Université de Bretagne Occidentale Faculté des Sciences et Techniques

Département de Mathématiques

L2 Mathématiques et Economie Analyse 2

Année 2019-2020

Feuille 6 - Séries de fonctions

Rappels: On suppose (u_n) une suite de fonctions définie sur $D \subset \mathbf{R}$. Pour chaque $x \in D$ on considère la série numérique $\sum_{n=0}^{\infty} u_n(x)$.

Convergence simple : $\forall x \in D$, la série converge vers une somme S(x).

Convergence absolue : $\forall x \in D$, la série $\sum_{n=0}^{\infty} |f_n(x)|$ converge.

Convergence uniforme: La suite des sommes partielles $S_N(x) = \sum_{n=0}^N u_n(x)$ converge uniformément vers S(x): $\lim_{n\to\infty} \sup_{x\in D} |S_n(x) - S(x)| = 0$.

Convergence normale: La série $\sum_{n=0}^{\infty} \sup_{x\in D} |u_n(x)|$ converge.

- convergence normale \Rightarrow convergence uniforme \Rightarrow convergence simple.
- si chaque $S_n(x)$ convergence uniformément vers $S(x) \Rightarrow$ continuité de S(x).
- <u>Critère d'Abel uniforme</u>: soit $(a_n(x))$ suite de fonctions réelles positives ou nulles décroissantes qui converge uniformément vers 0 ; soit $(u_n(x))$ une suite de fonctions telle que la suite des sommes partielles $S_N(x) = \sum_{n=0}^N u_n(x)$ soit uniformément bornée $(\exists C > 0 \text{ tel que } |S_N(x)| \leq C \text{ pour tout } N \text{ et pour tout } x \in D). \text{ Alors } \sum_{n=0}^{\infty} a_n u_n \text{ est}$ uniformément convergente sur D.
- <u>Série entière</u> : Une série de la forme $\sum_{n=0}^{\infty} a_n x^n$. Pour une telle série, il existe un nombre R (rayon de convergence) tel que la série converge normalement sur tout compact dans |R,R| et diverge pour tout x avec |x| > R.
- <u>Série géométrique</u> : $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ pour |x| < 1.

Exercice I: Etudier la convergence de $\sum_{n=1}^{\infty} \frac{\cos n}{n}$ sur un compact de $\mathbb{R} \setminus 2\pi \mathbb{Z}$ (critère d'Abel).

Exercice II: Montrer que la série $\sum_{n=0}^{\infty} \frac{(-1)^n x}{(1+x^2)^n}$ est uniformément convergente pour $x \in \mathbf{R}$.

Exercice III: Montrer que la série

$$\sum_{n=0}^{\infty} \frac{(-1)^n e^{-nx^2}}{(n+1)^3}$$

converge sur \mathbf{R} et que sa somme est continue.

Exercice IV: Etudier la convergence simple, normale et uniforme de la série de fonctions $\sum_{n=1}^{\infty} u_n(x)$ dans les cas suivants :

$$u_n(x) = \frac{x}{(1+nx)^2} \quad (x \ge 0), \qquad u_n(x) = \frac{(-1)^n}{x^2 + n} \quad (x \in \mathbf{R})$$
(*)
$$u_n(x) = \frac{x^{2^n}}{1 - x^{2^{n+1}}} \quad (|x| \ne 1), \quad (*) \quad u_n(x) = \frac{(-1)^n}{nx + (-1)^n} \quad (x > 0)$$

(*) = plus difficile.

Exercice V: Pour $n \ge 1$ et $x \in \mathbf{R}$, on pose $f_n(x) = nx^2 e^{-x\sqrt{n}}$.

- (1) Montrer que la série $\sum_{n>1} f_n(x)$ converge simplement sur \mathbf{R}_+ .
- (2) Montrer que la convergence n'est pas normale sur \mathbf{R}_{+} .
- (3) Montrer que la convergence est normale sur tout intervalle $[a, +\infty[$ où a > 0.
- (4) La convergence est-elle uniforme sur \mathbf{R}_{+} ?

Exercice VI: (1) Montrer que la série de fonctions $\sum_{n=1}^{\infty} \frac{x}{(x^2 + n^2)^2}$ converge uniformément sur tout intervalle de la forme [-a, a] avec a > 0.

- (2) Montrer que la somme est une fonction continue sur **R**.
- (3) Montrer que la somme $\sum_{n=1}^{\infty} \frac{1}{x^2 + n^2}$ est dérivable sur **R**.

Exercice VII: (1) Montrer que la série de fonctions $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}x^n}{n}$ converge uniformément sur [0,1] et justifier que sa somme f(x) y est continue.

- (2) Montrer que la série ne converge pas normalement sur [0, 1].
- (3) Montrer que la série $\sum_{n=0}^{\infty} (-1)^n x^n$ converge uniformément sur tout intervalle de la forme $[0, \varepsilon]$, $0 < \varepsilon < 1$.
- (4) En déduire que la somme f de la série de la partie (1) est dérivable sur]0,1[et calculer sa dérivée.
- (5) En déduire f(x).