Arithmétique et applications, combinatoire et graphes Cours No. 1, Corps finis

Rappels:

Groupe : Un groupe est un ensemble G muni d'une opération binaire associative * admettant un élément neutre e tel que pour chaque élément x de l'ensemble, il existe un élément y, appelé élément symétrique, vérifiant x*y=y*x=e. Si pour tout $x,y\in G$ on a x*y=y*x on dit que le groupe est commutatif ou abélien.

Exemples: 1. $(\mathbf{Z}, +)$, l'ensemble des entiers muni de l'addition.

- 2. $(\mathbf{Z}/k\mathbf{Z}, +)$, l'ensemble des entiers modulo k muni de l'addition.
- 3. $((\mathbf{Z}/p\mathbf{Z})^*, \cdot)$, l'ensemble des entiers modulo un nombre premier p privé de 0 muni de la multiplication.
- 4. $(\mathbf{C}, +)$, l'ensemble des nombres complexes muni de l'addition.
- 5. (\mathbf{C}^*, \cdot) , l'ensembles des nombres complexes privés de 0 muni de la multiplication.
- 6. D_4 , le groupe diédral qui consiste des 8 rotations et reflexions du carré muni de composition comme opération binaire.
- 7. S_n , le groupe de n! permutations de n objets muni de composition comme opération binaire.
- 8. A_p , l'ensemble des fonction f(x) = ax + b avec $a \in (\mathbf{Z}/p\mathbf{Z})^*$ et $b \in \mathbf{Z}/p\mathbf{Z}$ (p premier) muni de composition comme opération binaire.

Parmi ces groupes, lequels sont commutatifs?

Groupe quotient: Soit G un groupe qu'on suppose abélien et soit H un sous-groupe de G. On écrit * pour la multiplication dans G et y^{-1} pour l'élément symétrique de y. Alors la relation (équivalence modulo H)

$$x \sim y \qquad \Leftrightarrow \qquad y^{-1} * x \in H$$

est une relation d'équivalence sur G. La classe d'équivalence de $y \in G$ est

$$y * H = \{y * h : h \in H\}.$$

Par exemple, si $G = \mathbf{Z}$, * est l'opération d'addition + et $H = n\mathbf{Z}$, alors

$$x \sim y \qquad \Leftrightarrow \qquad x - y \in n\mathbf{Z}$$
.

La classe de $y \in \mathbf{Z}$ est $y + H = y + n\mathbf{Z} = \{y + nk : k \in \mathbf{Z}\}.$

On écrit G/H pour l'ensemble des classes d'équivalence ; il s'agit d'un groupe. Si on note \overline{y} pour la classe y*H, on a

$$\overline{xy} := \overline{x * y}$$
 et $\overline{y}^{-1} := \overline{y^{-1}}$.

Le cardinal |G/H| de G/H s'appelle l'indice de H dans G. Le cardinal |G| s'appelle l'ordre de G.

<u>Théorème</u> (Lagrange) : Soient G un groupe fini (abélien) et K, H deux sous-groupes tels que $K \subset H$. On a

$$|G/K| = |G/H| \times |H/K|.$$

En particulier, pour tout sous-groupe H de G on a $|G| = |G/H| \times |H|$.

Soit G un groupe fini; l'ordre d'un élément $a \in G$ est le plus petit entier n tel que $a^n = a * a * \cdots * a = e$ où e est l'élément neutre. En appliquant le théorème de Lagrange au sous-groupe $H = \langle a \rangle$ engendré par $a : H = \{e, a, a^2, a^3, \ldots\}$, on obtient le corollaire:

<u>Corollaire</u>: L'ordre de tout élément de G divise le cardinal de G.

Groupe cyclique : Il s'agit d'un groupe G engendré par un seul élément : il existe $a \in G$, tel que $G = \langle a \rangle$.

Anneau : Un anneau est un groupe abélien A noté additivement muni d'une loi de multiplication $A \times A \to A$, $(a,b) \mapsto ab$ vérifiant les propriétés suivantes :

- il existe un élément $1 \in A$ tel que pour tout $a \in A$, 1a = a1 = a (élément neutre pour la multiplication);
 - pour tous a, b et c dans A, (ab)c = a(bc) (associativité);
- pour tous a, b et c dans A, a(b+c)=ab+ac et (b+c)a=ba+ca (distributivité de la multiplication sur l'addition).

Remarque : Ce qu'on vient de définir est *un anneau unitaire*, car il possède l'élément neutre 1 pour la multiplication – on peut, plus généralement, étudier des anneaux qui ne contient pas 1.

Anneau commutatif: pour tous a et b dans A, ab = ba (commutativité).

Anneau intègre : $ab = 0 \Rightarrow a = 0$ ou b = 0.

Anneau euclidien : il s'agit d'un anneau commutatif intègre A pour lequel il existe une application $\delta: A^* \to \mathbf{N}$, appelée *jauge* (ou parfois stathme) vérifiant les deux propriétés suivantes :

• $\forall a, b \in A^*, \ \delta(ab) \ge \max\{\delta(a), \delta(b)\}\$;

• $\forall a, b \in A^*, b \neq 0, \exists q, r \in A \text{ t.q. } a = bq + r \text{ et } r = 0 \text{ ou } \delta(r) < \delta(b).$

Exemples: • L'anneau **Z** des entiers est un anneau euclidien avec $\delta(x) = |x|$.

 \bullet L'anneau $\mathbb{K}[x]$ des polynômes en une variable est euclidien, avec $\delta(P(x))=\operatorname{degr\'e}$ de P.

Idéal: On appelle $id\acute{e}al$ d'un anneau commutatif A tout sous-groupe (pour l'addition) $I \subset A$ tel que pour tout $a \in I$ et tout $x \in A$, $xa \in I$. Parfois on utilise la notation $I \triangleleft R$ pour indiquer que I est un idéal dans A.

Anneau quotient : Soit A un anneau commutatif et I un idéal de A. On peut définir une relation d'équivalence sur $A: x \sim y \Leftrightarrow x - y \in I$. On note l'ensemble des classes d'équivalence par A/I: il s'agit de *l'anneau quotient*. On peut munir A/I de la structure d'un anneau comme suite. Soit $x+I:=\{x+r:r\in I\}$ la classe d'équivalence qui contient x; alors on définit:

$$(x+I) + (y+I) := (x+y) + I$$
 et $(x+I) \cdot (y+I) = (x \cdot y) + I$.

Dans la suite on écrit \overline{x} pour la classe x + I.

Exercice : montrer que ces opérations sont bien définies et donnent à A/I la structure d'un anneau.

 $\underline{Exemple}$: $n\mathbf{Z}$ est un idéal de l'anneau \mathbf{Z} . Alors l'anneau quotient $\mathbf{Z}/n\mathbf{Z}$ est l'ensemble de classes de congruences modulo n.

Caractéristique d'un anneau : Soit A un anneau commutatif et soit c l' homomrophisme :

$$c: \mathbf{Z} \rightarrow A$$
 $n \mapsto n \cdot 1$

Alors $c(\mathbf{Z})$ est un sous-anneau de A et ker c est un idéal de \mathbf{Z} . Deux cas peuvent se présenter :

- 1. Soit c n'est pas injective, et donc son noyeau est un idéal non-trivial dans \mathbf{Z} , nécessairement de la forme ker $c = q\mathbf{Z}$ et dans ce cas $c(\mathbf{Z})$ est isomorphe à $\mathbf{Z}/q\mathbf{Z}$.
- 2. Soit c est injective et $\ker c = \{0\}$. Dans ce cas A contient un sous-anneau infini isomorphe à \mathbf{Z} . on pose dans ce cas q = 0.

Définition : l'entier q s'appelle la caractéristique de l'anneau A et sera notée car(A).

Corps: Un corps est un anneau A tel que $A \setminus \{0\}$ (0 l'élément neutre pour l'addition) est un groupe par rapport à la multiplication. Il y a une différence culturelle dans la

définition! En France un corps n'est pas nécessarairement commutatif, dans les pays anglophones on comprend la condition de commutativité. De toute manière on a

Théorème de Wedderburn: Tout corps fini est commutatif.

(dans les pays anglophones ce théorème affirme : tout anneau intègre fini est un corps et en particulier commutatif).

Idéal maximal : Soit A un anneau commutatif. On dit qu'un idéal I de A est maximal si $I \neq A$ et si les seuls idéaux de A contenant I sont A et I.

Exemples: • Les idéaux de \mathbb{Z} sont de la forme $n\mathbb{Z}$ avec $n \in \mathbb{Z}$; si n divise m, alors $m\mathbb{Z} \subset n\mathbb{Z}$. Par suite, les idéaux maximaux de Z sont les idéaux $p\mathbb{Z}$, où p est un nombre premier.

 \bullet Si \mathbb{K} est un corps, les idéaux maximaux de l'anneau $\mathbb{K}[x]$ de polynômes en x sont les idéaux engendrés par un polynome irréductible.

 $\underline{Th\'{e}or\`{e}me}$: Soit A un anneau commutatif. Un idéal I de A est maximal si et seulement si l'anneau A/I est un corps.

Modèle d'un corps fini : $\mathbf{Z}/p\mathbf{Z}$ est un corps fini pour tout nombre premier p. On considère l'anneau euclidien $(\mathbf{Z}/p\mathbf{Z})[x]$. Soit $f(x) \in (\mathbf{Z}/p\mathbf{Z})[x]$ irréductible de degré n et soit I = (f(x)) l'idéal engendré par f(x). Alors $(\mathbf{Z}/p\mathbf{Z})[x]/I$ est un corps. Chaque élément de $(\mathbf{Z}/p\mathbf{Z})[x]/I$ est une classe d'équivalence de la forme g(x)+I. Par la division euclidienne, on peut écrire

$$g(x) = a(x)f(x) + r(x)$$

où le reste r(x) est de degré < n et par suite

$$a(x) + I = r(x) + I.$$

Il s'ensuit que les éléments de $(\mathbf{Z}/p\mathbf{Z})[x]/I$ sont en corréspondance avec les polynômes r(x) à coefficients dans $\mathbf{Z}/p\mathbf{Z}$ tel que deg r(x) < n. Il y a p possibilités pour chaque coefficient et donc p^n tels polynômes. On voit alors que ce corps contient p^n éléments.

<u>Remarque</u>: Si deg f(x) = 2, pour montrer que f(x) est irréductible, il suffit de vérifier que $f(a) \neq 0$ pour tout $a \in \mathbf{Z}/p\mathbf{Z}$ (Exercice: pourquoi?)

<u>Théorème</u>: Tout corps fini est de caractéristique un nombre premier p et possède p^n éléments où $n \in \mathbf{N}^*$.

<u>Preuve</u>: Soit K un corps fini et soit H le sous-groupe additif engenré par 1. Supposons que |H| = mn pour des entiers positifs $m, n \neq 1$. Alors 0 = (mn)1 = (m1)(n1), ce

qui contredit le fait que K est un corps (donc intègre). D'où |H| = p pour un nombre premier p et $H = \mathbf{Z}/p\mathbf{Z}$. Il s'ensuit que K est un espace vectoriel sur H, et puisque K est fini il possède une base avec un nombre fini d'éléments n disons. L'ordre de K est le nombre de combinaisons linéaires des éléments de la base : p^n .

<u>Théorème</u> (Existence et unicité des corps finis) : Soit $q = p^n$ où p désigne un nombre premier et $n \in \mathbb{N}^*$. Il existe un corps à q éléments et ce corps est unique à isomorphisme près.

 $\underline{\underline{D\acute{e}finition}}$: Le corps fini à q éléments est noté \mathbb{F}_q ou GF(q). C'est le corps de Galois d'ordre q.

<u>Remarque</u>: On omet la preuve du théorème, mais en fait $\mathbb{F}_q = \{x \in K : x^q - x = 0\}$ où K désigne une clôture algébrique du corps $\mathbb{Z}/p\mathbb{Z}$.

 $Th\'{e}or\`{e}me$: Soit K un corps fini. Alors le groupe multiplicatif K^* est cyclique.

<u>Preuve</u>: Clairement K^* est un groupe multiplicatif commutatif. Soit n l'ordre de ce groupe est soit $n = p_1^{n_1} p_2^{n_2} \cdots p_t^{n_t}$ la décomposition de n en facteurs premiers. Soit S_i un sous-groupe d'ordre $p_i^{n_i}$ pour chaque $i = 1, \ldots, t$ (dont l'existence est assuré par le théorème de Sylow). Soit $k_i = p_i^{n_i-1}$. S'il existe un i tel que S_i n'est pas cyclique, alors $a^{k_i} = 1$ pour tout $a \in S_i$. Mais dans ce cas $f(x) = x^{k_i} - 1$ a $p_i^{n_i}$ racines dans K, une contradiction (car il s'agit d'un polynôme de degré $p_i^{n_i-1}$). Il s'ensuit que chaque S_i est cyclique avec un générateur a_i . Soit $b = a_1 a_2 \cdots a_t$. Puisque l'ordre de b est l'ordre de b, l'élément b est un générateur de b.

 $\underline{\underline{D\acute{e}finition}}$: On appelle $\acute{e}l\acute{e}ment\ primitif\ de\ \mathbb{F}_q$ tout générateur du groupe multiplicatif \mathbb{F}_q^* .

<u>Corollaire</u>: Toute extension finie d'un corps fini \mathbb{F}_q est une extension simple, i.e. de la forme $\mathbb{F}_q(\alpha)$.

<u>Preuve</u>: Si $\mathbb{F}_q \subset \mathbb{F}_r$ et si α est un élément primitif de \mathbb{F}_r , alors $\mathbb{F}_r^* = \{1, \alpha, \alpha^2, \dots, \alpha^{r-1}\}$ donc $\mathbb{F}_r = \mathbb{F}_q(\alpha)$.

<u>Corollaire</u>: Pour tout entier $n \geq 1$ il existe au moins un polynôme irréductible de degré n dans $\mathbb{F}_q[x]$.

<u>Preuve</u>: Soit α un élément primitif de \mathbb{F}_{q^n} . On a $\mathbb{F}_{q^n} = \mathbb{F}_q(\alpha)$. Le polynôme minimal f de α dans $\mathbb{F}_q[x]$ est irréductible, et de degré n puisque $\mathbb{F}_q(\alpha)$ est isomorphe à $\mathbb{F}_q[x]/(f)$

et $\dim_{\mathbb{F}_q} \mathbb{F}_q[x]/(f) = \deg f$ (polynôme minimal est le polynôme unitaire de plus petit degré qui annulle α – voir ci-dessous).

Polynôme minimal: Une extension d'un corps K est un corps L qui contient K comme sous-corps. Un élément de L qui est une racine d'un polynôme non nul sur K est dit algébrique sur K. Si tout élément de L est algébrique sur K on dit que l'extension est algébrique. Le polynôme minimal d'un élément algébrique d'une extension de K est le polynôme unitaire de degré minimal parmi les polynômes à coefficients dans le corps de base K qui annulle l'élément. Il s'agit d'un polynôme irréductible.

Exemple: On considère $\mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z}$. Le corps $L = \{a + b\sqrt{2} : a, b \in \mathbb{F}_3\}$ est une extension algébrique de \mathbb{F}_3 – vérifier cette affirmation. On remarque que $L \cong \mathbb{F}_{3^2}$. Le polynôme minimal de $\sqrt{2}$ est $x^2 + 1 \in \mathbb{F}_3[x]$. Le polynôme $x^4 + 2 \in \mathbb{F}_3[x]$ anulle $\sqrt{2}$ mais il n'est pas minimal.

Racines primitives, polynômes primitifs: Un élément primitif d'un corps fini est un générateur de son groupe muliplicatif. Le polynôme minimal d'un élément primitif est un polynôme primitif. Plus précisamment, si on considère le corps fini \mathbb{F}_{p^n} , un polynôme irréductible f(x) avec coefficients dans $\mathbb{Z}/p\mathbb{Z}$ est un polynôme primitif si son degré est n et s'il présente une racine $\alpha \in \mathbb{F}_{p^n}$ telle que $\{0, 1, \alpha, \alpha^2, \dots, \alpha^{p^n-2}\} = \mathbb{F}_{p^n}$. Il existe toujours un polynôme primitif de degré n.

Exemple : Dans l'exemple ci-dessus, l'élément $\sqrt{2}$ n'est pas primitif dans L, mais $1+\sqrt{2}$ l'est. Le polynôme x^2+x+2 est primitif pour cet élément.

Une autre façon de dire la même chose : un polynôme f(x) à coefficients dans \mathbb{F}_p (p premier) est primitive si f(x) est irréductible et si \overline{x} est un générateur du groupe cyclique K^* où $K = \mathbb{F}_p[x]/(f(x))$. En effet \overline{x} est racine de f(x) dans $K: f(\overline{x}) = \overline{0}$.

Exemple : On poursuit le même exemple. Le corps $K = \mathbb{F}_3[x]/(x^2+x+2)$ s'identifie avec \mathbb{F}_{3^2} qui s'identifie avec L. On vérifie comme exercice que \overline{x} engendre le groupe multiplicatif K^* . On peut alors en déduire un isomorphisme entre K et L en remarquant que $K^* = \langle \overline{x} \rangle$ et $L^* = \langle 1 + \sqrt{2} \rangle$. En effet, on identifie \overline{x} avec $1 + \sqrt{2}$.

Remarque : Un polynôme irréductible de degré n sur le corps \mathbb{F}_2 est primitif si l'ordre de \overline{x} (l'ordre de α est le plus petit entier m tel que $\alpha^m = 1$) est $2^n - 1$. Par exemple, le polynôme $x^2 + x + 1$ est primitive car il est irréductible et l'ordre de \overline{x} dans $\mathbb{F}_2[x]/(x^2 + x + 1)$ est $3 = 2^n - 1$: $x^3 = x(x^2) = x(x+1) = x^2 + x = x + x + 1 = 1$ (mod $x^2 + x + 1$).

Trouver l'élément symétrique multiplicatif dans un corps fini – l'algorithme d'Euclide-Bézout : Soit A un anneau euclidien et soit $a,b \in A$ non-nuls. Alors il existe un plus grand commun diviseur (pgcd) d de a et b qui s'exprîme comme d = au + bv (l'équation de Bézout) pour $u, v \in A$. Le cas lorsque $A = \mathbf{Z}$ est typique :

Exemple : On calcule le pgcd c de 81 et 75 et on résout 81x + 75y = c.

etape						
1						r_2
					<	= 75
2	81	=	q_2	75	+	r_3
		<	=1		<	=6
3	75	=	q_3	6	+	r_4
		<	= 12		<	=3
4	6	=	q_4	3	+	r_5
			=2			=0

Dès que le reste égale 0 le pgcd est donné par le reste précedant, en ce cas 3. Pourquoi 3 est le pgcd ? D'abord si on remonte le fil on voit que 3|81 et 3|75; d'autre part, en descendant le fil on voit que si c|81 et c|75 alors $c|r_3$... c|3.

Pour résoudre l'équation de Bézout dans cet exemple on peut remonter le fil :

$$3 = 75 - 12 \times 6 = 75 - 12 \times (81 - 75)$$
$$= -12 \times 81 + (1 + 12) \times 75 = -12 \times 81 + 13 \times 75.$$

Afin de construire un algorithme, on explicite les termes généraux de cette procédure:

(1)
$$r_{k-1} = q_k r_k + r_{k+1}$$
 et
$$\begin{cases} x_{k+1} = x_{k-1} - q_k x_k \\ y_{k+1} = y_{k-1} - q_k y_k \end{cases}$$

qui sont définies de telle sorte que

$$(2) ax_k + by_k = r_k.$$

Pour démarrer un algorithme il faut des conditions initiales:

$$r_1=a,\quad q_1$$
 pas defini, $\quad x_1=1,\quad y_1=0\quad$ afin que $a\times x_1+b\times y_1=r_1$;

$$r_2=b,\quad q_2$$
 a trouver, $\quad x_2=0,\quad y_2=1\quad \text{afin que } a\times x_2+b\times y_2=r_2\,.$

Afin de trouver q_2 on résout:

(3)
$$r_1 = q_2 r_2 + r_3 \qquad \leftrightarrow \qquad a = q_2 b + r_3 \qquad (k=2).$$

On vérifie pour x_3 et y_3 :

$$x_3 = x_1 - q_2 x_2 = 1 - q_2 \times 0 = 1$$
 $y_3 = y_1 - q_2 y_2 = 0 - q_2 \times 1 = -q_2;$

alors: $ax_3 + by_3 = r_3 \quad \leftrightarrow \quad a \times 1 - b \times q_2 = r_3$. C'est bien l'équation (3).

On vérifie pour x_4 et y_4 :

$$x_4 = x_2 - q_3 x_3 = 0 - q_3 \times 1 = -q_3$$
 $y_4 = y_2 - q_3 y_3 = 1 + q_3 \times q_2$;

alors: $ax_4 + by_4 = r_4 \quad \leftrightarrow \quad -a \times q_3 + b \times (1 + q_2q_3) = r_4$. Mais

$$r_2 = q_3 r_3 + r_4 \quad \leftrightarrow \quad b = q_3 (r_1 - q_2 r_2) + r_4 \quad \leftrightarrow \quad b(1 + q_3 q_2) - aq_3 = r_4$$

comme il le faut (car $r_1 = a$ et $r_2 = b$).

On montre l'étape général par récurrence : on suppose (1) et (2) vérifées jusqu' à k et on montre que, avec les définitions (1), l'équation (2) est vérifiée pour k + 1 : (i) l'équation (2) est bien vérifié pour k = 1, 2 (et même pour k = 3, 4); (ii) étape k + 1 :

$$ax_{k+1} + by_{k+1} = r_{k+1}$$

$$\Leftrightarrow a(x_{k-1} - q_k x_k) + b(y_{k-1} - q_k y_k) = r_{k-1} - q_k r_k$$

$$\Leftrightarrow (ax_{k-1} + by_{k-1}) - q_k (ax_k + by_k) = r_{k-1} - q_k r_k,$$

qui est vraie par l'hypothèse de récurrence.

On remarque que l'algorithme s'arrête car en chaque étape le reste r_k diminue strictement et il est borné inférieurement par 0.

L'algorithme:

D'abord on construit un algorithme pour la division euclidienne ; on note que dans un algorithme, pour exprîmer le prochain étape a_{i+1} en fonction de a_i on écrit (en prenant l'exemple ci-dessous) $a_i := a_i - b$ plutôt que $a_{i+1} = a_i - b$, ou parfois $a_i \leftarrow a_i - b$:

Entrée: a, b des nombres naturels avec b non-nul

Sortie: q et r tels que a = qb + r avec $0 \le r < b$

 $Initialisation: a_0 = a$

tant que $a_i \geq b$ faire

$$a_i := a_i - b \quad (= a - (i+1)b)$$

fin tant que

 $a_i < b$ alors retourner q = ib et r = a - ib

fin

On note cet algorithme par $\delta(a,b)$ et on écrit $(q,r) = \delta(a,b)$. L'algorithme d'Euclide-Bézout peut s' érire comme suite :

Entr'ee: a, b des nombres naturels non nuls

Sortie: r nombre naturel et x, y des entiers tels que $r = \operatorname{pgcd}(a, b)$ et r = ax + by

Initialisation: $r_1 = a$, $x_1 = 1$, $y_1 = 0$, $r_2 = b$, $x_2 = 0$, $y_2 = 1$,

 $tant que r_{k+1} \neq 0 faire$

$$(q_k, r_{k+1}) = \delta(r_{k-1}, r_k)$$

$$(x_k, y_k) := (x_{k-1} - q_k x_k, y_{k-1} - q_k y_k)$$

fin tant que $r_{k+1} = 0$ alors retourner $r = r_k$, $x = x_k$, $y = y_k$ fin

On considère un corps fini $K = (\mathbf{Z}/p\mathbf{Z})[x]/(f)$ pour un polynôme irréductible f(x) dans $(\mathbf{Z}/p\mathbf{Z})[x]$. Pour $g(x) \in (\mathbf{Z}/p\mathbf{Z})[x]$ on écrit $\overline{g} = \overline{g}(x)$ pour son image dans K. Pour $\overline{g} \in K$ non-nul on veut trouver un élément $\overline{u} \in K$ tel que $\overline{g} \, \overline{u} = \overline{1}$. On note d'abord que $(\mathbf{Z}/p\mathbf{Z})[x]$ est euclidien. Puisque f est irréductible, il s'ensuit que $\operatorname{pgcd}(g, f) = 1$. Par suite il existe des polynômes $u(x), v(x) \in (\mathbf{Z}/p\mathbf{Z})[x]$ tel que

$$u(x)g(x) + v(x)f(x) = 1,$$

et par conséquence $\overline{u}\,\overline{g}=\overline{1}.$ Pour trouver u(x) on applique l'algorithme d'Euclide-Bézout:

$$f(x) = u_1(x)g(x) + r_1(x)$$

$$g(x) = u_2(x)r_1(x) + r_2(x)$$

$$r_1(x) = u_3(x)r_2(x) + r_3(x)$$

Exemple de travail : Soit $K = (\mathbf{Z}/3\mathbf{Z})[x]/(f)$ où $f = x^2 + x + 2$. D'abord on démontre que f est irréductible en vérifiant que $f(a) \neq 0$ pour tout $a \in \mathbf{Z}/3\mathbf{Z}$. Combien d'éléments y-a-t-il dans K? Expliciter les éléments de K, déterminer les éléments symétriques multiplicatifs de quelques uns.

Morphisme de Fröbenius :

<u>Lemme</u>: Soit \mathbb{K} un corps fini de caractéristique p, alors $(a+b)^{p^i}=a^{p^i}+b^{p^i}$ pour tout $a,b\in\mathbb{K}$ et $i\in\mathbf{N}^*$.

Preuve : On raisonne par récurrence sur i – exercice.

Corollaire: Soit $\varphi: \mathbb{F}_q \to \mathbb{F}_q$ l'application $\varphi(a) = a^p$ où $q = p^n$, alors φ et un morphisme de corps, appelé morphisme de Fröbenius.

<u>Preuve</u>: Il est claire que $\varphi(0) = 0$, $\varphi(1) = 1$ et $\varphi(ab) = \varphi(a)\varphi(b)$. Par le lemme ci-dessus, on a aussi $\varphi(a+b) = \varphi(a) + \varphi(b)$. Le morphisme φ est aussi injectif et donc surjectif. En effet φ^n est l'application identité.

Exemple : On considère le corps \mathbb{F}_q où $q=p^2$ déduit d'un polynôme irréductible du type $x^2-\beta$. Donc tout élément de \mathbb{F}_q s'écrit sous la forme a+bx. Quel est le morphisme de Fröbenius ? On a

$$(a+bx)^p = a^p + b^p x^p = a + bx^p = a + b(x^2)^{(p-1)/2} x = a + b\beta^{(p-1)/2} x$$

Mais β n'est pas un carré et il s'ensuit que $\beta^{(p-1)/2}=-1(\mod p)$ (pourquoi ?), d'où

$$(a+bx)^p = a - bx.$$

Référence: D-J. Mercier, Corps finis, 2003, http://megamaths.perso.neuf.fr/ccof0001.pdf