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Motivation and Problem
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I. Multirecurrence and Multiple ergodic averages
Theorem (Furstenberg-Weiss, 1978) If

e (X,d) a compact metric space.
o T;: X — T continuous, T;T; = T;T; (1 <i,5 <d).
Then there exists € X and (ny) C N such that

lim Tz =2, Vi=1,2,--- L.

k—o0
Applied to X = {0,1}", T; = T*, T being the shift.
Theorem (Szemeredi, 1975) If A C N satisfies

AN[1I,N
1imsup7| Al

> 0,
N—o0 N

Then A contains arithmetic progressions of arbitrary length.
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Il. Multiple ergodic theorem
Multiple ergodic averages

n

S AT ) fo(T2) - - fo(T2)

k=1

SRS

Furstenberg : when (X, T) is mixing, L2-limit is H;l:l [ fidp.

Host-Kra : L?-convergence (von Neumann ¢ = 1, Furstenberg ¢ = 2,
Conze-Lesigne ¢ = 3+ total ergodicity).

Bourgain : Almost everywhere convergence when ¢ = 2.

N. B. (Question of limit) When ¢ = 2, the limit depends on the
Kronecker factor but may be not constant. When ¢ > 3, the Kronecker
factor can not capture relations among z, 7"z, T?"x, T3"x.
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I1l. Setting of Multifractal Analysis

o T: X — X topological dynamical system
e ®: X’ — R continuous function (£ > 1)

@ Denote, if the limit exists

@ For given «, denote
E(a)={z € X : As(x) = a}.

Problem : What is the size of E(«a)?

N.B. The case £ = 1 is classical. The case ¢ > 2 is a challenging problem.
Most interesting case is ® = f1 ® -+ - ® fy.
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IV. Problem : different Spectra

Hausdorff Spectrum
Fhausdorft (@) = dimpy E(a).
Invariance Spectrum
Fluvariance () = sup {dim p : p invariant, u(E(a)) =1 }.
Mixing Spectrum
Frixing (@) = sup {dim p1 : p mixing, u(E(a)) =1 }.
dimension of a measure :

dim ¢4 = inf{dim B : B Borel set ,pu(B¢) = 0}.

N.B. When ¢ =1, all these spectra are the same. But when case ¢ > 2,
they may be different (E(«) is no longer invariant).
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V. V-statistics
o T: X — X topological dynamical system
e ®: X’ — R continuous function (¢ > 1)
@ Denote, if the limit exists
Va(z) = lim i@ zn: ®(Thx, Thz, ..., Trex).

n—oo N
1<k, - ,ke<d

e For given «, denote
Vie)={z e X : Vo(z) = a}.
Problem : What is the size of V() ?

N. B. 1. A satisfactory result will be obtained for the entropy spectrum
of V(a) when (X, T) has the specification property.
2. In general, there is no ergodic theorem (Aaronson et al, 1996).
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V-statistics

FAN Multifractal Analysis of Multiple Ergodic Averages




I. Topological entropy
s-Hausdorff measure : for E C X, s > 0,

HS(E) = ;i_r}%)inf {Z ‘UZ‘S : E C U2, Us, |U~L| < (5}
=1

Hausdorff dimension :
dimy(E) :=inf{s > 0: H*(E) = 0} = sup{s > 0: H*(E) = oo}

Bowen topological entropy :
By (z,€) :=={y: d(TVz,Ty) <e€,5 =0,1,--- ,n — 1} (Bowen ball).

=1

hiop(E,€) :=1inf{s > 0: H*(E,€) = 0} = sup{s > 0: H*(E,¢) = oo}

H?(E,¢e) := lim inf{z le™™° : B C U2y Bn,; (x4, €),n; > n}

hiop(E) = lim hiop(E, €)
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Il. Specification property

Specification property of (X, T) : for any € > 0 there exists an integer
m(e) > 1 having the property that for any integer k > 2, for any k points
T1,...,2TE in X, and for any integers

a1 <by <ag <by<---<ap<bg

with a; —b;—1 > m(e) (V2 < i < k), there exists a point y € X such
that

d(T* "y, T"x;) < € Vo<n<b —a; V1<i<k).

Examples :
topologically mixing Subshift of finite type.
topologically mixing continuous interval maps.
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I1l. Bowen lemma
Ji-generic points :

ln—l .
G, = xeX:gZ(STjIw—HA ,
§j=0

Lemma (Bowen, 1973)

For any invariant measure (1, hiop(Gp) < hy.

Lemma (Fan-Liao-Peyriere, 2008)

Suppose (X, T') has the specification property. We have hiop,(GL) = hy
for any invariant measure (.

Ai-Hua FAN Multifractal Analysis of Multiple Ergodic Averages



IV. Topological spectrum of V-statistics

Mg (a) = {u € My - @duw = a} .

Theorem

(a) If Mg(a) =
(b) If Mo (ar) #

, we have Vg (a) = 0.
, we have the conditional variational principle

=

huop(Vo(@) = sup
BHEMg (cx)

(b) @ hiop(Va(a)) is u.s.c.
N. B. The case ¢ = 1 is classical and when ® is "smooth”,

a — hiop (Ve () is analytic. But when ¢ > 3, even when @ is very
"smooth”, there may be discontinuity (phase transition).
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IV.(Example) Product and quotient of Birkhoff averages
f,9: X — R continuous functions.

Theorem
Assume g(z) > 0.

n—1 i

o STz
htop $€X:1im%:a
n— 00 Zj:O g(Tﬂm)

E,.f
= By g iant, =~ = a}.
sup{h,, : p invariant, E,g at
1 n—1ln—1 ‘ )
hiop { @ € X ¢ lim — Z Zf(sz)g(TJg;) =«
i

= sup{h, : p invariant,E, f - E,g = a}.
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Multiple ergodic averages

a striking new phenomenon
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I. Example 1
On Xo. fi(z) = fo(z) = 22y — 1 (valued —1,1). We have

1 1 1+« 14+ Vo
F‘hausdorﬁ'((k) = 5 + EH ( 9 ) ’ Envariant (Oé) =H <f)

where H(z) = —xzlogy z — (1 — ) logy(1 — x).

dimensions
=)
in
~
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Il. Example 2
On Xo. fi(z) = fo(x) = 21 (valued 0,1).

Envariant ((,Y) - H(\/a)

Fhausdortr (@) is numerically computed : pressure P(s) = 2logto(s),
x =to(s) > 0 is the solution of the third order equation

23— (e + 1)z +(e°—1)=0.

dimensions
o o
= in

e
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I1l. Remarks

When £ =1, Fhausdort = Finvariant- NO longer the case when ¢ > 2.

It is possible that there is no invariant measure sitting on E(a). It is
then necessary to construct non invariant measure for studying
E(a).

In general, Fiyvariant 7 Frixing-

a + Frixing (@) has discontinuity even for regular potentials.
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Riesz product method
[A. H. Fan, L. M. Liao, J. H. Ma]
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I. A special case on X = {—1,1}"
o X ={—1,1}N, T is the shift.
o f;(x) = x1 the projection on the first coordinates (i =1,2,--- , )
e for § € R, denote

1 n
By = {x e {-1,1}": ILm ﬁzxklék"'l'zk = 9} .

k=1

Theorem (Fan-Liao-Ma, 2009)
For 6 & [—1,1], By = 0. For any 6 € [—1, 1], we have

. 1 146
dlmH(Bg)—l—é-i-eH( . )

where H(t) = —tlogyt — (1 —t)log,(1 — t).
N.B.dimpyg By >1-1/¢>0if £ > 2.
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Il. Proof using Riesz products
e Rademacher functions r,,(x) = x,, are group characters

@ Walsh functions
Wn = Tny " Tngy n= 2n1—1+2n2—1+. . .+2n5—17 1 < ny <ng <---

is a Hilbert basis in L2({—1,1}").
@ The subsystem
e =rpron T (kK 2>1)
are dissociated in the sense of Hewitt-Zuckerman : different products
of & give rise to different characters.

@ The following Riesz product measure is well defined

oo

dpg = H(l + 0&k(x))dz.

k=1
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Il. Proof (continued)
Lemma 1 (Expectation)
If f(z) = f(x1, - ,x,), we have

Ln/¢]
By [f] =/f(x) IT @+ 6¢(x))dz.
k=1

Proof. Because r,, are Haar-independent. QED
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Il. Proof (continued)

Lemma 2 (Law of large numbers)

If f(z) = 0" gnz"™ with > |gs| < oo, then for pp-almost all z,

Jim = 3" (6 (x) = Eglo(E)],

k=1

Proof. Apply Menchoff Theorem to >/~ %(g(ﬁk) —Eg [g({k)}) and
conclude by Kronecker theorem :

o () = 1, €' (&) = (o) Y 2 1.

@ g(&k) =300 92n + &k Xonly 2n—1-

o Eo(&) = 0,Ep(&6) = 0%, (j #K).

° Eolg(r)] = 2020 92n + 03001 g2n—1.

® g(&) —Egg(&k) are py-orthogonal.
QED
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EEEEEEEEEEEEE———————
Il. Proof (continued) : Proof of Theorem
to(By) =1 (Lemma 2 applied to g(z) = z) :

1
—ae z lim — () = (&) =
po—a.e. x lim_ me:lﬁA,(z) (&)

By Lemma 1 (applied to 1;,) : Va, Vn > ¢,

[n/£]

Po(In(x)) = on (1+9§k(x))-
k=1

92n 1

Notice that log(1 + &k (x)) = — > o0, 922: + 3ol S &k(x). Then
for all points = € By,

021’7, 1

77}gnoo—Zbg (1+ 60¢k(x 292 Z _19.

=1 :1

The right hand side can be written as

—1 log(1 — 6%) = [1 - H <1;9)} log 2.

We conclude by Billingsley's theorem. QED

0log(l+6) —
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I1l. Riesz product : on T = R/Z
o F. Riesz (1918) : singular BV function

z N
F(z) = lim_ ) [T + cos2mant)dt
n=1

o Zygmund (1932) : a,, = r,e®™®" € A, 3\, < Ang1

s N
F(z) = A}gnoo i nl;[l(l + 7y, o8 2m(Apt + ¢y ) )dt
@ Notation
Lo = H(l + 7y €08 2m(Apt + @) i= pp.
n=1
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Riesz product : on a compact abelian GG
o T = {v,}(C G) is dissociated if W, (I') = 3"

Wn = Wn(F) = {61'}/1 SEO00S S €EnTn - € = _]-707 1}

@ Notation : a = (an)n>1 C C,lay| <1

H 1 + Re ak’}/k ))
k=1

@ Remarkable relation

WnJrl = Wn U (_'YnJrl + Wn) U ('YnJrl + Wn)

~

Pa,n-i—l (’Y) = ﬁa,n(’y) vry € Wn
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Riesz product : some properties
@ Zygmund dichotomy (1932)

F singular < (a,) € *; F ac. < (a,) € £%.
@ Peyriere criterion (1973)

Z ‘an *bn‘Q =00 = Ha L Mbs

Z |lan — bn|2 < 00 = g K [p-

N. B. The second implication is proved under sup |a,| < 1.

@ Parreau (1990) : sup |as| < 1 replaced by |an| = |bal.
o Kilmer-Saeki (1988) : "S" |an — ba|*" not "sufficient” .
@ Equivalence problem
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Riesz product : randomization
@ Random Riesz products of Rademacher type :

o0

H(l +Re+ apyn(z))

n=1

@ Random Riesz products of Steinhaus type : Vw € GN

oo

= H(l + Re apyn(z 4+ wy))

n=1

@ Homogeneous martingale (Kahane random multiplication) :

Qn(z) = [[(1 + Re axy(z + wi)), VoG,
k=1
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Riesz product : two conjectures
@ Conjecture 1 : Vw € GN

Nu,,w L ,ub,w = Ha L Mb; Ha,w < Mb,w = Ma < Hb-

@ Conjecture 2 : i
Lo L pp & H I(ap,b,) =0.

&t

Lo <K Ly & H I(an, by,) > 0.

n=1

I(an,by) == E\/(l + Re agyk) (1 + Re bryi)-
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Riesz product : return to T
o A distance d(-,-) on the unit disk :

dr?
1—r

ds* = db* + i,

, Z=T7T

cos® (¢ — ¢)

d(Zl,ZQ)Q = |Zl S ,22|2 (1 +

¢ =arg(z1 + 22), ¢ =arg(z — 22).
@ Conjecture 2 becomes

Z d((]/”, b’n,)2 = 00 = g 1 b,

Zd(an., bn)? < 00 = pig K fip.
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IV. A special case on X = {0, 1}"
o X ={0,1}", T is the shift.
o fi(x) = x1 the projection on the first coodinates (i = 1,2,--- ,{)
o for f € R, denote

1 n
Ag = {m € {O,I}N : ILm ﬁzxk‘TQk"'xék :9}~
k=1

Remarks
e f;(T'x) = x; are not group characters.

@ Riesz product method doesn't work and the study of Ay is more
difficult than By.

@ The study of Ay was the motivation.
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V. An attempt : a subset of Aj For ¢ =2, define
Xo = {x € {0,1}N : 2,29, = 0, for all n}

Fibonacci sequence : ag =1, a1 =2, a, = an—1 + apn—2 (n >2).

Theorem (Fan-Liao-Ma, 2009)

. 1 > log a,
dimp(Xo) = TTog3 > o = 08242936 -

n=1

Theorem (Kenyon-Peres-Solomyak, 2011)

dimg(Xo) = —logyp = 0.81137---  (p* = (1 — p)?).
Remarks
o dimpy (Xy) < dimp(Xy).
@ A class of sets like X is studied by Kenyon-Peres-Solomyak.
o dimgy (Xo) = dimpy (Ap).
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VI. Combinatorial proof (of box dimension) Starting point
10g2 Nn

dimp X = lim
n— 00 n

where N, is the cardinality of
{(z122 - @y) : wpror, =0 for k > 1 such that 2k < n}.
Let {1,---,n}=CoUCyU---UC,, with

Co:=1{1, 3,5, ..., 2ng — 1},
Cr:={2-1,2-3,2-5 ..., 2 - (2n1 — 1)},
Cp:={2"-1,25.3,2F.5, ... 2% (2n, — 1)},
Cp = {2™ 1},

The conditions zpxo, = 0 with k in different columns in the above table
are independent. On each column, (zy, xo) is conditioned to be different
from (1,1). Counting column by column, we get

Mo —1— Mo, anm—Z_nwnfl .

no—ni
m m—1 .

g n Y
Ny =a;"a ay
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Mega-Gibbs measure

and
nonlinear transfer operator
[A. H. Fan, J. Schmeling, M. Wu]

Ai-Hua FAN Multifractal Analysis of Multiple Ergodic Averages 34/42



I. Setting
e X =3,,={0,1,--- ,m— 1} (m > 2), T is the shift.
@ &: X x X — R continuous (¢ = 2).
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l. Invariance spectrum
Fiber of measures :

Mo (a) :={n:E 5, P =a}

Theorem (F-S-W)
If Mg () # 0, then

Envariance(a) = Fmixing (a) = sup dun,u
HEMo ()
Remark 1 : It coincides with the spectrum of the V-statistics. But it is no
longer the case for @ : X x X x X — R.
Remark 2 : If ® = (¢1, ¢2) with ¢; = ¢ taking negative values «, no
invariant measure is supported by F(«) but dim E(a) > 0.
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Il. Hausdorff spectrum : partial result
Assumption : ®(x,y) = ¢(x1,y1) depend only on the first coordinates.
Nonlinear transfer equation :

to()? = Y eVt (y), VseR

Ty=x

Fact : ¢, : ¥,, — R, depends only on the first coordinate. s — P(s) is
strictly convex and analytic.
Pressure :

P(s) = log/ ts(z)dz + logm, Vs € R.

m

Theorem (F-S-W)

For any & € [@min, ¥max], P’'($) = a has a unique solution s, and we
have

1
~ 2logm

Fhausdorff(a) (P(Sa) - SaP/(Sa))
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I1l. Mega-Gibbs measures
Markov measure pg :

ts(j)
ts(6)2

ts(i)
YRR AC)
Decomposition N* = | |5, A; with A; = {i2*} >0
Decomposition ¥, = HM%{O, L--,m— 1},

Mega-Gibbs measure P, : Take a copy js on each {0,1,--- ,m — 1}A
and then define

pij = e5P(6:3)

(1) =

3

}P’S:'u/sx...x/j,sx....
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IV. Gibbs measure For n > 1, u, is the probability measure
uniformly distributed on each ng-cylinder and such that

tn([T1, -y Tan]) = exp thp (xj,225))

j=1

Theorem (Existence of Gibbs measure)

For each t, the measures p,, converge weakly to a probability measure p,
called Gibbs measure.

Theorem (Distribution of p)

Let N > 1 and Fi,..., Fy be N arbitrary real functions defined on S x S.
We have

log, N lt(H;:é Dp, ; (1)w(t)

N
nlLII;O/HFj(xj’qu)d“" = H H p(t)k
i=1 =

k=1 ﬂk<i<7
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V. Sketched proof for Hausdorff spectrum

D(P,, x) (lower local dimension of P, at ) : Vz € E(«), we have

D(Ps,z) <

< 210gm[P(s) — asl.

Py, (E(P'(54))) =1: o(T72, T%z) is Ps-mixing. So we have the law of
large numbers :

1 — , .
: - J 2jxy — p/ P.-
nlgr()lo - kg_l (T 2z, T*%) = P'(s) Ps-a.e..
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VI. Study of transfer equation

1/2

—

i
ti=| D A, )t , 0<i<m-—1.
=0

If the matrix A is positive, the above equation admits a unique positive
solution.

The RHS of the equation defines a map I : RY™ — R*¥™ such that
F1, F(la,b™) C [a,b]™ (a = min A(7, §),b = max A(1, j)).

lim F™(a,--- ,a) is a fixed point of F.

If A(i, j) = e*?("9), the solution (s) is analytic and log > ;(s) is convex.
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VI. Open questions
@ Nearly nothing is known for

[T ) f2(TH ) f3(T% z).

[Riesz product method applicable to

fi(z) = fa(z) = f3(x) = 21 = £1]

If fi(x) = fi(z1) (i = 1,2,3), the mixing spectrum = the spectrum
of the V-statistics, but the mixing spectrum = invariant spectrum.
There is phase transition.

@ The methods cannot be adapted to the case
fi(@) = fi(z1,22),  fa(x) = fo(21,22).

Because we lose the independence like : A, and x|, (i # j) are
independent.
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