Université de Bretagne Occidentale Faculté des Sciences et Techniques Département de Mathématiques L1-MATHS/PMRC ANALYSE Année 2017-2018

Feuille 3 - Moyenne de Césaro

On appelle suite des moyennes de Césaro associée à une suite réelle (a_n) la suite (u_n) définie par :

 $\forall n \in \mathbb{N}, \quad u_n = \frac{a_1 + a_2 + \dots + a_n}{n}.$

L'ojectif est d'étudier la convergence de (u_n) en fonction de propriétés portées par (a_n) .

Partie I : On suppose dans cette partie que (a_n) est une suite croissante de limite $\ell \in \mathbb{R}$. Soite (u_n) sa suite des moyennes de Césaro.

- 1. Montrer que la suite (u_n) est croissante.
- 2. Montrer que $\forall n \in \mathbb{N}, u_n \leq \ell$. Que peut-on en déduire?
- 3. Etablir $\forall n \in \mathbb{N}, u_{2n+1} \geqslant \frac{1}{2}u_n + \frac{1}{2}a_{n+1}$.
- 4. En déduire que (u_n) converge vers ℓ .
- 5. Que dire de la suite des moyennes de Césaro d'une suite décroissante de limite $\ell \in \mathbb{R}$?

Partie II : Cas d'une suite convergente. Soit (a_n) une suite réelle convergent vers $\ell \in \mathbb{R}$. Pour tout $\varepsilon > 0$:

- 1. Justifier qu'il exite $n_0 \in \mathbb{N}$ tel que pour tout $n \in \mathbb{N}$, $n > n_0$ entraı̂ne : $|a_n \ell| \leq \varepsilon/2$.
- 2. Etablir que pout tout entier $n > n_0$ on a :

$$|u_n - \ell| \le \frac{|a_1 - \ell| + \dots + |a_{n_0} - \ell|}{n} + \frac{|a_{n_0+1} - \ell| + \dots + |a_n - \ell|}{n}.$$

3. Montrer qu'il existe $n_1>n_0$ tel que pour tout $n\in\mathbb{N},\,n>n_1$ entraı̂ne :

$$\frac{|a_1 - \ell| + \dots + |a_{n_0} - \ell|}{n} \leqslant \frac{\varepsilon}{2}.$$

4. Conclure que (u_n) converge vers ℓ .

Partie III : On suppose maintenant que la suite (u_n) converge vers le réel ℓ . On se propose d'étudier une réciproque du résultat précédent.

- 1. Montrer que la suite (a_n) n'est génfalement pas convergente. On pourra exhiber un contreexemple.
- 2. Montrer que la suite (a_n) n'est pas nécessairement bornée. On pourra considérer la suite (a_n) définie par

$$a_n = \begin{cases} p & \text{si } n = p^3 \\ 0 & \text{sinon} \end{cases}$$

3. On suppose en outre que la suite (a_n) est monotone; on pourra considérer, par exemple, qu'elle est croissante. Montrer alors par l'absurde que la suite (a_n) est majorée par ℓ . Conclure.

Partie IV : Cas des suite périodiques. Soit $T \in \mathbb{N}^*$ et (a_n) une suite réelle T périodique, i.e. telle que

$$\forall n \in \mathbb{N}, \quad a_{n+T} = a_n.$$

On introduit sa suite des moyennes de Césaro (u_n) . On pose aussi

$$s = \frac{1}{T}(a_1 + a_2 + \dots + a_T).$$

1. Montrer que, pour tout $n \in \mathbb{N}$, $s = \frac{1}{T}(a_n + a_{n+1} + \cdots + a_{n+T-1})$.

On considère la suite (v_n) de terme général : $v_n = (n+1)u_n - (n+1)s$.

- 2. Montrer que (v_n) est T périodique.
- 3. En déduire que (v_n) est bornée.
- 4. Etablir que (u_n) converge et préciser sa limite.

Partie V: Application.

- 1. Soit (x_n) une suite de réels stictement positifs qui converge vers $\ell \in [0, +\infty]$. En appliquant les résultats précédents à la suite $a_n = \ln(x_n)$, montrer que la suite des moyennes géométriques $\sqrt[n]{x_1x_2\cdots x_n}$ tend vers ℓ .
- 2. En déduire que si une suite (y_n) de réels strictement positifs est telle que $y_{n+1}/y_n \to \ell$ alors $(y_n)^{1/n} \to \ell$.
- 3. En déduire la limite de la suite $n^{1/n}$.