Université de Bretagne Occidentale

L2 Mathématiques et Economie

Faculté des Sciences et Techniques

Analyse 2

Département de Mathématiques

Année 2019-2020

Feuille 3 - suites de fonctions

Rappels: • Une suite de fonctions (f_n) $(f_n: I \to \mathbf{R}, I \text{ un intervalle})$ converge simplement vers la fonction $f: I \to \mathbf{R}$ si $f_n(x) \to f(x)$ lorsque $n \to \infty$, pour chaque $x \in I$.

- Une suite de fonctions (f_n) $(f_n: I \to \mathbf{R}, I \text{ un intervalle})$ converge uniformément vers la fonction $f: I \to \mathbf{R}$ sur I, si $\forall \varepsilon > 0$, il existe un entier N tel que $\forall x \in I, n > N \Rightarrow |f_n(x) f(x)| < \varepsilon$.
- 1er théorème de Dini : Soit $(f_n)_{n \in \mathbb{N}^*}$ une suite de fonctions réelles et continues sur [a, b], telles que la suite $(f_n(x))$ soit croissante pour tout $x \in [a, b]$ $(f_n(x) \le f_{n+1}(x) \, \forall n \in \mathbb{N})$. Si la suite (f_n) converge simplement vers une fonction continue $f : [a, b] \to \mathbb{R}$ alors cette convegence est uniforme.

Exercice I: Etudier la convergence simple et uniforme des suites de fonctions cidessous. Pour chaque suite, tracez l'allure des courbes représentatives d'un terme générique de celle-ci ainsi que de sa limite simple, si elle existe.

1.
$$f_n(x) = \frac{x}{nx^2 + 1}, x \in \mathbf{R}, n \in \mathbf{N}$$
;

2.
$$f_n(x) = \frac{x^2 + x^2 n}{x^2 + n}, x \in \mathbf{R}, n \in \mathbf{N}$$
;

3.
$$f_n(x) = \cos\left(\frac{\pi x}{n}\right), x \in [0, 1], n \in \mathbf{N}^*$$
;

4. $f_n(x) = \arctan(nx), x \in \mathbf{R}, n \in \mathbf{N}$;

5.
$$f_n(x) + \left(1 - \frac{1}{\sqrt{n}}\right)x^2$$
, $x \in I$, $n \in \mathbb{N}^*$ pour $I = [-1, 1]$ et $I = \mathbb{R}$;

6.
$$f_n(x) = x^{1+\frac{1}{n}}, x \in [0,1], n \in \mathbf{N}^*$$
;

7.
$$f_n(x) = nx^n, x \in [-1, 1], n \in \mathbf{N}$$
.

Exercice II: Pour $n \in \mathbb{N}^*$ soit $f_n : [-1,1] \to \mathbb{R}$ donnée par

$$f_n(x) = \begin{cases} 0 & \text{si } x \in [-1, -\frac{1}{n}] \\ n^2 x + (2 + e^{-n}) & \text{si } x \in [-\frac{1}{n}, 0] \\ -n^2 x + (2 + e^{-n}) & \text{si } x \in [0, \frac{1}{n}] \\ 0 & \text{si } x \in [\frac{1}{n}, 1] \end{cases}$$

- 1. Tracer f_n pour $n \in \{1, 2\}$;
- 2. Etudier la convergence simple de la suite $(f_n)_{n \in \mathbb{N}^*}$;
- 3. Que pensez-vous de la convergence uniforme?

Exercice III: (Stone-Weierstrass pour la fonction $x \to \sqrt{x}$). Considérons la suite de fonctions $(f_n)_{n \in \mathbb{N}}$ sur [0,1] définie par :

$$\begin{cases} f_0(x) = 0 \\ f_{n+1}(x) = f_n(x)(1 - \frac{1}{2}f_n(x)) + \frac{x}{2} \end{cases}$$

- 1. Montrer que pour tout $n \in \mathbb{N}$, f_n est une fonction polynomiale.
- 2. Montrer que $(f_n)_{n \in \mathbb{N}}$ converge simplement vers $x \to \sqrt{x}$ sur [0,1].
- 3. Montrer que la suite $(f_n)_{n \in \mathbb{N}}$ est croissante.
- 4. En déduire qu'il existe une suite de fonctions polynomiales $(P_n)_{n \in \mathbb{N}}$ convergeant uniformément vers $x \to \sqrt{x}$ sur [0,1].
- 5. Montrer qu'il existe une suite de fonctions polynomiales $(P_n)_{n \in \mathbb{N}}$ convergeant uniformément vers $x \to |x|$ sur [-1, 1].

Exercice IV: Etudier la convergence uniforme des suites de fonctions suivantes. Qu'en est-il de la convergence de la suite des dérivées? Dire pour quelles valeurs de x l'équation $f'(x) = \lim_{n\to\infty} f'_n(x)$ est valable.

1.
$$f_n(x) = \frac{1}{n}\cos(nx), x \in \mathbf{R}$$
;

2.
$$f_n(x) = \frac{1}{n}\arctan(nx), x \in \mathbf{R}$$
;

3.
$$f_n(x) = \frac{1}{n}\sin(nx), x \in]-\frac{\pi}{2}, \frac{\pi}{2}[;$$

4.
$$f_n(x) = e^{-nx^2}x^6, x \in \mathbf{R}$$
;

5.
$$f_n(x) = \frac{x}{1 + nx^2}, x \in \mathbf{R}$$
.

Exercice V: Pour $x \in]0,1[$ et $n \in \mathbb{N}^*$, soit $f_n(x) = \frac{1}{nx+1}$.

- 1. Montrer que $(f_n)_{n \in \mathbb{N}^*}$ converge simplement sur]0,1[vers 0 mais que la convergence n'est pas uniforme.
- 2. Montrer que la suite $(f_n)_{n \in \mathbb{N}^*}$ est monotone.
- 3. De quelle hypothèse du théorème de Dini cet exemple montre-t-il la nécessité?