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Motivation and Problem
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I. Multirecurrence and Multiple ergodic averages
Theorem (Furstenberg-Weiss, 1978) If

(X, d) a compact metric space.

Ti : X → T continuous, TiTj = TjTi (1 ≤ i, j ≤ d).

Then there exists x ∈ X and (nk) ⊂ ℕ such that

lim
k→∞

Tnki x = x, ∀i = 1, 2, ⋅ ⋅ ⋅ , ℓ.

Applied to X = {0, 1}ℕ, Ti = T i, T being the shift.

Theorem (Szemeredi, 1975) If Λ ⊂ ℕ satisfies

lim sup
N→∞

∣Λ ∩ [1, N ]∣
N

> 0,

Then Λ contains arithmetic progressions of arbitrary length.
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II. Multiple ergodic theorem
Multiple ergodic averages

1

n

n∑
k=1

f1(T kx)f2(T 2kx) ⋅ ⋅ ⋅ fℓ(T ℓkx)

Furstenberg : when (X,T ) is mixing, L2-limit is
∏d
j=1

∫
fjd�.

Host-Kra : L2-convergence (von Neumann ℓ = 1, Furstenberg ℓ = 2,
Conze-Lesigne ℓ = 3+ total ergodicity).

Bourgain : Almost everywhere convergence when ℓ = 2.

...

N. B. (Question of limit) When ℓ = 2, the limit depends on the
Kronecker factor but may be not constant. When ℓ ≥ 3, the Kronecker
factor can not capture relations among x, Tnx, T 2nx, T 3nx.
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III. Setting of Multifractal Analysis

T : X → X topological dynamical system

Φ : Xℓ → ℝ continuous function (ℓ ≥ 1)

Denote, if the limit exists

AΦ(x) = lim
n→∞

1

n

n∑
k=1

Φ(T kx, T 2kx, ⋅ ⋅ ⋅ , T ℓkx).

For given �, denote

E(�) = {x ∈ X : AΦ(x) = �}.

Problem : What is the size of E(�) ?

N.B. The case ℓ = 1 is classical. The case ℓ ≥ 2 is a challenging problem.
Most interesting case is Φ = f1 ⊗ ⋅ ⋅ ⋅ ⊗ fℓ.
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IV. Problem : different Spectra

Hausdorff Spectrum

Fhausdorff(�) = dimH E(�).

Invariance Spectrum

Finvariance(�) = sup {dim� : � invariant, �(E(�)) = 1 } .

Mixing Spectrum

Fmixing(�) = sup {dim� : � mixing, �(E(�)) = 1 } .

dimension of a measure :

dim� = inf{dimB : B Borel set , �(Bc) = 0}.

N.B. When ℓ = 1, all these spectra are the same. But when case ℓ ≥ 2,
they may be different (E(�) is no longer invariant).
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V. V-statistics
T : X → X topological dynamical system

Φ : Xℓ → ℝ continuous function (ℓ ≥ 1)

Denote, if the limit exists

VΦ(x) = lim
n→∞

1

nℓ

n∑
1≤k1,⋅⋅⋅ ,kℓ≤d

Φ(T k1x, T k2x, ⋅ ⋅ ⋅ , T kℓx).

For given �, denote

V (�) = {x ∈ X : VΦ(x) = �}.

Problem : What is the size of V (�) ?

N. B. 1. A satisfactory result will be obtained for the entropy spectrum
of V (�) when (X,T ) has the specification property.
2. In general, there is no ergodic theorem (Aaronson et al, 1996).
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V-statistics
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I. Topological entropy
s-Hausdorff measure : for E ⊂ X, s > 0,

ℋs(E) := lim
�→0

inf

{
∞∑
i=1

∣Ui∣s : E ⊂ ∪∞i=1Ui, ∣Ui∣ < �

}

Hausdorff dimension :

dimH(E) := inf{s > 0 : ℋs(E) = 0} = sup{s > 0 : ℋs(E) =∞}

Bowen topological entropy :

Bn(x, �) := {y : d(T jx, T jy) < �, j = 0, 1, ⋅ ⋅ ⋅ , n− 1} (Bowen ball).

Hs(E, �) := lim
n→∞

inf

{
∞∑
i=1

∣e−ni ∣s : E ⊂ ∪∞i=1Bni(xi, �), ni > n

}
ℎtop(E, �) := inf{s > 0 : Hs(E, �) = 0} = sup{s > 0 : Hs(E, �) =∞}

ℎtop(E) := lim
�→0

ℎtop(E, �)
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II. Specification property
Specification property of (X,T ) : for any � > 0 there exists an integer
m(�) ≥ 1 having the property that for any integer k ≥ 2, for any k points
x1, . . . , xk in X, and for any integers

a1 ≤ b1 < a2 ≤ b2 < ⋅ ⋅ ⋅ < ak ≤ bk

with ai − bi−1 ≥ m(�) (∀2 ≤ i ≤ k), there exists a point y ∈ X such
that

d(T ai+ny, Tnxi) < � (∀ 0 ≤ n ≤ bi − ai, ∀1 ≤ i ≤ k).

Examples :
topologically mixing Subshift of finite type.
topologically mixing continuous interval maps.
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III. Bowen lemma
�-generic points :

G� :=

⎧⎨⎩x ∈ X :
1

n

n−1∑
j=0

�T jx
w∗

−→ �

⎫⎬⎭ ,

Lemma (Bowen, 1973)

For any invariant measure �, ℎtop(G�) ≤ ℎ�.

Lemma (Fan-Liao-Peyrière, 2008)

Suppose (X,T ) has the specification property. We have ℎtop(G�) = ℎ�
for any invariant measure �.
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IV. Topological spectrum of V-statistics

ℳΦ(�) :=

{
� ∈ℳinv :

∫
Φd�⊗ℓ = �

}
.

Theorem

(a) If ℳΦ(�) = ∅, we have VΦ(�) = ∅.
(b) If ℳΦ(�) ∕= ∅, we have the conditional variational principle

ℎtop(VΦ(�)) = sup
�∈ℳΦ(�)

ℎ�.

(b) � 7→ ℎtop(VΦ(�)) is u.s.c.

N. B. The case ℓ = 1 is classical and when Φ is ”smooth”,
� 7→ ℎtop(VΦ(�)) is analytic. But when ℓ ≥ 3, even when Φ is very
”smooth”, there may be discontinuity (phase transition).
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IV.(Example) Product and quotient of Birkhoff averages
f, g : X → ℝ continuous functions.

Theorem

Assume g(x) > 0.

ℎtop

{
x ∈ X : lim

n→∞

∑n−1
j=0 f(T jx)∑n−1
j=0 g(T jx)

= �

}

= sup{ℎ� : � invariant,
E�f
E�g

= �}.

Theorem

ℎtop

⎧⎨⎩x ∈ X : lim
n→∞

1

n2

n−1∑
i

n−1∑
j

f(T ix)g(T jx) = �

⎫⎬⎭
= sup{ℎ� : � invariant,E�f ⋅ E�g = �}.
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Multiple ergodic averages
a striking new phenomenon
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I. Example 1
On Σ2. f1(x) = f2(x) = 2x1 − 1 (valued −1, 1). We have

Fhausdorff(�) =
1

2
+

1

2
H

(
1 + �

2

)
, Finvariant(�) = H

(
1 +
√
�

2

)
where H(x) = −x log2 x− (1− x) log2(1− x).
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II. Example 2
On Σ2. f1(x) = f2(x) = x1 (valued 0, 1).

Finvariant(�) = H(
√
�)

Fhausdorff(�) is numerically computed : pressure P (s) = 2 log t0(s),
x = t0(s) > 0 is the solution of the third order equation

x3 − (es + 1)x+ (es − 1) = 0.
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III. Remarks
When ℓ = 1, Fhausdorff = Finvariant. No longer the case when ℓ ≥ 2.

It is possible that there is no invariant measure sitting on E(�). It is
then necessary to construct non invariant measure for studying
E(�).

In general, Finvariant ∕= Fmixing.

� 7→ Fmixing(�) has discontinuity even for regular potentials.
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Riesz product method
[A. H. Fan, L. M. Liao, J. H. Ma]
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I. A special case on X = {−1, 1}ℕ
X = {−1, 1}ℕ, T is the shift.

fi(x) = x1 the projection on the first coordinates (i = 1, 2, ⋅ ⋅ ⋅ , ℓ)
for � ∈ ℝ, denote

B� :=

{
x ∈ {−1, 1}ℕ : lim

n→∞

1

n

n∑
k=1

xkx2k ⋅ ⋅ ⋅xℓk = �

}
.

Theorem (Fan-Liao-Ma, 2009)

For � ∕∈ [−1, 1], B� = ∅. For any � ∈ [−1, 1], we have

dimH(B�) = 1− 1

ℓ
+

1

ℓ
H
(1 + �

2

)
,

where H(t) = −t log2 t− (1− t) log2(1− t).
N.B. dimH B� ≥ 1− 1/ℓ > 0 if ℓ ≥ 2.
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II. Proof using Riesz products
Rademacher functions rn(x) = xn are group characters

Walsh functions

wn = rn1
⋅ ⋅ ⋅ rns , n = 2n1−1+2n2−1+⋅ ⋅ ⋅+2ns−1, 1 ≤ n1 < n2 < ⋅ ⋅ ⋅

is a Hilbert basis in L2({−1, 1}ℕ).

The subsystem
�k = rkr2k ⋅ ⋅ ⋅ rℓk (k ≥ 1)

are dissociated in the sense of Hewitt-Zuckerman : different products
of �k give rise to different characters.

The following Riesz product measure is well defined

d�� =

∞∏
k=1

(1 + ��k(x))dx.
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II. Proof (continued)

Lemma 1 (Expectation)

If f(x) = f(x1, ⋅ ⋅ ⋅ , xn), we have

E�� [f ] =

∫
f(x)

⌊n/ℓ⌋∏
k=1

(
1 + ��k(x)

)
dx.

Proof. Because rn are Haar-independent. QED
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II. Proof (continued)

Lemma 2 (Law of large numbers)

If f(x) =
∑∞
n=0 gnx

n with
∑
n ∣gn∣ <∞, then for ��-almost all x,

lim
n→∞

1

n

n∑
k=1

g(�k(x)) = E�[g(�1)].

Proof. Apply Menchoff Theorem to
∑∞
k=0

1
k

(
g(�k)− E�[g(�k)]

)
and

conclude by Kronecker theorem :

�2n
k (x) = 1, �2n−1

k (x) = �k(x) ∀n ≥ 1.

g(�k) =
∑∞
n=0 g2n + �k

∑∞
n=1 g2n−1.

E�(�k) = �,E�(�j�k) = �2, (j ∕= k).

E�[g(�k)] =
∑∞
n=0 g2n + �

∑∞
n=1 g2n−1.

g(�j)− E�g(�k) are ��-orthogonal.

QED
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II. Proof (continued) : Proof of Theorem
��(B�) = 1 (Lemma 2 applied to g(x) = x) :

��−a.e. x lim
m→∞

1

m

m∑
k=1

�k(x) = E(�1) = �.

By Lemma 1 (applied to 1In) : ∀x, ∀n ≥ ℓ,

P�(In(x)) =
1

2n

⌊n/ℓ⌋∏
k=1

(
1 + ��k(x)

)
.

Notice that log(1 + ��k(x)) = −
∑∞
n=1

�2n

2n +
∑∞
n=1

�2n−1

2n−1 �k(x). Then
for all points x ∈ B�,

lim
m→∞

1

m

m∑
k=1

log(1 + ��k(x)) = −
∞∑
n=1

�2n

2n
+

∞∑
n=1

�2n−1

2n− 1
�.

The right hand side can be written as

� log(1 + �)− � − 1

2
log(1− �2) =

[
1−H

(
1 + �

2

)]
log 2.

We conclude by Billingsley’s theorem. QED
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III. Riesz product : on T = ℝ/ℤ
F. Riesz (1918) : singular BV function

F (x) = lim
N→∞

∫ x

0

N∏
n=1

(1 + cos 2�4nt)dt

Zygmund (1932) : an = rne
2�i�n ∈ Δ, 3�n ≤ �n+1

F (x) = lim
N→∞

∫ x

0

N∏
n=1

(1 + rn cos 2�(�nt+ �n))dt

Notation

�a :=

∞∏
n=1

(1 + rn cos 2�(�nt+ �n)) := �F .
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Riesz product : on a compact abelian G

Γ = {
n}(⊂ Ĝ) is dissociated if ♯Wn(Γ) = 3n

Wn := Wn(Γ) := {�1
1 + ⋅ ⋅ ⋅+ �n
n : �j = −1, 0, 1}

Notation : a = (an)n≥1 ⊂ ℂ, ∣an∣ ≤ 1

Pa,n(x) =

n∏
k=1

(1 + Re ak
k(x))

Remarkable relation

Wn+1 = Wn ⊔ (−
n+1 +Wn) ⊔ (
n+1 +Wn)

P̂a,n+1(
) = P̂a,n(
) ∀
 ∈Wn.
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Riesz product : some properties
Zygmund dichotomy (1932)

F singular ⇔ (an) ∕∈ ℓ2; F a.c. ⇔ (an) ∈ ℓ2.

Peyrière criterion (1973)∑
∣an − bn∣2 =∞⇒ �a ⊥ �b;∑
∣an − bn∣2 <∞⇒ �a ≪ �b.

N. B. The second implication is proved under sup ∣an∣ < 1.

Parreau (1990) : sup ∣an∣ < 1 replaced by ∣an∣ = ∣bn∣.
Kilmer-Saeki (1988) : ”

∑
∣an − bn∣2” not ”sufficient”.

Equivalence problem
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Riesz product : randomization
Random Riesz products of Rademacher type :

∞∏
n=1

(1 + Re± an
n(x))

Random Riesz products of Steinhaus type : ∀! ∈ Gℕ

�a,! :=

∞∏
n=1

(1 + Re an
n(x+ !n))

Homogeneous martingale (Kahane random multiplication) :

Qn(x) :=

n∏
k=1

(1 + Re ak
k(x+ !k)), ∀x ∈ G.
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Riesz product : two conjectures
Conjecture 1 : ∀! ∈ Gℕ

�a,! ⊥ �b,! ⇔ �a ⊥ �b; �a,! ≪ �b,! ⇔ �a ≪ �b.

Conjecture 2 :
�a ⊥ �b ⇔

∞∏
n=1

I(an, bn) = 0.

�a ≪ �b ⇔
∞∏
n=1

I(an, bn) > 0.

I(an, bn) := E
√

(1 + Re ak
k)(1 + Re bk
k).
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Riesz product : return to T
A distance d(⋅, ⋅) on the unit disk :

ds2 = d�2 +
dr2

√
1− r

, z = re2�i�.

d(z1, z2)2 ≍ ∣z1 − z2∣2
(

1 +
cos2(�−  )√
2− ∣z1 + z2∣

)
� = arg(z1 + z2),  = arg(z1 − z2).

Conjecture 2 becomes∑
d(an, bn)2 =∞⇒ �a ⊥ �b,∑
d(an, bn)2 <∞⇒ �a ≪ �b.
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IV. A special case on X = {0, 1}ℕ
X = {0, 1}ℕ, T is the shift.

fi(x) = x1 the projection on the first coodinates (i = 1, 2, ⋅ ⋅ ⋅ , ℓ)
for � ∈ ℝ, denote

A� :=

{
x ∈ {0, 1}ℕ : lim

n→∞

1

n

n∑
k=1

xkx2k ⋅ ⋅ ⋅xℓk = �

}
.

Remarks
fi(T

ix) = xi are not group characters.

Riesz product method doesn’t work and the study of A� is more
difficult than B�.

The study of A� was the motivation.
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V. An attempt : a subset of A0 For ℓ = 2, define

X0 :=
{
x ∈ {0, 1}ℕ : xnx2n = 0, for all n

}
.

Fibonacci sequence : a0 = 1, a1 = 2, an = an−1 + an−2 (n ≥ 2).

Theorem (Fan-Liao-Ma, 2009)

dimB(X0) =
1

2 log 2

∞∑
n=1

log an
2n

= 0.8242936 ⋅ ⋅ ⋅

Theorem (Kenyon-Peres-Solomyak, 2011)

dimH(X0) = − log2 p = 0.81137 ⋅ ⋅ ⋅ (p3 = (1− p)2).

Remarks
dimH(X0) < dimB(X0).

A class of sets like X0 is studied by Kenyon-Peres-Solomyak.

dimH(X0) = dimH(A0).
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VI. Combinatorial proof (of box dimension) Starting point

dimB X0 = lim
n→∞

log2Nn
n

where Nn is the cardinality of

{(x1x2 ⋅ ⋅ ⋅xn) : xkx2k = 0 for k ≥ 1 such that 2k ≤ n}.
Let {1, ⋅ ⋅ ⋅ , n} = C0 ⊔ C1 ⊔ ⋅ ⋅ ⋅ ⊔ Cm with

C0 : = {1, 3, 5, . . . , 2n0 − 1} ,
C1 : =

{
2 ⋅ 1, 2 ⋅ 3, 2 ⋅ 5, . . . , 2 ⋅

(
2n1 − 1

)}
,

. . .

Ck : =
{

2k ⋅ 1, 2k ⋅ 3, 2k ⋅ 5, . . . , 2k ⋅ (2nk − 1)
}
,

. . .

Cm : = {2m ⋅ 1} ,
The conditions xkx2k = 0 with k in different columns in the above table
are independent. On each column, (xk, x2k) is conditioned to be different
from (1, 1). Counting column by column, we get

Nn = anmm+1a
nm−1−nm
m a

nm−2−nm−1

m−1 ⋅ ⋅ ⋅ an0−n1
1 .
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Mega-Gibbs measure
and

nonlinear transfer operator
[A. H. Fan, J. Schmeling, M. Wu]

Ai-Hua FAN Multifractal Analysis of Multiple Ergodic Averages 34/42



I. Setting

X = Σm = {0, 1, ⋅ ⋅ ⋅ ,m− 1}ℕ (m ≥ 2), T is the shift.

Φ : X ×X → ℝ continuous (ℓ = 2).
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I. Invariance spectrum
Fiber of measures :

ℳΦ(�) := {� : E�⊗�Φ = �}

Theorem (F-S-W)

If ℳΦ(�) ∕= ∅, then

Finvariance(�) = Fmixing(�) = sup
�∈ℳΦ(�)

dim�.

Remark 1 : It coincides with the spectrum of the V-statistics. But it is no
longer the case for Φ : X ×X ×X → ℝ.
Remark 2 : If Φ = (�1, �2) with �1 = �2 taking negative values �, no
invariant measure is supported by E(�) but dimE(�) > 0.
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II. Hausdorff spectrum : partial result
Assumption : Φ(x, y) = '(x1, y1) depend only on the first coordinates.
Nonlinear transfer equation :

ts(x)2 =
∑
Ty=x

esΦ(x,y)ts(y), ∀s ∈ ℝ.

Fact : ts : Σm → ℝ+ depends only on the first coordinate. s 7→ P (s) is
strictly convex and analytic.
Pressure :

P (s) = log

∫
Σm

ts(x)dx+ logm, ∀s ∈ ℝ.

Theorem (F-S-W)

For any � ∈ [�min, �max], P ′(s) = � has a unique solution s� and we
have

Fhausdorff(�) =
1

2 logm
(P (s�)− s�P ′(s�))
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III. Mega-Gibbs measures
Markov measure �s :

�(i) =
ts(i)∑m−1
j=0 ts(j)

, pi,j = es'(i,j) ts(j)

ts(i)2
.

Decomposition ℕ∗ =
⊔
i:2∕∣i Λi with Λi = {i2k}k≥0

Decomposition Σm =
∏
i:2 ∕∣i{0, 1, ⋅ ⋅ ⋅ ,m− 1}Λi .

Mega-Gibbs measure ℙs : Take a copy �s on each {0, 1, ⋅ ⋅ ⋅ ,m− 1}Λi
and then define

ℙs = �s × ⋅ ⋅ ⋅ × �s × ⋅ ⋅ ⋅ .
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IV. Gibbs measure For n ≥ 1, �n is the probability measure
uniformly distributed on each nq-cylinder and such that

�n([x1, ..., x2n]) =
1

Zn(t)
exp(t

n∑
j=1

'(xj , x2j)).

Theorem (Existence of Gibbs measure)

For each t, the measures �n converge weakly to a probability measure �t,
called Gibbs measure.

Theorem (Distribution of �t)

Let N ≥ 1 and F1, ..., FN be N arbitrary real functions defined on S ×S.
We have

lim
n→∞

∫ N∏
j=1

Fj(xj , xjq)d�n =

⌊logq N⌋∏
k=1

∏
N

qk
<i≤ N

qk−1

1t(
∏k−1
j=0 ΦFiqj (t))w(t)

�(t)k
.
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V. Sketched proof for Hausdorff spectrum
D(ℙs, x) (lower local dimension of ℙs at x) : ∀x ∈ E(�), we have

D(ℙs, x) ≤ 1

2 logm
[P (s)− �s].

ℙs�(E(P ′(s�))) = 1 : '(T jx, T 2jx) is ℙs-mixing. So we have the law of
large numbers :

lim
n→∞

1

n

n∑
k=1

'(T jx, T 2jx) = P ′(s) ℙs-a.e..
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VI. Study of transfer equation

ti =

⎛⎝m−1∑
j=0

A(i, j)tj

⎞⎠1/2

, 0 ≤ i ≤ m− 1.

Lemma

If the matrix A is positive, the above equation admits a unique positive
solution.

The RHS of the equation defines a map F : ℝ∗m+ → ℝ∗m+ such that

F ↑, F ([a, b]m) ⊂ [a, b]m (a = minA(i, j), b = maxA(i, j)).

limFn(a, ⋅ ⋅ ⋅ , a) is a fixed point of F .

Lemma

If A(i, j) = es'(i,j), the solution t(s) is analytic and log
∑
j tj(s) is convex.

Ai-Hua FAN Multifractal Analysis of Multiple Ergodic Averages 41/42



VI. Open questions
Nearly nothing is known for

f1(T jx)f2(T 2jx)f3(T 3jx).

[Riesz product method applicable to
f1(x) = f2(x) = f3(x) = x1 = ±1.]
If fi(x) = fi(x1) (i = 1, 2, 3), the mixing spectrum = the spectrum
of the V-statistics, but the mixing spectrum ∕= invariant spectrum.
There is phase transition.

The methods cannot be adapted to the case

f1(x) = f1(x1, x2), f2(x) = f2(x1, x2).

Because we lose the independence like : x∣Λi and x∣Λj (i ∕= j) are
independent.
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