals decays asymptotically as a negative power of the distance between the intervals: Let $t-s=n h$ and

$$
\begin{aligned}
\rho_{H}(n) & =E\left[\left(B_{t+h}-B_{t}\right)\left(B_{s+h}-B_{s}\right)\right] \\
& \approx h^{2 H} H(2 H-1) n^{2 H-2} \rightarrow 0
\end{aligned}
$$

Properties of fBm

- B is a Brownian motion for $H=1 / 2$.
- B has stationary increments.
- B is Hölder continuous for any exponent less than H.
- B is self-similar (with index H). That is, for any $a>0$, $\left\{a^{-H} B_{a t} ; t \geq 0\right\}$ and $\left\{B_{t} ; t \geq 0\right\}$ have the same distribution.
- The covariance of its increments on intervals decays asymptotically as a negative power of the distance between the intervals: Let $t-s=n h$ and

$$
\begin{aligned}
\rho_{H}(n) & =E\left[\left(B_{t+h}-B_{t}\right)\left(B_{s+h}-B_{s}\right)\right] \\
& \approx h^{2 H} H(2 H-1) n^{2 H-2} \rightarrow 0 .
\end{aligned}
$$

i) If $H>1 / 2, \rho_{H}(n)>0$ and $\sum_{n=1}^{\infty} \rho(n)=\infty$.

Properties of fBm

- B is a Brownian motion for $H=1 / 2$.
- B has stationary increments.
- B is Hölder continuous for any exponent less than H.
- B is self-similar (with index H). That is, for any $a>0$, $\left\{a^{-H} B_{a t} ; t \geq 0\right\}$ and $\left\{B_{t} ; t \geq 0\right\}$ have the same distribution.
- The covariance of its increments on intervals decays asymptotically as a negative power of the distance between the intervals: Let $t-s=n h$ and

$$
\begin{aligned}
\rho_{H}(n) & =E\left[\left(B_{t+h}-B_{t}\right)\left(B_{s+h}-B_{s}\right)\right] \\
& \approx h^{2 H} H(2 H-1) n^{2 H-2} \rightarrow 0
\end{aligned}
$$

i) If $H>1 / 2, \rho_{H}(n)>0$ and $\sum_{n=1}^{\infty} \rho(n)=\infty$.
ii) If $H<1 / 2, \rho_{H}(n)<0$ and $\sum_{n=1}^{\infty} \rho(n)<\infty$.

Properties of fBm

- B is a Brownian motion for $H=1 / 2$.
- B has stationary increments.
- B is Hölder continuous for any exponent less than H.
- B is self-similar (with index H). That is, for any $a>0$, $\left\{a^{-H} B_{a t} ; t \geq 0\right\}$ and $\left\{B_{t} ; t \geq 0\right\}$ have the same distribution.
- The covariance of its increments on intervals decays asymptotically as a negative power of the distance between the intervals: Let $t-s=n h$ and

$$
\begin{aligned}
\rho_{H}(n) & =E\left[\left(B_{t+h}-B_{t}\right)\left(B_{s+h}-B_{s}\right)\right] \\
& \approx h^{2 H} H(2 H-1) n^{2 H-2} \rightarrow 0 .
\end{aligned}
$$

i) If $H>1 / 2, \rho_{H}(n)>0$ and $\sum_{n=1}^{\infty} \rho(n)=\infty$.
ii) If $H<1 / 2, \rho_{H}(n)<0$ and $\sum_{n=1}^{\infty} \rho(n)<\infty$.

- B has no bounded variation paths.

FBM is not a semimartingale

Theorem
B is not a semimartingale for $H \neq 1 / 2$.

FBM is not a semimartingale

Theorem
B is not a semimartingale for $H \neq 1 / 2$.
Proof: (i) Case $H>1 / 2$.

FBM is not a semimartingale

Theorem
B is not a semimartingale for $H \neq 1 / 2$.
Proof: (i) Case $H>1 / 2$. Let $\Pi_{t}=\left\{0=t_{0}<t_{1}<\ldots<t_{n}=t\right\}$ be a partition of $[0, t]$.

FBM is not a semimartingale

Theorem
B is not a semimartingale for $H \neq 1 / 2$.
Proof: (i) Case $H>1 / 2$. Let $\Pi_{t}=\left\{0=t_{0}<t_{1}<\ldots<t_{n}=t\right\}$ be a partition of $[0, t]$. Then,

$$
\begin{aligned}
E\left(\sum_{i=1}^{n}\left|B_{t_{i}}-B_{t_{i-1}}\right|^{2}\right) & =\sum_{i=1}^{n}\left|t_{i}-t_{i-1}\right|^{2 H} \\
& \leq|\Pi|^{2 H-1} \sum_{i=1}^{n}\left|t_{i}-t_{i-1}\right| \\
& =t|\Pi|^{2 H-1} \rightarrow 0
\end{aligned}
$$

FBM is not a semimartingale

Theorem

B is not a semimartingale for $H \neq 1 / 2$.
Proof: (i) Case $H>1 / 2$. Let $\Pi_{t}=\left\{0=t_{0}<t_{1}<\ldots<t_{n}=t\right\}$ be a partition of $[0, t]$. Then,

$$
\begin{aligned}
E\left(\sum_{i=1}^{n}\left|B_{t_{i}}-B_{t_{i-1}}\right|^{2}\right) & =\sum_{i=1}^{n}\left|t_{i}-t_{i-1}\right|^{2 H} \\
& \leq|\Pi|^{2 H-1} \sum_{i=1}^{n}\left|t_{i}-t_{i-1}\right| \\
& =t|\Pi|^{2 H-1} \rightarrow 0
\end{aligned}
$$

If B were a semimartingale. Then, $B=M+V$.

FBM is not a semimartingale

Theorem
B is not a semimartingale for $H \neq 1 / 2$.
Proof: (i) Case $H>1 / 2$. Let $\Pi_{t}=\left\{0=t_{0}<t_{1}<\ldots<t_{n}=t\right\}$ be a partition of $[0, t]$. Then,

$$
\begin{aligned}
E\left(\sum_{i=1}^{n}\left|B_{t_{i}}-B_{t_{i-1}}\right|^{2}\right) & =\sum_{i=1}^{n}\left|t_{i}-t_{i-1}\right|^{2 H} \\
& \leq|\Pi|^{2 H-1} \sum_{i=1}^{n}\left|t_{i}-t_{i-1}\right| \\
& =t|\Pi|^{2 H-1} \rightarrow 0
\end{aligned}
$$

If B were a semimartingale. Then, $B=M+V$. Thus

$$
0=[B]=[M] .
$$

FBM is not a semimartingale

Theorem

B is not a semimartingale for $H \neq 1 / 2$.
Proof: (i) Case $H>1 / 2$. Let $\Pi_{t}=\left\{0=t_{0}<t_{1}<\ldots<t_{n}\right\}$ be a partition of $[0, t]$. Then,

$$
\begin{aligned}
E\left(\sum_{i=1}^{n}\left|B_{t_{i}}-B_{t_{i-1}}\right|^{2}\right) & =\sum_{i=1}^{n}\left|t_{i}-t_{i-1}\right|^{2 H} \\
& \leq|\Pi|^{2 H-1} \sum_{i=1}^{n}\left|t_{i}-t_{i-1}\right| \\
& =t|\Pi|^{2 H-1} \rightarrow 0
\end{aligned}
$$

If B were a semimartingale. Then, $B=M+V$. Thus

$$
0=[B]=[M] .
$$

Consequently $B=V$.

FBM is not a semimartingale

Theorem
B is not a semimartingale for $H \neq 1 / 2$.
Proof: (i) Case $H<1 / 2$.

FBM is not a semimartingale

Theorem
B is not a semimartingale for $H \neq 1 / 2$.
Proof : (i) Case $H<1 / 2$. We have

FBM is not a semimartingale

Theorem
B is not a semimartingale for $H \neq 1 / 2$.
Proof: (i) Case $H<1 / 2$. We have

$$
\begin{aligned}
I_{n}: & =\sum_{j=1}^{n}\left|B_{j / n}-B_{(j-1) / n}\right|^{2} \stackrel{(d)}{=} \frac{1}{n^{2 H}} \sum_{j=1}^{n}\left|B_{j}-B_{j-1}\right|^{2} \\
& =n^{1-2 H}\left(\frac{1}{n} \sum_{j=1}^{n}\left|B_{j}-B_{j-1}\right|^{2}\right) \rightarrow \infty .
\end{aligned}
$$

FBM is not a semimartingale

Theorem

B is not a semimartingale for $H \neq 1 / 2$.
Proof : (i) Case $H<1 / 2$. We have

$$
\begin{aligned}
I_{n}: & =\sum_{j=1}^{n}\left|B_{j / n}-B_{(j-1) / n}\right|^{2} \stackrel{(d)}{=} \frac{1}{n^{2 H}} \sum_{j=1}^{n}\left|B_{j}-B_{j-1}\right|^{2} \\
& =n^{1-2 H}\left(\frac{1}{n} \sum_{j=1}^{n}\left|B_{j}-B_{j-1}\right|^{2}\right) \rightarrow \infty .
\end{aligned}
$$

Due to, the ergodic theorem implies that

$$
\frac{1}{n} \sum_{j=1}^{n}\left|B_{j}-B_{j-1}\right|^{2} \rightarrow E\left(\left(B_{1}\right)^{2}\right) \quad \text { a.s }
$$

Contents

(1) Introduction

2 FBM and Some Properties

(3) Integral Representation

(4) Wiener Integrals
(5) Malliavin Calculus

Mandelbrot-van Ness representation

$$
B_{t}=C_{H}\left[\int_{\infty}^{0}\left\{(t-s)^{H-1 / 2}-(-s)^{H-1 / 2}\right\} d W_{s}+\int_{0}^{t}(t-s)^{H-1 / 2} d W_{s}\right] .
$$

Mandelbrot-van Ness representation

$$
B_{t}=C_{H}\left[\int_{\infty}^{t}\left\{(t-s)^{H-1 / 2}-(-s)^{H-1 / 2}\right\} d W_{s}+\int_{0}^{t}(t-s)^{H-1 / 2} d W_{s}\right] .
$$

Here W is a Brownian motion.

Representation of fBm on an finite interval

Fix a time interval $[0, T]$ and consider the $\mathrm{fBm} B=\left\{B_{t} ; t \in[0, T]\right\}$.

Representation of fBm on an finite interval

Fix a time interval $[0, T]$ and consider the $\mathrm{fBm} B=\left\{B_{t} ; t \in[0, T]\right\}$. Then there exists a $\operatorname{Bm}\left\{W_{t} ; t \in[0, T]\right\}$ such that

$$
B_{t}=\int_{0}^{t} K_{H}(t, s) d W_{s}
$$

Representation of fBm on an finite interval

Fix a time interval $[0, T]$ and consider the $\mathrm{fBm} B=\left\{B_{t} ; t \in[0, T]\right\}$. Then there exists a $\operatorname{Bm}\left\{W_{t} ; t \in[0, T]\right\}$ such that

$$
B_{t}=\int_{0}^{t} K_{H}(t, s) d W_{s},
$$

where

- For $H>1 / 2$,

$$
K_{H}(t, s)=c_{H} s^{\frac{1}{2}-H} \int_{s}^{t}(u-s)^{H-\frac{3}{2}} u^{H-\frac{1}{2}} d u \quad s<t .
$$

Representation of fBm on an finite interval

Fix a time interval $[0, T]$ and consider the $\mathrm{fBm} B=\left\{B_{t} ; t \in[0, T]\right\}$. Then there exists a $\operatorname{Bm}\left\{W_{t} ; t \in[0, T]\right\}$ such that

$$
B_{t}=\int_{0}^{t} K_{H}(t, s) d W_{s},
$$

where

- For $H>1 / 2$,

$$
K_{H}(t, s)=c_{H} s^{\frac{1}{2}-H} \int_{s}^{t}(u-s)^{H-\frac{3}{2}} u^{H-\frac{1}{2}} d u, \quad s<t
$$

- For $H<1 / 2$,

$$
\begin{aligned}
K_{H}(t, s)=c_{H} & {\left[\left(\frac{t}{s}\right)^{H-\frac{1}{2}}(t-s)^{H-\frac{1}{2}}\right.} \\
& \left.-\left(H-\frac{1}{2}\right) s^{\frac{1}{2}-H} \int_{s}^{t} u^{H-\frac{3}{2}}(u-s)^{H-\frac{1}{2}} d u\right], \quad s<t
\end{aligned}
$$

Contents

(1) Introduction

2 FBM and Some Properties

(3) Integral Representation

4 Wiener Integrals

(5) Malliavin Calculus

Wiener integrals

Let \mathcal{E} be the family of the step functions of the form

$$
f=\sum_{i=0}^{n} a_{i} l_{\left(t_{j}, t_{j+1}\right]}
$$

Wiener integrals

Let \mathcal{E} be the family of the step functions of the form

$$
f=\sum_{i=0}^{n} a_{i} l_{\left(t_{j}, t_{j+1}\right]}
$$

The Wiener integral with respect to B

$$
I(f)=\sum_{i=0}^{n} a_{i}\left(B_{t_{i+1}}-B_{t_{i}}\right)
$$

and the space

$$
\mathcal{L}(B)=\left\{X \in L^{2}(\Omega): X=L^{2}(\Omega)-\lim _{n \rightarrow \infty} I\left(f_{n}\right), \text { for some }\left\{f_{n}\right\} \subset \mathcal{E}\right\}
$$

Wiener integrals

$$
\mathcal{L}(B)=\left\{X \in L^{2}(\Omega): X=L^{2}(\Omega)-\lim _{n \rightarrow \infty} I\left(f_{n}\right), \text { for some }\left\{f_{n}\right\} \subset \mathcal{E}\right\} .
$$

Proposition (Pipiras and Taqqu)

Suppose that \mathcal{H} is a inner product space with inner product (\cdot, \cdot) such that :
i) $\mathcal{E} \subset \mathcal{H}$ and $(f, g)=E(I(f) l(g))$, for $f, g \in \mathcal{E}$.
ii) \mathcal{E} is dense in \mathcal{H}.

Then \mathcal{H} is isometric to $\mathcal{L}(B)$ if and only if \mathcal{H} is complete.

Wiener integrals

$$
\mathcal{L}(B)=\left\{X \in L^{2}(\Omega): X=L^{2}(\Omega)-\lim _{n \rightarrow \infty} I\left(f_{n}\right), \text { for some }\left\{f_{n}\right\} \subset \mathcal{E}\right\} .
$$

Proposition (Pipiras and Taqqu)

Suppose that \mathcal{H} is a inner product space with inner product (\cdot, \cdot) such that :
i) $\mathcal{E} \subset \mathcal{H}$ and $(f, g)=E(I(f) I(g))$, for $f, g \in \mathcal{E}$.
ii) \mathcal{E} is dense in \mathcal{H}.

Then \mathcal{H} is isometric to $\mathcal{L}(B)$ if and only if \mathcal{H} is complete. Moreover, the isometry is an extension of I.

Wiener integrals

Proposition (Pipiras and Taqqu)

Suppose that \mathcal{H} is a inner product space with inner product (\cdot, \cdot) such that :
i) $\mathcal{E} \subset \mathcal{H}$ and $(f, g)=E(I(f) I(g))$, for $f, g \in \mathcal{E}$.
ii) \mathcal{E} is dense in \mathcal{H}.

Then \mathcal{H} is isometric to $\mathcal{L}(B)$ if and only if \mathcal{H} is complete. Moreover, the isometry is an extension of 1 .

Remarks

a) For $H<1 / 2$,

$$
\begin{gathered}
\mathcal{H}=\left\{f \in L^{2}([0, T]): f(s)=c_{H} s^{\frac{1}{2}-H}\left(I_{T_{-}}^{\frac{1}{2}-H} u^{H-\frac{1}{2}} \phi_{f}(u)\right)(s)\right. \\
\text { for some } \left.\phi_{f} \in L^{2}\right\}
\end{gathered}
$$

with $\left(I_{T-}^{\alpha} g\right)(s)=\frac{1}{\Gamma(\alpha)} \int_{s}^{T}(x-s)^{\alpha-1} g(x) d x$.

Wiener integrals

Proposition (Pipiras and Taqqu)

Suppose that \mathcal{H} is a inner product space with inner product (\cdot, \cdot) such that :
i) $\mathcal{E} \subset \mathcal{H}$ and $(f, g)=E(I(f) I(g))$, for $f, g \in \mathcal{E}$.
ii) \mathcal{E} is dense in \mathcal{H}.

Then \mathcal{H} is isometric to $\mathcal{L}(B)$ if and only if \mathcal{H} is complete. Moreover, the isometry is an extension of I.

Remarks

a) For $H<1 / 2$,

$$
\begin{gathered}
\mathcal{H}=\left\{f \in L^{2}([0, T]): f(s)=c_{H} s^{\frac{1}{2}-H}\left(l_{T-}^{\frac{1}{2}-H} u^{H-\frac{1}{2}} \phi_{f}(u)\right)(s)\right. \\
\text { for some } \left.\phi_{f} \in L^{2}\right\}
\end{gathered}
$$

with the inner product $(f, g)=\left(\phi_{f}, \phi_{g}\right)_{\left.L^{2}([0, T]]\right)}$.

Wiener integrals

Proposition (Pipiras and Taqqu)

Suppose that \mathcal{H} is a inner product space with inner product (\cdot, \cdot) such that :
i) $\mathcal{E} \subset \mathcal{H}$ and $(f, g)=E(I(f) I(g))$, for $f, g \in \mathcal{E}$.
ii) \mathcal{E} is dense in \mathcal{H}.

Then \mathcal{H} is isometric to $\mathcal{L}(B)$ if and only if \mathcal{H} is complete. Moreover, the isometry is an extension of I.

Remarks

b) For $H>1 / 2$,

$$
\begin{gathered}
\mathcal{H}=\left\{f \in \mathcal{D}^{\prime}: \exists f^{*} \in W^{1 / 2-H, 2}(\mathbb{R}) \text { with } \operatorname{supp}(f) \subset[0, T]\right. \\
\text { such that } \left.f=\left.f^{*}\right|_{[0, T]}\right\}
\end{gathered}
$$

with the inner product $(f, g)=c_{H} \int_{R} \mathcal{F} f^{*}(x) \overline{\mathcal{F} g^{*}(x)}|x|^{1-2 H} d x$.

Wiener integrals

a) For $H<1 / 2$,

$$
\begin{gathered}
\mathcal{H}=\left\{f \in L^{2}([0, T]): f(s)=c_{H} s^{\frac{1}{2}-H}\left(l_{T-}^{\frac{1}{2}-H} u^{H-\frac{1}{2}} \phi_{f}(u)\right)(s)\right. \\
\text { for some } \left.\phi_{f} \in L^{2}\right\}
\end{gathered}
$$

with the inner product $(f, g)=\left(\phi_{f}, \phi_{g}\right)_{L^{2}([0, T])}$.
b) For $H>1 / 2$,

$$
\begin{gathered}
\mathcal{H}=\left\{f \in \mathcal{D}^{\prime}: \exists f^{*} \in W^{1 / 2-H, 2}(\mathbb{R}) \text { with } \operatorname{supp}(f) \subset[0, T]\right. \\
\text { such that } \left.f=\left.f^{*}\right|_{[0, T]}\right\}
\end{gathered}
$$

with the inner product $(f, g)=c_{H} \int_{R} \mathcal{F} f^{*}(x) \overline{\mathcal{F} g^{*}(x)}|x|^{1-2 H} d x$.
c) $W^{s, 2}(\mathbb{R})=\left\{f \in \mathcal{S}:\left(1+|x|^{2}\right)^{s / 2} \mathcal{F} f(x) \in L^{2}(\mathbb{R})\right\}$.

Representation of Wiener integrals

Moreover, there exists an isometry $K_{H}^{*}: \mathcal{H} \rightarrow L^{2}([0, T])$ and a Brownian motion W such that :
(1) $I(f)=\int_{0}^{T}\left(K_{H}^{*} f\right)(s) d W_{s}$.

Representation of Wiener integrals

Moreover, there exists an isometry $K_{H}^{*}: \mathcal{H} \rightarrow L^{2}([0, T])$ and a Brownian motion W such that :
(1) $I(f)=\int_{0}^{T}\left(K_{H}^{*} f\right)(s) d W_{s}$.
(2) $K_{H}^{*} I_{[0, t]}=K_{H}(t, \cdot)$ with

$$
\begin{aligned}
& K_{H}(t, s)=c_{H} s^{\frac{1}{2}-H} \int_{s}^{t}(u-s)^{H-\frac{3}{2}} u^{H-\frac{1}{2}} d u, \quad s<t \text { and } H>1 / 2 \\
& \text { and }
\end{aligned}
$$

$$
\begin{aligned}
K_{H}(t, s)=c_{H} & {\left[\left(\frac{t}{s}\right)^{H-\frac{1}{2}}(t-s)^{H-\frac{1}{2}}\right.} \\
& \left.-\left(H-\frac{1}{2}\right) s^{\frac{1}{2}-H} \int_{s}^{t} u^{H-\frac{3}{2}}(u-s)^{H-\frac{1}{2}} d u\right], \quad H<1 / 2
\end{aligned}
$$

Representation of Wiener integrals

Moreover, there exists an isometry $K_{H}^{*}: \mathcal{H} \rightarrow L^{2}([0, T])$ and a Brownian motion W such that:
(1) $I(\phi)=\int_{0}^{T}\left(K_{H}^{*} \phi\right)(s) d W_{s}$.
(2) $K_{H}^{*}{ }_{[0, t]}=K_{H}(t, \cdot)$.

- For $H<1 / 2$,

$$
K_{H}^{*} f=\phi_{f},
$$

with $f(s)=c_{H} s^{\frac{1}{2}-H}\left(I^{\frac{1}{2}-H} u^{H-\frac{1}{2}} \phi_{f}(u)\right)(s), s \in[0, T]$.

Representation of Wiener integrals

Moreover, there exists an isometry $K_{H}^{*}: \mathcal{H} \rightarrow L^{2}([0, T])$ and a Brownian motion W such that :
(1) $I(\phi)=\int_{0}^{T}\left(K_{H}^{*} \phi\right)(s) d W_{s}$.
(2) $K_{H}^{*} I_{[0, t]}=K_{H}(t, \cdot)$.
(3) For $H<1 / 2$,

$$
K_{H}^{*} f=\phi_{f},
$$

with $f(s)=c_{H} s^{\frac{1}{2}-H}\left(I_{T_{-}}^{\frac{1}{2}-H} u^{H-\frac{1}{2}} \phi_{f}(u)\right)(s), s \in[0, T]$.
(4) For $H>1 / 2$ and $\phi \in \mathcal{E}$,

$$
\left(K_{H}^{*} \phi\right)(s)=c_{H} s^{1 / 2-H}\left(I_{T-}^{H-\frac{1}{2}} u^{h-\frac{1}{2}} \phi(u)\right)(s), s \in[0, T]
$$

Contents

(1) Introduction

(2) FBM and Some Properties

(3) Integral Representation

4 Wiener Integrals
(5) Malliavin Calculus

Derivative operator

Let \mathcal{S} be the set of smooth functional of the form

$$
F=f\left(B\left(\phi_{1}\right), \ldots, B\left(\phi_{n}\right)\right)
$$

where $n \geq 1, f \in C_{b}^{\infty}\left(\mathbb{R}^{n}\right)$ and $\phi_{i} \in \mathcal{H}$.

Derivative operator

Let \mathcal{S} be the set of smooth functional of the form

$$
F=f\left(B\left(\phi_{1}\right), \ldots, B\left(\phi_{n}\right)\right)
$$

where $n \geq 1, f \in C_{b}^{\infty}\left(\mathbb{R}^{n}\right)$ and $\phi_{i} \in \mathcal{H}$. The derivative operator is given by

$$
D F=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\left(B\left(\phi_{1}\right), \ldots, B\left(\phi_{n}\right)\right) \phi_{i}
$$

Derivative operator

Let \mathcal{S} be the set of smooth functional of the form

$$
F=f\left(B\left(\phi_{1}\right), \ldots, B\left(\phi_{n}\right)\right)
$$

where $n \geq 1, f \in C_{b}^{\infty}\left(\mathbb{R}^{n}\right)$ and $\phi_{i} \in \mathcal{H}$. The derivative operator is given by

$$
D F=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\left(B\left(\phi_{1}\right), \ldots, B\left(\phi_{n}\right)\right) \phi_{i}
$$

The operator D is closable from $L^{2}(\Omega)$ into $L^{2}(\Omega ; \mathcal{H})$.

Divergence operator

The divergence operator δ is the adjoint of D. It is defined by the duality relation

$$
E(F \delta(u))=E\left(\langle D F, u\rangle_{\mathcal{H}}\right), \quad F \in \mathcal{S}, u \in L^{2}(\Omega, \mathcal{H})
$$

Transfer principle

Let W be the Brownian motion such that

$$
B_{t}=\int_{0}^{t} K_{H}(t, s) d W_{s} \quad t \in[0, T]
$$

Then,
(1) $\operatorname{Dom} D=\operatorname{Dom} D^{W}$ and

$$
K_{H}^{*} D F=D^{W} F
$$

Transfer principle

Let W be the Brownian motion such that

$$
B_{t}=\int_{0}^{t} K_{H}(t, s) d W_{s} \quad t \in[0, T]
$$

Then,
(1) $\operatorname{Dom} D=\operatorname{Dom} D^{W}$ and

$$
K_{H}^{*} D F=D^{W} F
$$

(2) $\phi \in \operatorname{Dom} \delta$ if and only if $K_{H}^{*} \phi \in \operatorname{Dom} \delta^{W}$ and

$$
\delta(\phi)=\delta^{W}\left(K_{H}^{*} \phi\right)
$$

Transfer principle

(1) $\operatorname{Dom} D=\operatorname{Dom} D^{W}$ and

$$
K_{H}^{*} D F=D^{W} F .
$$

(2) $\phi \in \operatorname{Dom} \delta$ if and only if $K_{H}^{*} \phi \in \operatorname{Dom} \delta^{W}$ and

$$
\delta(\phi)=\delta^{W}\left(K_{H}^{*} \phi\right) .
$$

The divergence operator δ is the adjoint of D. It is defined by the duality relation

$$
E(F \delta(u))=E\left(\langle D F, u\rangle_{\mathcal{H}}\right), \quad F \in \mathcal{S}, u \in L^{2}(\Omega, \mathcal{H}) .
$$

Remark For $H=1 / 2, \mathcal{H}=L^{2}([0, T])$.

Transfer principle

(1) $\operatorname{Dom} D=\operatorname{Dom} D^{W}$ and $K_{H}^{*} D F=D^{W} F$.
(2) $\phi \in \operatorname{Dom} \delta$ if and only if $K_{H}^{*} \phi \in \operatorname{Dom} \delta^{W}$ and

$$
\delta(\phi)=\delta^{W}\left(K_{H}^{*} \phi\right) .
$$

The divergence operator δ is the adjoint of D. It is defined by the duality relation

$$
E(F \delta(u))=E\left(\langle D F, u\rangle_{\mathcal{H}}\right), \quad F \in \mathcal{S}, u \in L^{2}(\Omega, \mathcal{H}) .
$$

Remark For $H=1 / 2, \mathcal{H}=L^{2}([0, T])$. So

$$
E\left(F \delta^{W}(u)\right)=E\left(\int_{0}^{T}\left(D_{s}^{W} F\right) u_{s} d s\right), \quad F \in \mathcal{S}, u \in L^{2}(\Omega \times[0, T]) .
$$

Divergence operator

The divergence operator δ is the adjoint of D. It is defined by the duality relation

$$
E(F \delta(u))=E\left(\langle D F, u\rangle_{\mathcal{H}}\right), \quad F \in \mathcal{S}, u \in L^{2}(\Omega, \mathcal{H})
$$

Proposition

Let $u \in \operatorname{Dom} \delta$ and $F \in \operatorname{Dom} D$ such that $(F u) \in L^{2}(\Omega ; \mathcal{H})$ and $\left(F \delta(u)-\langle D F, u\rangle_{\mathcal{H}}\right) \in L^{2}(\Omega)$. Then

$$
F \delta(u)=\delta(F u)
$$

Divergence operator

The divergence operator δ is the adjoint of D. It is defined by the duality relation

$$
E(F \delta(u))=E\left(\langle D F, u\rangle_{\mathcal{H}}\right), \quad F \in \mathcal{S}, u \in L^{2}(\Omega, \mathcal{H})
$$

Proposition

Let $u \in \operatorname{Dom} \delta$ and $F \in \operatorname{Dom} D$ such that $(F u) \in L^{2}(\Omega ; \mathcal{H})$ and $\left(F \delta(u)-\langle D F, u\rangle_{\mathcal{H}}\right) \in L^{2}(\Omega)$. Then

$$
F \delta(u)=\delta(F u)+\langle D F, u\rangle_{\mathcal{H}}
$$

Divergence operator

The divergence operator δ is the adjoint of D. It is defined by the duality relation

$$
E(F \delta(u))=E\left(\langle D F, u\rangle_{\mathcal{H}}\right), \quad F \in \mathcal{S}, u \in L^{2}(\Omega, \mathcal{H}) .
$$

Proposition

Let $u \in \operatorname{Dom} \delta$ and $F \in \operatorname{Dom} D$ such that $(F u) \in L^{2}(\Omega ; \mathcal{H})$ and $\left(F \delta(u)-\langle D F, u\rangle_{\mathcal{H}}\right) \in L^{2}(\Omega)$. Then

$$
F \delta(u)=\delta(F u)+\langle D F, u\rangle_{\mathcal{H}} .
$$

Proof : Let $G \in \mathcal{S}$, then

Divergence operator

The divergence operator δ is the adjoint of D. It is defined by the duality relation

$$
E(F \delta(u))=E\left(\langle D F, u\rangle_{\mathcal{H}}\right), \quad F \in \mathcal{S}, u \in L^{2}(\Omega, \mathcal{H})
$$

Proposition

Let $u \in \operatorname{Dom} \delta$ and $F \in \operatorname{Dom} D$ such that $(F u) \in L^{2}(\Omega ; \mathcal{H})$ and $\left(F \delta(u)-\langle D F, u\rangle_{\mathcal{H}}\right) \in L^{2}(\Omega)$. Then

$$
F \delta(u)=\delta(F u)+\langle D F, u\rangle_{\mathcal{H}}
$$

Proof : Let $G \in \mathcal{S}$, then

$$
E\left(\langle D G, F u\rangle_{\mathcal{H}}\right)=E\left(\langle D(G F), u\rangle_{\mathcal{H}}-G\langle D F, u\rangle_{\mathcal{H}}\right)
$$

Divergence operator

The divergence operator δ is the adjoint of D.

$$
E(F \delta(u))=E\left(\langle D F, u\rangle_{\mathcal{H}}\right), \quad F \in \mathcal{S}, u \in L^{2}(\Omega, \mathcal{H})
$$

Proposition

Let $u \in \operatorname{Dom} \delta$ and $F \in \operatorname{Dom} D$ such that $(F u) \in L^{2}(\Omega ; \mathcal{H})$ and $\left(F \delta(u)-\langle D F, u\rangle_{\mathcal{H}}\right) \in L^{2}(\Omega)$. Then

$$
F \delta(u)=\delta(F u)-\langle D F, u\rangle_{\mathcal{H}} .
$$

Proof: Let $G \in \mathcal{S}$, then

$$
\begin{aligned}
E\left(\langle D G, F u\rangle_{\mathcal{H}}\right) & =E\left(\langle D(G F), u\rangle_{\mathcal{H}}-G\langle D F, u\rangle_{\mathcal{H}}\right) \\
& =E\left(G\left(F \delta(u)-\langle D F, u\rangle_{\mathcal{H}}\right)\right) .
\end{aligned}
$$

