Feuille 1

Exercice I : On rappelle que la droite numérique achevée $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\} = [-\infty, +\infty]$ est naturellement munie d'une relation d'ordre total.

Soient A et B deux parties de $\overline{\mathbb{R}}$.

- 1) Décrire avec des quantificateurs les propriétés :
 - (i) A est majorée dans \mathbb{R} ;
 - (ii) A n'est pas majorée dans \mathbb{R} .
- 2) Comment définit-on la quantité $\sup(A)$ dans $\overline{\mathbb{R}}$?
- 3) Montrer que si $A \subset B$ alors $\sup(A) \leqslant \sup(B)$.
- 4) Montrer que $\sup(A+B) \leqslant \sup(A) + \sup(B)$ si $\sup(A)$ est réel.
- 5) Montrer que l'on a : $-\inf(A) = \sup(-A)$.
- 6) Vérifier que si $A \subset B$ alors $\inf(B) \leqslant \inf(A)$.

Exercice II: Soit $(x_n)_{n\in\mathbb{N}}$ une suite de nombre réel. On définit les limites supérieure et inférieure de la suite (x_n) par, respectivement,

$$\lim \sup(x_n) := \inf_{n \in \mathbb{N}} \sup_{k \geq n} x_k = \inf \{ \sup \{x_k \mid k \geq n\} \mid n \in \mathbb{N} \} ,$$

$$\lim\inf(x_n) := \sup_{n\in\mathbb{N}} \inf_{k\geqslant n} x_k = \sup\{\inf\{x_k \mid k\geqslant n\} \mid n\in\mathbb{N}\} .$$

Soient $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ deux suites de nombres réels.

1) Déterminer la limite supérieure et la limite inférieure de la suite $(x_n)_{n\in\mathbb{N}}$ lorsque

$$x_n = n$$
; $x_n = \frac{1}{n+1}$; $x_n = (-1)^n$.

- 2) Montrer que $\liminf (-x_n) = -\limsup (x_n)$.
- 3) Soit $n \in \mathbb{N}$. Montrer que, pour tout $m \in \mathbb{N}$, $\inf_{k \geq m} x_k \leq \sup_{k \geq n} x_k$. En déduire que $\liminf(x_n) \leq \limsup(x_n)$.
- 4) Vérifier que la limite supérieure de la suite $(x_n)_{n\in\mathbb{N}}$ est égale à la limite dans $\overline{\mathbb{R}}$ de la suite $(\sup_{k\geq n} x_k)_{n\in\mathbb{N}}$.
- 5) Montrer que si, pour tout n à partir d'un certain rang, on a $x_n \leq y_n$ alors

$$\limsup (x_n) \leqslant \limsup (y_n)$$
 et $\liminf (x_n) \leqslant \liminf (y_n)$.

6) Soit $\varepsilon > 0$ fixé. Montrer que si $\limsup (x_n)$ appartient à $\mathbb{R} \cup \{+\infty\}$ alors il existe un entier n_0 tel que $\sup_{k \geq n_0} x_k \leq \varepsilon + \limsup (x_n)$.

Soit l un élément de \mathbb{R} . Montrer que la suite (x_n) converge vers l si, et seulement si, $\liminf (x_n) = \limsup (x_n) = l$.

7) Montrer que

$$\lim\inf(x_n) + \lim\inf(y_n) \leqslant \lim\inf(x_n + y_n)$$

et que

$$\limsup (x_n + y_n) \leqslant \limsup (x_n) + \limsup (y_n)$$
.

Montrer que si $\limsup (x_n)$ ou $\liminf (y_n)$ appartient à \mathbb{R} alors

$$\lim \inf(x_n + y_n) \leq \lim \sup(x_n) + \lim \inf(y_n)$$
.

A-t-on $\liminf (x_n + y_n) \leq \liminf (x_n) + \liminf (y_n)$ en général?

Exercice III:

1) Montrer que $\mathbb{N} \times \mathbb{N}$ est infini dénombrable. En déduire que si A et B sont des ensembles dénombrables alors $A \times B$ est dénombrable.

Montrer que tout produit fini d'ensembles dénombrables est dénombrable.

- 2) En utilisant la question précédente, montrer que toute union dénombrable d'ensembles dénombrables est dénombrable.
- 3) Montrer que \mathbb{Z} et \mathbb{Q} sont infinis dénombrables.
- 4) En raisonnant par l'absurde, montrer que $\{0,1\}^{\mathbb{N}}$ n'est pas dénombrable.

Exercice IV: Le but de cet exercice est de montrer que l'intervalle [0, 1] n'est pas dénombrable.

- 1) Justifier que [0, 1] est infini.
- 2) On suppose qu'il existe une bijection $f: \mathbb{N} \to [0, 1]$.

Montrer qu'alors il existe une suite d'intervalles fermés $(I_n)_{n\in\mathbb{N}}$ contenus dans [0,1] telle que, pour tout $n\in\mathbb{N}$, $I_{n+1}\subset I_n$ et $f(n)\notin I_n$.

En déduire que [0, 1] n'est pas dénombrable.

- 3) Comment modifier le raisonnement précédent pour rendre inutile la question 1?
- 4) Qu'en est-il de \mathbb{R} ? Qu'en est-il de $\mathbb{R} \setminus \mathbb{Q}$?

Exercice V: Vrai ou Faux?

1)

$$\bigcup_{n=1}^{+\infty} \left[0, 1 - \frac{1}{n} \right] = [0, 1] ; \quad \bigcap_{n=1}^{+\infty} \left[0, 1 + \frac{1}{n} \right] = [0, 1] .$$

- 2) Tout intervalle [a, b[de \mathbb{R} peut s'écrire comme intersection dénombrable d'intervalles ouverts.
- 3) Tout intervalle [a,b[de $\mathbb R$ peut s'écrire comme réunion dénombrable d'intervalles ouverts.

Exercice VI: Soit X un ensemble et soient A, B et C des parties de X.

a) Montrer que

$$\mathbb{I}_{A^c} = \mathbb{I}_X - \mathbb{I}_A$$
; $\mathbb{I}_{A \cap B} = \inf(\mathbb{I}_A, \mathbb{I}_B) = \mathbb{I}_A \cdot \mathbb{I}_B$;

 $\mathbb{1}_{A \cup B} = \sup(\mathbb{1}_A, \mathbb{1}_B) = \mathbb{1}_A + \mathbb{1}_B - \mathbb{1}_A \cdot \mathbb{1}_B \; ; \quad \mathbb{1}_{A \Delta B} = |\mathbb{1}_A - \mathbb{1}_B| = (\mathbb{1}_A - \mathbb{1}_B)^2 \; .$

(où $A\Delta B = (A \setminus B) \cup (B \setminus A)$ désigne la différence symétrique).

b) Montrer que

$$\mathbb{I}_{\bigcup_{i \in I} A_i} = \sup_{i \in I} \mathbb{I}_{A_i} \quad \text{et} \quad \mathbb{I}_{\bigcap_{i \in I} A_i} = \inf_{i \in I} \mathbb{I}_{A_i} ,$$

où $(A_i)_{i\in I}$ désigne une famille quelconque de parties de X.

c) Déduire du a) une condition nécessaire et suffisante pour que

$$A\Delta(B\cap C) = (A\Delta B)\cap (A\Delta C)$$
.

Exercice VII: Soient $f: X \to Y$ une application d'un ensemble X dans un ensemble Y et A et B deux parties de X.

- 1) Montrer que $f(A \cup B) = f(A) \cup f(B)$,
- 2) Montrer que $f(A \cap B) \subset f(A) \cap f(B)$ et qu'on peut ne pas avoir l'égalité . Que se passe-t-il si f est injective?
- 3) Montrer que $f^{-1}\Big(f(A)\Big)\supset A$ et que l'on peut ne pas avoir l'égalité .
- 4) Soient C, C_1, C_2 des parties de Y. Montrer que

$$f(f^{-1}(C)) = C \cap f(X) ; \quad f^{-1}(C_1 \cup C_2) = f^{-1}(C_1) \cup f^{-1}(C_2) ;$$

$$f^{-1}(C_1 \cap C_2) = f^{-1}(C_1) \cap f^{-1}(C_2) ; \quad f^{-1}(C^c) = (f^{-1}(C))^c.$$

Exercice VIII: (Théorème de Bernstein)

Soient E et F deux ensembles tels qu'il existe une injection f de E dans F et une injection g de F dans E. On se propose de montrer qu'il existe une bijection de E dans F.

On note $h = g \circ f$ et, pour toute partie C de E, on introduit la famille

$$\mathcal{F}(C) = \{ M \subset E \mid C \cup h(M) \subset M \} .$$

- 1) Soit C une partie de E.
 - a) Montrer que la famille $\mathcal{F}(C)$ n'est pas vide.
 - b) Montrer qu'une intersection quelconque d'éléments de $\mathcal{F}(C)$ est un élément de $\mathcal{F}(C)$.
 - c) Montrer que si $M \in \mathcal{F}(C)$ alors $C \cup h(M) \in \mathcal{F}(C)$.
- 2) On pose

$$R = E \setminus g(F)$$
, $A = \bigcap_{M \in \mathcal{F}(R)} M$, $B = E \setminus A$, $A' = f(A)$ et $B' = g^{-1}(B)$.

- a) Vérifier que la restriction de g à B' est une bijection de B' dans B.
- b) Montrer que $\{R, h(A), B\}$ est une partition de E et qu'en particulier $A = R \cup h(A)$.
- c) Montrer que $\{A', B'\}$ est une partition de F.
- d) Conclure en considérant l'application φ de E dans F définie par

$$\varphi(x) = \begin{cases} f(x) & \text{si } x \in A, \\ g^{-1}(x) & \text{si } x \in B. \end{cases}$$