Rencontre d'ANR PERTURBATIONS

Multifractal analysis of multiple ergodic averages

Ai-Hua FAN
University of Picardie, France

Brest, le 13-15 Décembre, 2011

Outline

(1) Motivation and Problem
(2) V-statistics
(3) Multiple ergodic averages

4 Riesz product method
(5) Mega-Gibbs measure and nonlinear transfer operator

Motivation and Problem

I. Multirecurrence and Multiple ergodic averages

Theorem (Furstenberg-Weiss, 1978) If

- (X, d) a compact metric space.
- $T_{i}: X \rightarrow T$ continuous, $T_{i} T_{j}=T_{j} T_{i}(1 \leq i, j \leq d)$.

Then there exists $x \in X$ and $\left(n_{k}\right) \subset \mathbb{N}$ such that

$$
\lim _{k \rightarrow \infty} T_{i}^{n_{k}} x=x, \quad \forall i=1,2, \cdots, \ell
$$

Applied to $X=\{0,1\}^{\mathbb{N}}, T_{i}=T^{i}, T$ being the shift.
Theorem (Szemeredi, 1975) If $\Lambda \subset \mathbb{N}$ satisfies

$$
\limsup _{N \rightarrow \infty} \frac{|\Lambda \cap[1, N]|}{N}>0
$$

Then Λ contains arithmetic progressions of arbitrary length.

II. Multiple ergodic theorem

Multiple ergodic averages

$$
\frac{1}{n} \sum_{k=1}^{n} f_{1}\left(T^{k} x\right) f_{2}\left(T^{2 k} x\right) \cdots f_{\ell}\left(T^{\ell k} x\right)
$$

- Furstenberg : when (X, T) is mixing, L^{2}-limit is $\prod_{j=1}^{d} \int f_{j} d \mu$.
- Host-Kra : L^{2}-convergence (von Neumann $\ell=1$, Furstenberg $\ell=2$, Conze-Lesigne $\ell=3+$ total ergodicity).
- Bourgain : Almost everywhere convergence when $\ell=2$.
- ...
N. B. (Question of limit) When $\ell=2$, the limit depends on the Kronecker factor but may be not constant. When $\ell \geq 3$, the Kronecker factor can not capture relations among $x, T^{n} x, T^{2 n} x, T^{3 n} x$.

III. Setting of Multifractal Analysis

- $T: X \rightarrow X$ topological dynamical system
- $\Phi: X^{\ell} \rightarrow \mathbb{R}$ continuous function $(\ell \geq 1)$
- Denote, if the limit exists

$$
A_{\Phi}(x)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \Phi\left(T^{k} x, T^{2 k} x, \cdots, T^{\ell k} x\right)
$$

- For given α, denote

$$
E(\alpha)=\left\{x \in X: A_{\Phi}(x)=\alpha\right\} .
$$

Problem: What is the size of $E(\alpha)$?
N.B. The case $\ell=1$ is classical. The case $\ell \geq 2$ is a challenging problem. Most interesting case is $\Phi=f_{1} \otimes \cdots \otimes f_{\ell}$.

IV. Problem : different Spectra

Hausdorff Spectrum

$$
F_{\text {hausdorff }}(\alpha)=\operatorname{dim}_{H} E(\alpha)
$$

Invariance Spectrum

$$
F_{\text {invariance }}(\alpha)=\sup \{\operatorname{dim} \mu: \mu \text { invariant, } \mu(E(\alpha))=1\}
$$

Mixing Spectrum

$$
F_{\text {mixing }}(\alpha)=\sup \{\operatorname{dim} \mu: \mu \text { mixing, } \mu(E(\alpha))=1\}
$$

dimension of a measure :

$$
\operatorname{dim} \mu=\inf \left\{\operatorname{dim} B: B \text { Borel set }, \mu\left(B^{c}\right)=0\right\}
$$

N.B. When $\ell=1$, all these spectra are the same. But when case $\ell \geq 2$, they may be different ($E(\alpha)$ is no longer invariant).

V. V-statistics

- $T: X \rightarrow X$ topological dynamical system
- $\Phi: X^{\ell} \rightarrow \mathbb{R}$ continuous function $(\ell \geq 1)$
- Denote, if the limit exists

$$
V_{\Phi}(x)=\lim _{n \rightarrow \infty} \frac{1}{n^{\ell}} \sum_{1 \leq k_{1}, \cdots, k_{\ell} \leq d}^{n} \Phi\left(T^{k_{1}} x, T^{k_{2}} x, \cdots, T^{k_{\ell}} x\right)
$$

- For given α, denote

$$
V(\alpha)=\left\{x \in X: V_{\Phi}(x)=\alpha\right\} .
$$

Problem: What is the size of $V(\alpha)$?
N. B. 1. A satisfactory result will be obtained for the entropy spectrum of $V(\alpha)$ when (X, T) has the specification property.
2. In general, there is no ergodic theorem (Aaronson et al, 1996).

V-statistics

I. Topological entropy

s-Hausdorff measure : for $E \subset X, s>0$,

$$
\mathcal{H}^{s}(E):=\lim _{\delta \rightarrow 0} \inf \left\{\sum_{i=1}^{\infty}\left|U_{i}\right|^{s}: E \subset \cup_{i=1}^{\infty} U_{i},\left|U_{i}\right|<\delta\right\}
$$

Hausdorff dimension :

$$
\operatorname{dim}_{H}(E):=\inf \left\{s>0: \mathcal{H}^{s}(E)=0\right\}=\sup \left\{s>0: \mathcal{H}^{s}(E)=\infty\right\}
$$

Bowen topological entropy :

$$
\begin{gathered}
B_{n}(x, \epsilon):=\left\{y: d\left(T^{j} x, T^{j} y\right)<\epsilon, j=0,1, \cdots, n-1\right\} \text { (Bowen ball). } \\
H^{s}(E, \epsilon):=\lim _{n \rightarrow \infty} \inf \left\{\sum_{i=1}^{\infty}\left|e^{-n_{i}}\right|^{s}: E \subset \cup_{i=1}^{\infty} B_{n_{i}}\left(x_{i}, \epsilon\right), n_{i}>n\right\} \\
h_{\mathrm{top}}(E, \epsilon):=\inf \left\{s>0: H^{s}(E, \epsilon)=0\right\}=\sup \left\{s>0: H^{s}(E, \epsilon)=\infty\right\} \\
h_{\mathrm{top}}(E):=\lim _{\epsilon \rightarrow 0} h_{\mathrm{top}}(E, \epsilon)
\end{gathered}
$$

II. Specification property

Specification property of (X, T) : for any $\epsilon>0$ there exists an integer $m(\epsilon) \geq 1$ having the property that for any integer $k \geq 2$, for any k points x_{1}, \ldots, x_{k} in X, and for any integers

$$
a_{1} \leq b_{1}<a_{2} \leq b_{2}<\cdots<a_{k} \leq b_{k}
$$

with $a_{i}-b_{i-1} \geq m(\epsilon) \quad(\forall 2 \leq i \leq k)$, there exists a point $y \in X$ such that

$$
d\left(T^{a_{i}+n} y, T^{n} x_{i}\right)<\epsilon \quad\left(\forall 0 \leq n \leq b_{i}-a_{i}, \quad \forall 1 \leq i \leq k\right) .
$$

Examples:
topologically mixing Subshift of finite type. topologically mixing continuous interval maps.

III. Bowen lemma

μ-generic points :

$$
G_{\mu}:=\left\{x \in X: \frac{1}{n} \sum_{j=0}^{n-1} \delta_{T^{j} x} \xrightarrow{w^{*}} \mu\right\}
$$

Lemma (Bowen, 1973)

For any invariant measure $\mu, h_{\text {top }}\left(G_{\mu}\right) \leq h_{\mu}$.

Lemma (Fan-Liao-Peyrière, 2008)

Suppose (X, T) has the specification property. We have $h_{\text {top }}\left(G_{\mu}\right)=h_{\mu}$ for any invariant measure μ.

IV. Topological spectrum of V-statistics

$$
\mathcal{M}_{\Phi}(\alpha):=\left\{\mu \in \mathcal{M}_{\mathrm{inv}}: \int \Phi d \mu^{\otimes \ell}=\alpha\right\} .
$$

Theorem

(a) If $\mathcal{M}_{\Phi}(\alpha)=\emptyset$, we have $V_{\Phi}(\alpha)=\emptyset$.
(b) If $\mathcal{M}_{\Phi}(\alpha) \neq \emptyset$, we have the conditional variational principle

$$
h_{\mathrm{top}}\left(V_{\Phi}(\alpha)\right)=\sup _{\mu \in \mathcal{M}_{\Phi}(\alpha)} h_{\mu} .
$$

(b) $\alpha \mapsto h_{\text {top }}\left(V_{\Phi}(\alpha)\right)$ is u.s.c.
N. B. The case $\ell=1$ is classical and when Φ is "smooth", $\alpha \mapsto h_{\mathrm{top}}\left(V_{\Phi}(\alpha)\right)$ is analytic. But when $\ell \geq 3$, even when Φ is very "smooth", there may be discontinuity (phase transition).

IV.(Example) Product and quotient of Birkhoff averages

 $f, g: X \rightarrow \mathbb{R}$ continuous functions.
Theorem

Assume $g(x)>0$.

$$
\begin{aligned}
& h_{\text {top }}\left\{x \in X: \lim _{n \rightarrow \infty} \frac{\sum_{j=0}^{n-1} f\left(T^{j} x\right)}{\sum_{j=0}^{n-1} g\left(T^{j} x\right)}=\alpha\right\} \\
= & \sup \left\{h_{\mu}: \mu \text { invariant, } \frac{\mathbb{E}_{\mu} f}{\mathbb{E}_{\mu} g}=\alpha\right\} .
\end{aligned}
$$

Theorem

$$
\begin{aligned}
& h_{\text {top }}\left\{x \in X: \lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{i}^{n-1} \sum_{j}^{n-1} f\left(T^{i} x\right) g\left(T^{j} x\right)=\alpha\right\} \\
= & \sup \left\{h_{\mu}: \mu \text { invariant }, \mathbb{E}_{\mu} f \cdot \mathbb{E}_{\mu} g=\alpha\right\} .
\end{aligned}
$$

Multiple ergodic averages a striking new phenomenon

I. Example 1

On $\Sigma_{2} \cdot f_{1}(x)=f_{2}(x)=2 x_{1}-1($ valued $-1,1)$. We have

$$
F_{\text {hausdorff }}(\alpha)=\frac{1}{2}+\frac{1}{2} H\left(\frac{1+\alpha}{2}\right), \quad F_{\text {invariant }}(\alpha)=H\left(\frac{1+\sqrt{\alpha}}{2}\right)
$$

where $H(x)=-x \log _{2} x-(1-x) \log _{2}(1-x)$.

II. Example 2

On $\Sigma_{2} . f_{1}(x)=f_{2}(x)=x_{1}($ valued 0,1$)$.

$$
F_{\text {invariant }}(\alpha)=H(\sqrt{\alpha})
$$

$F_{\text {hausdorff }}(\alpha)$ is numerically computed : pressure $P(s)=2 \log t_{0}(s)$, $x=t_{0}(s)>0$ is the solution of the third order equation

$$
x^{3}-\left(e^{s}+1\right) x+\left(e^{s}-1\right)=0 .
$$

III. Remarks

- When $\ell=1, F_{\text {hausdorff }}=F_{\text {invariant }}$. No longer the case when $\ell \geq 2$.
- It is possible that there is no invariant measure sitting on $E(\alpha)$. It is then necessary to construct non invariant measure for studying $E(\alpha)$.
- In general, $F_{\text {invariant }} \neq F_{\text {mixing }}$.
- $\alpha \mapsto F_{\text {mixing }}(\alpha)$ has discontinuity even for regular potentials.

Riesz product method [A. H. Fan, L. M. Liao, J. H. Ma]

I. A special case on $X=\{-1,1\}^{\mathbb{N}}$

- $X=\{-1,1\}^{\mathbb{N}}, T$ is the shift.
- $f_{i}(x)=x_{1}$ the projection on the first coordinates $(i=1,2, \cdots, \ell)$
- for $\theta \in \mathbb{R}$, denote

$$
B_{\theta}:=\left\{x \in\{-1,1\}^{\mathbb{N}}: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} x_{k} x_{2 k} \cdots x_{\ell k}=\theta\right\} .
$$

Theorem (Fan-Liao-Ma, 2009)

For $\theta \notin[-1,1], B_{\theta}=\emptyset$. For any $\theta \in[-1,1]$, we have

$$
\operatorname{dim}_{H}\left(B_{\theta}\right)=1-\frac{1}{\ell}+\frac{1}{\ell} H\left(\frac{1+\theta}{2}\right)
$$

where $H(t)=-t \log _{2} t-(1-t) \log _{2}(1-t)$.
N.B. $\operatorname{dim}_{H} B_{\theta} \geq 1-1 / \ell>0$ if $\ell \geq 2$.

II. Proof using Riesz products

- Rademacher functions $r_{n}(x)=x_{n}$ are group characters
- Walsh functions
$w_{n}=r_{n_{1}} \cdots r_{n_{s}}, \quad n=2^{n_{1}-1}+2^{n_{2}-1}+\cdots+2^{n_{s}-1}, \quad 1 \leq n_{1}<n_{2}<\cdots$
is a Hilbert basis in $L^{2}\left(\{-1,1\}^{\mathbb{N}}\right)$.
- The subsystem

$$
\xi_{k}=r_{k} r_{2 k} \cdots r_{\ell k} \quad(k \geq 1)
$$

are dissociated in the sense of Hewitt-Zuckerman : different products of ξ_{k} give rise to different characters.

- The following Riesz product measure is well defined

$$
d \mu_{\theta}=\prod_{k=1}^{\infty}\left(1+\theta \xi_{k}(x)\right) d x
$$

II. Proof (continued)

Lemma 1 (Expectation)
If $f(x)=f\left(x_{1}, \cdots, x_{n}\right)$, we have

$$
\mathbb{E}_{\mu_{\theta}}[f]=\int f(x) \prod_{k=1}^{\lfloor n / \ell\rfloor}\left(1+\theta \xi_{k}(x)\right) d x .
$$

Proof. Because r_{n} are Haar-independent. QED

II. Proof (continued)

Lemma 2 (Law of large numbers)

If $f(x)=\sum_{n=0}^{\infty} g_{n} x^{n}$ with $\sum_{n}\left|g_{n}\right|<\infty$, then for μ_{θ}-almost all x,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} g\left(\xi_{k}(x)\right)=\mathbb{E}_{\theta}\left[g\left(\xi_{1}\right)\right] .
$$

Proof. Apply Menchoff Theorem to $\sum_{k=0}^{\infty} \frac{1}{k}\left(g\left(\xi_{k}\right)-\mathbb{E}_{\theta}\left[g\left(\xi_{k}\right)\right]\right)$ and conclude by Kronecker theorem :

- $\xi_{k}^{2 n}(x)=1, \xi_{k}^{2 n-1}(x)=\xi_{k}(x) \forall n \geq 1$.
- $g\left(\xi_{k}\right)=\sum_{n=0}^{\infty} g_{2 n}+\xi_{k} \sum_{n=1}^{\infty} g_{2 n-1}$.
- $\mathbb{E}_{\theta}\left(\xi_{k}\right)=\theta, \mathbb{E}_{\theta}\left(\xi_{j} \xi_{k}\right)=\theta^{2}, \quad(j \neq k)$.
- $\mathbb{E}_{\theta}\left[g\left(\xi_{k}\right)\right]=\sum_{n=0}^{\infty} g_{2 n}+\theta \sum_{n=1}^{\infty} g_{2 n-1}$.
- $g\left(\xi_{j}\right)-\mathbb{E}_{\theta} g\left(\xi_{k}\right)$ are μ_{θ}-orthogonal.

QED

II. Proof (continued) : Proof of Theorem

$\mu_{\theta}\left(B_{\theta}\right)=1$ (Lemma 2 applied to $\left.g(x)=x\right)$:

$$
\mu_{\theta}-\text { a.e. } x \lim _{m \rightarrow \infty} \frac{1}{m} \sum_{k=1}^{m} \xi_{k}(x)=\mathbb{E}\left(\xi_{1}\right)=\theta
$$

By Lemma 1 (applied to $1_{I_{n}}$): $\forall x, \forall n \geq \ell$,

$$
P_{\theta}\left(I_{n}(x)\right)=\frac{1}{2^{n}} \prod_{k=1}^{\lfloor n / \ell\rfloor}\left(1+\theta \xi_{k}(x)\right)
$$

Notice that $\log \left(1+\theta \xi_{k}(x)\right)=-\sum_{n=1}^{\infty} \frac{\theta^{2 n}}{2 n}+\sum_{n=1}^{\infty} \frac{\theta^{2 n-1}}{2 n-1} \xi_{k}(x)$. Then for all points $x \in B_{\theta}$,

$$
\lim _{m \rightarrow \infty} \frac{1}{m} \sum_{k=1}^{m} \log \left(1+\theta \xi_{k}(x)\right)=-\sum_{n=1}^{\infty} \frac{\theta^{2 n}}{2 n}+\sum_{n=1}^{\infty} \frac{\theta^{2 n-1}}{2 n-1} \theta
$$

The right hand side can be written as

$$
\theta \log (1+\theta)-\frac{\theta-1}{2} \log \left(1-\theta^{2}\right)=\left[1-H\left(\frac{1+\theta}{2}\right)\right] \log 2
$$

We conclude by Billingsley's theorem. QED

III. Riesz product : on $\mathbb{T}=\mathbb{R} / \mathbb{Z}$

- F. Riesz (1918) : singular BV function

$$
F(x)=\lim _{N \rightarrow \infty} \int_{0}^{x} \prod_{n=1}^{N}\left(1+\cos 2 \pi 4^{n} t\right) d t
$$

- Zygmund (1932) : $a_{n}=r_{n} e^{2 \pi i \phi_{n}} \in \Delta, 3 \lambda_{n} \leq \lambda_{n+1}$

$$
F(x)=\lim _{N \rightarrow \infty} \int_{0}^{x} \prod_{n=1}^{N}\left(1+r_{n} \cos 2 \pi\left(\lambda_{n} t+\phi_{n}\right)\right) d t
$$

- Notation

$$
\mu_{a}:=\prod_{n=1}^{\infty}\left(1+r_{n} \cos 2 \pi\left(\lambda_{n} t+\phi_{n}\right)\right):=\mu_{F}
$$

Riesz product : on a compact abelian G

- $\Gamma=\left\{\gamma_{n}\right\}(\subset \widehat{G})$ is dissociated if $\sharp W_{n}(\Gamma)=3^{n}$

$$
W_{n}:=W_{n}(\Gamma):=\left\{\epsilon_{1} \gamma_{1}+\cdots+\epsilon_{n} \gamma_{n}: \epsilon_{j}=-1,0,1\right\}
$$

- Notation : $a=\left(a_{n}\right)_{n \geq 1} \subset \mathbb{C},\left|a_{n}\right| \leq 1$

$$
P_{a, n}(x)=\prod_{k=1}^{n}\left(1+\operatorname{Re} a_{k} \gamma_{k}(x)\right)
$$

- Remarkable relation

$$
\begin{gathered}
W_{n+1}=W_{n} \sqcup\left(-\gamma_{n+1}+W_{n}\right) \sqcup\left(\gamma_{n+1}+W_{n}\right) \\
\widehat{P}_{a, n+1}(\gamma)=\widehat{P}_{a, n}(\gamma) \quad \forall \gamma \in W_{n} .
\end{gathered}
$$

Riesz product : some properties

- Zygmund dichotomy (1932)

$$
F \text { singular } \Leftrightarrow\left(a_{n}\right) \notin \ell^{2} ; \quad F \text { a.c. } \Leftrightarrow\left(a_{n}\right) \in \ell^{2} .
$$

- Peyrière criterion (1973)

$$
\begin{aligned}
& \sum\left|a_{n}-b_{n}\right|^{2}=\infty \Rightarrow \mu_{a} \perp \mu_{b} \\
& \sum\left|a_{n}-b_{n}\right|^{2}<\infty \Rightarrow \mu_{a} \ll \mu_{b}
\end{aligned}
$$

N. B. The second implication is proved under sup $\left|a_{n}\right|<1$.

- Parreau (1990) : sup $\left|a_{n}\right|<1$ replaced by $\left|a_{n}\right|=\left|b_{n}\right|$.
- Kilmer-Saeki (1988) : " $\sum\left|a_{n}-b_{n}\right|^{2 "}$ not "sufficient".
- Equivalence problem

Riesz product : randomization

- Random Riesz products of Rademacher type :

$$
\prod_{n=1}^{\infty}\left(1+\operatorname{Re} \pm a_{n} \gamma_{n}(x)\right)
$$

- Random Riesz products of Steinhaus type : $\forall \omega \in G^{\mathbb{N}}$

$$
\mu_{a, \omega}:=\prod_{n=1}^{\infty}\left(1+\operatorname{Re} a_{n} \gamma_{n}\left(x+\omega_{n}\right)\right)
$$

- Homogeneous martingale (Kahane random multiplication) :

$$
Q_{n}(x):=\prod_{k=1}^{n}\left(1+\operatorname{Re} a_{k} \gamma_{k}\left(x+\omega_{k}\right)\right), \quad \forall x \in G
$$

Riesz product : two conjectures

- Conjecture $1: \forall \omega \in G^{\mathbb{N}}$

$$
\mu_{a, \omega} \perp \mu_{b, \omega} \Leftrightarrow \mu_{a} \perp \mu_{b} ; \quad \mu_{a, \omega} \ll \mu_{b, \omega} \Leftrightarrow \mu_{a} \ll \mu_{b}
$$

- Conjecture 2 :

$$
\begin{aligned}
& \mu_{a} \perp \mu_{b} \Leftrightarrow \prod_{n=\overline{\bar{\infty}}^{1}}^{\infty} I\left(a_{n}, b_{n}\right)=0 . \\
& \mu_{a} \ll \mu_{b} \Leftrightarrow \prod_{n=1} I\left(a_{n}, b_{n}\right)>0
\end{aligned}
$$

$$
I\left(a_{n}, b_{n}\right):=\mathbb{E} \sqrt{\left(1+\operatorname{Re} a_{k} \gamma_{k}\right)\left(1+\operatorname{Re} b_{k} \gamma_{k}\right)}
$$

Riesz product : return to \mathbb{T}

- A distance $d(\cdot, \cdot)$ on the unit disk:

$$
\begin{gathered}
d s^{2}=d \theta^{2}+\frac{d r^{2}}{\sqrt{1-r}}, \quad z=r e^{2 \pi i \theta} \\
d\left(z_{1}, z_{2}\right)^{2} \asymp\left|z_{1}-z_{2}\right|^{2}\left(1+\frac{\cos ^{2}(\phi-\psi)}{\sqrt{2-\left|z_{1}+z_{2}\right|}}\right) \\
\phi=\arg \left(z_{1}+z_{2}\right), \quad \psi=\arg \left(z_{1}-z_{2}\right) .
\end{gathered}
$$

- Conjecture 2 becomes

$$
\begin{aligned}
& \sum d\left(a_{n}, b_{n}\right)^{2}=\infty \Rightarrow \mu_{a} \perp \mu_{b} \\
& \sum d\left(a_{n}, b_{n}\right)^{2}<\infty \Rightarrow \mu_{a} \ll \mu_{b}
\end{aligned}
$$

IV. A special case on $X=\{0,1\}^{\mathbb{N}}$

- $X=\{0,1\}^{\mathbb{N}}, T$ is the shift.
- $f_{i}(x)=x_{1}$ the projection on the first coodinates $(i=1,2, \cdots, \ell)$
- for $\theta \in \mathbb{R}$, denote

$$
A_{\theta}:=\left\{x \in\{0,1\}^{\mathbb{N}}: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} x_{k} x_{2 k} \cdots x_{\ell k}=\theta\right\} .
$$

Remarks

- $f_{i}\left(T^{i} x\right)=x_{i}$ are not group characters.
- Riesz product method doesn't work and the study of A_{θ} is more difficult than B_{θ}.
- The study of A_{θ} was the motivation.
V. An attempt : a subset of A_{0} For $\ell=2$, define

$$
X_{0}:=\left\{x \in\{0,1\}^{\mathbb{N}}: x_{n} x_{2 n}=0, \quad \text { for all } n\right\} .
$$

Fibonacci sequence : $a_{0}=1, a_{1}=2, \quad a_{n}=a_{n-1}+a_{n-2}(n \geq 2)$.

Theorem (Fan-Liao-Ma, 2009)

$$
\operatorname{dim}_{B}\left(X_{0}\right)=\frac{1}{2 \log 2} \sum_{n=1}^{\infty} \frac{\log a_{n}}{2^{n}}=0.8242936 \cdots
$$

Theorem (Kenyon-Peres-Solomyak, 2011)

$$
\operatorname{dim}_{H}\left(X_{0}\right)=-\log _{2} p=0.81137 \cdots \quad\left(p^{3}=(1-p)^{2}\right) .
$$

Remarks

- $\operatorname{dim}_{H}\left(X_{0}\right)<\operatorname{dim}_{B}\left(X_{0}\right)$.
- A class of sets like X_{0} is studied by Kenyon-Peres-Solomyak.
- $\operatorname{dim}_{H}\left(X_{0}\right)=\operatorname{dim}_{H}\left(A_{0}\right)$.

VI. Combinatorial proof (of box dimension) Starting point

$$
\operatorname{dim}_{B} X_{0}=\lim _{n \rightarrow \infty} \frac{\log _{2} N_{n}}{n}
$$

where N_{n} is the cardinality of

$$
\left\{\left(x_{1} x_{2} \cdots x_{n}\right): x_{k} x_{2 k}=0 \text { for } k \geq 1 \text { such that } 2 k \leq n\right\}
$$

Let $\{1, \cdots, n\}=C_{0} \sqcup C_{1} \sqcup \cdots \sqcup C_{m}$ with

$$
\begin{aligned}
C_{0} & :=\left\{1,3,5, \ldots, 2 n_{0}-1\right\} \\
C_{1} & :=\left\{2 \cdot 1,2 \cdot 3,2 \cdot 5, \ldots, 2 \cdot\left(2 n_{1}-1\right)\right\} \\
& \ldots \\
C_{k} & :=\left\{2^{k} \cdot 1,2^{k} \cdot 3,2^{k} \cdot 5, \ldots, 2^{k} \cdot\left(2 n_{k}-1\right)\right\}, \\
& \ldots \\
C_{m} & :=\left\{2^{m} \cdot 1\right\}
\end{aligned}
$$

The conditions $x_{k} x_{2 k}=0$ with k in different columns in the above table are independent. On each column, $\left(x_{k}, x_{2 k}\right)$ is conditioned to be different from $(1,1)$. Counting column by column, we get

$$
N_{n}=a_{m+1}^{n_{m}} a_{m}^{n_{m-1}-n_{m}} a_{m-1}^{n_{m-2}-n_{m-1}} \cdots a_{1}^{n_{0}-n_{1}} .
$$

Mega-Gibbs measure and nonlinear transfer operator
 [A. H. Fan, J. Schmeling, M. Wu]

I. Setting

- $X=\Sigma_{m}=\{0,1, \cdots, m-1\}^{\mathbb{N}}(m \geq 2), T$ is the shift.
- $\Phi: X \times X \rightarrow \mathbb{R}$ continuous $(\ell=2)$.

I. Invariance spectrum

Fiber of measures:

$$
\mathcal{M}_{\Phi}(\alpha):=\left\{\mu: \mathbb{E}_{\mu \otimes \mu} \Phi=\alpha\right\}
$$

Theorem (F-S-W)

If $\mathcal{M}_{\Phi}(\alpha) \neq \emptyset$, then

$$
F_{\text {invariance }}(\alpha)=F_{\text {mixing }}(\alpha)=\sup _{\mu \in \mathcal{M}_{\Phi}(\alpha)} \operatorname{dim} \mu
$$

Remark 1 : It coincides with the spectrum of the V-statistics. But it is no longer the case for $\Phi: X \times X \times X \rightarrow \mathbb{R}$.
Remark 2: If $\Phi=\left(\phi_{1}, \phi_{2}\right)$ with $\phi_{1}=\phi_{2}$ taking negative values α, no invariant measure is supported by $E(\alpha)$ but $\operatorname{dim} E(\alpha)>0$.

II. Hausdorff spectrum : partial result

Assumption : $\Phi(x, y)=\varphi\left(x_{1}, y_{1}\right)$ depend only on the first coordinates. Nonlinear transfer equation :

$$
t_{s}(x)^{2}=\sum_{T y=x} e^{s \Phi(x, y)} t_{s}(y), \quad \forall s \in \mathbb{R}
$$

Fact : $t_{s}: \Sigma_{m} \rightarrow \mathbb{R}_{+}$depends only on the first coordinate. $s \mapsto P(s)$ is strictly convex and analytic.
Pressure :

$$
P(s)=\log \int_{\Sigma_{m}} t_{s}(x) d x+\log m, \quad \forall s \in \mathbb{R}
$$

Theorem (F-S-W)

For any $\alpha \in\left[\alpha_{\min }, \alpha_{\max }\right], P^{\prime}(s)=\alpha$ has a unique solution s_{α} and we have

$$
F_{\text {hausdorff }}(\alpha)=\frac{1}{2 \log m}\left(P\left(s_{\alpha}\right)-s_{\alpha} P^{\prime}\left(s_{\alpha}\right)\right)
$$

III. Mega-Gibbs measures

Markov measure μ_{s} :

$$
\pi(i)=\frac{t_{s}(i)}{\sum_{j=0}^{m-1} t_{s}(j)}, \quad p_{i, j}=e^{s \varphi(i, j)} \frac{t_{s}(j)}{t_{s}(i)^{2}}
$$

Decomposition $\mathbb{N}^{*}=\bigsqcup_{i: 2 \mid \hbar} \Lambda_{i}$ with $\Lambda_{i}=\left\{i 2^{k}\right\}_{k \geq 0}$
Decomposition $\Sigma_{m}=\prod_{i: 2 \mid i}\{0,1, \cdots, m-1\}^{\Lambda_{i}}$.
Mega-Gibbs measure \mathbb{P}_{s} : Take a copy μ_{s} on each $\{0,1, \cdots, m-1\}^{\Lambda_{i}}$ and then define

$$
\mathbb{P}_{s}=\mu_{s} \times \cdots \times \mu_{s} \times \cdots
$$

IV. Gibbs measure For $n \geq 1, \mu_{n}$ is the probability measure uniformly distributed on each $n q$-cylinder and such that

$$
\mu_{n}\left(\left[x_{1}, \ldots, x_{2 n}\right]\right)=\frac{1}{Z_{n}(t)} \exp \left(t \sum_{j=1}^{n} \varphi\left(x_{j}, x_{2 j}\right)\right)
$$

Theorem (Existence of Gibbs measure)

For each t, the measures μ_{n} converge weakly to a probability measure μ_{t}, called Gibbs measure.

Theorem (Distribution of μ_{t})

Let $N \geq 1$ and F_{1}, \ldots, F_{N} be N arbitrary real functions defined on $S \times S$. We have

$$
\lim _{n \rightarrow \infty} \int \prod_{j=1}^{N} F_{j}\left(x_{j}, x_{j q}\right) d \mu_{n}=\prod_{k=1}^{\left\lfloor\log _{q} N\right\rfloor} \prod_{\frac{N}{q^{k}}<i \leq \frac{N}{q^{k-1}}} \frac{1^{t}\left(\prod_{j=0}^{k-1} \Phi_{F_{i q^{j}}}(t)\right) w(t)}{\rho(t)^{k}} .
$$

V. Sketched proof for Hausdorff spectrum

$\underline{D}\left(\mathbb{P}_{s}, x\right)$ (lower local dimension of \mathbb{P}_{s} at $\left.x\right): \forall x \in E(\alpha)$, we have

$$
\underline{D}\left(\mathbb{P}_{s}, x\right) \leq \frac{1}{2 \log m}[P(s)-\alpha s]
$$

$\mathbb{P}_{s_{\alpha}}\left(E\left(P^{\prime}\left(s_{\alpha}\right)\right)\right)=1: \varphi\left(T^{j} x, T^{2 j} x\right)$ is $\mathbb{P}_{s^{\prime}}$-mixing. So we have the law of large numbers :

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \varphi\left(T^{j} x, T^{2 j x}\right)=P^{\prime}(s) \quad \mathbb{P}_{s} \text {-a.e.. }
$$

VI. Study of transfer equation

$$
t_{i}=\left(\sum_{j=0}^{m-1} A(i, j) t_{j}\right)^{1 / 2}, \quad 0 \leq i \leq m-1
$$

Lemma

If the matrix A is positive, the above equation admits a unique positive solution.
The RHS of the equation defines a map $F: \mathbb{R}_{+}^{* m} \rightarrow \mathbb{R}_{+}^{* m}$ such that

$$
F \uparrow, \quad F\left([a, b]^{m}\right) \subset[a, b]^{m} \quad(a=\min A(i, j), b=\max A(i, j))
$$

$\lim F^{n}(a, \cdots, a)$ is a fixed point of F.

Lemma

If $A(i, j)=e^{s \varphi(i, j)}$, the solution $t(s)$ is analytic and $\log \sum_{j} t_{j}(s)$ is convex.

VI. Open questions

- Nearly nothing is known for

$$
f_{1}\left(T^{j} x\right) f_{2}\left(T^{2 j} x\right) f_{3}\left(T^{3 j} x\right)
$$

[Riesz product method applicable to
$f_{1}(x)=f_{2}(x)=f_{3}(x)=x_{1}= \pm 1$.]
If $f_{i}(x)=f_{i}\left(x_{1}\right)(i=1,2,3)$, the mixing spectrum $=$ the spectrum of the V-statistics, but the mixing spectrum \neq invariant spectrum.
There is phase transition.

- The methods cannot be adapted to the case

$$
f_{1}(x)=f_{1}\left(x_{1}, x_{2}\right), \quad f_{2}(x)=f_{2}\left(x_{1}, x_{2}\right) .
$$

Because we lose the independence like : $\left.x\right|_{\Lambda_{i}}$ and $\left.x\right|_{\Lambda_{j}}(i \neq j)$ are independent.

