Université de Bretagne Occidentale

L2 Mathématiques et Economie

Faculté des Sciences et Techniques

Analyse 2

Département de Mathématiques

Année 2019-2020

Feuille 7 - Séries entières

Rappels : Une série entière est une série de la forme $S(x)\sum_{n=0}^{\infty}a_nx^n$ où (a_n) est une suite numérique.

- Il existe un nombre $R \in [0, \infty]$ appelé rayon de convergence, tel que S(x) converge pour |x| < R; diverge pour |x| > R; si |x| = R, elle peut converger ou diverger.
- La série converge normalement sur tout intervalle compact [-r, r] pour r < R (R rayon de convergence).
- Si la série converge en x_0 , elle converge absoluement pour tout x avec $|x| < |x_0|$.
- La série géométrique $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ pour |x| < 1.
- ullet On applique des testes de convergence (d'Alembert, de la n-ième racine) pour déterminer le rayon de convergence.
- I. Calculer les rayons de convergence des séries entières suivantes :

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} \, ; \qquad \sum_{n=0}^{\infty} n! x^n \, ; \qquad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} x^n \, ; \qquad \sum_{n=1}^{\infty} \left(1 + \frac{3}{n}\right) x^n \, ; \qquad \sum_{n=1}^{\infty} \frac{x^n}{n^2 2^n} \, ; \qquad \sum_{n=1}^{\infty} \frac{x^n}{n^2 2^n} \, ; \qquad \sum_{n=1}^{\infty} \frac{x^n}{n^2} \, ; \qquad \sum_{n=1}^{\infty} \frac{x^n}{n^$$

II. Ecrire la fonction $f(x) = \frac{x}{1+2x^2}$ sous forme de série entière : $\sum_{n=0}^{\infty} a_n x^n$. Quel est son rayon de convergence ?

III. Ecrire la fonction $f(x) = \frac{1}{(1-x)(2-x)}$ sous forme de série entière : $\sum_{n=0}^{\infty} a_n x^n$. Quel est son rayon de convergence ? (Indication : décomposer f(x) en éléments simples).

IV. Soit f la fonction représentée par la série entière :

$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{(2n+1)!}.$$

- 1. Quel est le rayon de convergence de la série ?
- 2. Exprimer en séries entières les dérivées f'(x) et f''(x).

3. Montrer que la fonction f(x) vérifie l'équation différentielle

$$4xf''(x) + 6f'(x) + f(x) = 0.$$

- 4. Estimer la valeur f(0.1) à une erreur de 10^{-2} près.
- \mathbf{V} . Soit f la fonction représentée par la série entière :

$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^n}.$$

- 1. Quel est le rayon de convergence de la série ?
- 2. Exprimer en série entière la dérivée f'(x).
- 3. Montrer que la fonction f(x) vérifie l'équation différentielle

$$f'(x) + xf(x) = 0.$$

- 4. Estimer la valeur f(0.1) à une erreur de 10^{-3} près.
- **VI.** Développer en série entière les fonctions (a) $\frac{1}{(1+x)^2}$; (b) $\ln(1+x)$; (c) $\arctan x$. Quels sont les rayons de convergence en chaque cas?
- ${\bf VII.}$ 1. Calculer $\ln(1.1)$ à cinq places de décimales près (sans utiliser un calculatrice !)
- 2. Calculer $\int_0^{0.1} e^{-x^2} dx$ à cinq places de décimales près.