Université de Bretagne Occidentale Faculté des Sciences et Techniques Département de Mathématiques L3-Maths Intégrale de Lebesgue Année 2015-2016

Feuille 7 - Intégrales multiples et changements de variables

Exercice I : On considère le domaine borné D du plan euclidien délimité par les courbes d'équation $y = \sqrt{x}$ et $y = x^2$ dans un repère orthonormé. Calculer l'aire de D puis l'intégrale

$$\int_{D} \frac{y}{x} dx dy .$$

Exercice II: On considère la fonction $f(x,y) = e^{-xy^2}$.

Montrer que $f \in L^1([0; a] \times [0; +\infty[))$ pour tout réel a > 0.

La fonction f appartient-elle à L¹ ([0; $+\infty$ [×[0; $+\infty$ [)?

Exercice III: Soit la fonction $f(x, y) = e^{-xy} \sin(y)$.

Est-ce que $f \in L^1([0;1] \times [0;1])$? A-t-on $f \in L^1([0;1] \times [0;+\infty[)]$?

Exercice IV: En utilisant la fonction $f(x,y) = e^{-x(1+y^2)}$, calculer l'intégrale

$$\int_0^{+\infty} e^{-x^2} dx .$$

Exercice V: Montrer qu'il existe un ouvert V de \mathbb{R}^2 et deux fonctions mesurables h et k telles que, pour toute fonction mesurable positive $g: \mathbb{R}_+^* \times \mathbb{R}_+^* \to [0; +\infty]$, on ait :

$$\int_{\mathbb{R}^*_+ \times \mathbb{R}^*_+} g\left(x+y, \frac{x}{x+y}\right) \, x^{a-1} y^{b-1} \mathrm{e}^{-\lambda(x+y)} \, dx dy = \int_V g(u,v) \, h(u) k(v) \, du dv \; ,$$

où a, b et λ sont des réels strictement positifs.

Vérifier que ces quantités sont finies lorsque g est bornée.

En déduire une expression du rapport

$$\frac{\Gamma(a)\,\Gamma(b)}{\Gamma(a+b)}$$

sous la forme d'une intégrale.

Exercice VI : Soit μ une mesure sur \mathbb{R}_+ .

Montrer que l'on a :

$$\int_{\mathbb{R}_+} x \, d\mu(x) = \int_{\mathbb{R}_+} \mu\left(\left[t; +\infty \right] \right) \, dt \, .$$

Exercice VII : En utilisant un changement de variable en coordonnées polaires, retrouver la valeur de l'intégrale

$$\int_0^{+\infty} e^{-x^2} dx .$$

Exercice VIII:

1) Calculer les intégrales

$$\int_0^{1/2} \frac{1}{\sqrt{1-u^2}} \arctan\left(\frac{u}{\sqrt{1-u^2}}\right) \, du \quad \text{et} \quad \int_{1/2}^1 \frac{1}{\sqrt{1-u^2}} \arctan\left(\frac{1-u}{\sqrt{1-u^2}}\right) \, du \,,$$

en effectuant un changement de variables $u = \sin(\theta)$ ou $u = \cos(\theta)$.

2) Montrer que l'on a

$$\int_{[0;1]^2} \frac{dxdy}{1 - xy} = \sum_{n \geqslant 1} \frac{1}{n^2} .$$

En effectuant le changement de variables : $x=u-t,\,y=u+t,\,$ dans l'intégrale précédente, montrer que

$$\sum_{n \ge 1} \frac{1}{n^2} = \frac{\pi^2}{6} \ .$$