Rencontre d'ANR PERTURBATIONS

Multifractal analysis of multiple ergodic averages

Ai-Hua FAN

University of Picardie, France

Brest, le 13-15 Décembre, 2011

э

2 V-statistics

- 3 Multiple ergodic averages
- 4 Riesz product method

< ∃ >

Motivation and Problem

э

4 3 b

I. Multirecurrence and Multiple ergodic averages Theorem (Furstenberg-Weiss, 1978) If

• (X, d) a compact metric space.

• $T_i: X \to T$ continuous, $T_i T_j = T_j T_i$ $(1 \le i, j \le d)$.

Then there exists $x \in X$ and $(n_k) \subset \mathbb{N}$ such that

$$\lim_{k \to \infty} T_i^{n_k} x = x, \quad \forall i = 1, 2, \cdots, \ell.$$

Applied to $X = \{0, 1\}^{\mathbb{N}}$, $T_i = T^i$, T being the shift.

Theorem (Szemeredi, 1975) If $\Lambda \subset \mathbb{N}$ satisfies

$$\limsup_{N\to\infty}\frac{|\Lambda\cap[1,N]|}{N}>0,$$

Then Λ contains arithmetic progressions of arbitrary length.

II. Multiple ergodic theorem Multiple ergodic averages

$$\frac{1}{n}\sum_{k=1}^{n}f_1(T^kx)f_2(T^{2k}x)\cdots f_\ell(T^{\ell k}x)$$

- Furstenberg : when (X,T) is mixing, L^2 -limit is $\prod_{j=1}^d \int f_j d\mu$.
- Host-Kra : L^2 -convergence (von Neumann $\ell = 1$, Furstenberg $\ell = 2$, Conze-Lesigne $\ell = 3+$ total ergodicity).
- Bourgain : Almost everywhere convergence when $\ell = 2$.
- ...

N. B. (Question of limit) When $\ell = 2$, the limit depends on the Kronecker factor but may be not constant. When $\ell \geq 3$, the Kronecker factor can not capture relations among $x, T^nx, T^{2n}x, T^{3n}x$.

III. Setting of Multifractal Analysis

- $T: X \to X$ topological dynamical system
- $\Phi: X^{\ell} \to \mathbb{R}$ continuous function $(\ell \ge 1)$
- Denote, if the limit exists

$$A_{\Phi}(x) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \Phi(T^k x, T^{2k} x, \cdots, T^{\ell k} x).$$

• For given α , denote

$$E(\alpha) = \{ x \in X : A_{\Phi}(x) = \alpha \}.$$

Problem : What is the size of $E(\alpha)$?

N.B. The case $\ell = 1$ is classical. The case $\ell \ge 2$ is a challenging problem. Most interesting case is $\Phi = f_1 \otimes \cdots \otimes f_\ell$.

-

IV. Problem : different Spectra

Hausdorff Spectrum

$$F_{\text{hausdorff}}(\alpha) = \dim_H E(\alpha).$$

Invariance Spectrum

$$F_{\text{invariance}}(\alpha) = \sup \{\dim \mu : \mu \text{ invariant}, \mu(E(\alpha)) = 1 \}$$

Mixing Spectrum

$$F_{\text{mixing}}(\alpha) = \sup \left\{ \dim \mu : \mu \text{ mixing}, \mu(E(\alpha)) = 1 \right\}.$$

dimension of a measure :

$$\dim \mu = \inf \{\dim B : B \text{ Borel set }, \mu(B^c) = 0\}.$$

N.B. When $\ell = 1$, all these spectra are the same. But when case $\ell \ge 2$, they may be different $(E(\alpha)$ is no longer invariant).

-

V. V-statistics

- $T: X \to X$ topological dynamical system
- $\Phi: X^{\ell} \to \mathbb{R}$ continuous function $(\ell \ge 1)$
- Denote, if the limit exists

$$V_{\Phi}(x) = \lim_{n \to \infty} \frac{1}{n^{\ell}} \sum_{1 \le k_1, \cdots, k_{\ell} \le d}^n \Phi(T^{k_1}x, T^{k_2}x, \cdots, T^{k_{\ell}}x).$$

• For given α , denote

$$V(\alpha) = \{ x \in X : V_{\Phi}(x) = \alpha \}.$$

Problem : What is the size of $V(\alpha)$?

N. B. 1. A satisfactory result will be obtained for the entropy spectrum of $V(\alpha)$ when (X,T) has the specification property. 2. In general, there is no ergodic theorem (Aaronson et al, 1996).

V-statistics

向下 イヨト イヨト

э.

I. Topological entropy *s*-Hausdorff measure : for $E \subset X$, s > 0,

$$\mathcal{H}^{s}(E) := \lim_{\delta \to 0} \inf \left\{ \sum_{i=1}^{\infty} |U_{i}|^{s} : E \subset \bigcup_{i=1}^{\infty} U_{i}, |U_{i}| < \delta \right\}$$

Hausdorff dimension :

$$\dim_{H}(E) := \inf\{s > 0 : \mathcal{H}^{s}(E) = 0\} = \sup\{s > 0 : \mathcal{H}^{s}(E) = \infty\}$$

Bowen topological entropy :

 $B_n(x,\epsilon) := \{y : d(T^j x, T^j y) < \epsilon, j = 0, 1, \cdots, n-1\}$ (Bowen ball).

$$H^{s}(E,\epsilon) := \lim_{n \to \infty} \inf \left\{ \sum_{i=1}^{\infty} |e^{-n_{i}}|^{s} : E \subset \bigcup_{i=1}^{\infty} B_{n_{i}}(x_{i},\epsilon), n_{i} > n \right\}$$
$$h_{top}(E,\epsilon) := \inf \{s > 0 : H^{s}(E,\epsilon) = 0\} = \sup \{s > 0 : H^{s}(E,\epsilon) = \infty \}$$
$$h_{top}(E) := \lim_{\epsilon \to 0} h_{top}(E,\epsilon)$$

토) · · 토) · ·

II. Specification property

Specification property of (X,T): for any $\epsilon > 0$ there exists an integer $m(\epsilon) \ge 1$ having the property that for any integer $k \ge 2$, for any k points x_1, \ldots, x_k in X, and for any integers

$$a_1 \le b_1 < a_2 \le b_2 < \dots < a_k \le b_k$$

with $a_i - b_{i-1} \ge m(\epsilon)$ ($\forall 2 \le i \le k$), there exists a point $y \in X$ such that

 $d(T^{a_i+n}y, T^nx_i) < \epsilon \qquad (\forall \ 0 \le n \le b_i - a_i, \quad \forall 1 \le i \le k).$

Examples :

topologically mixing Subshift of finite type. topologically mixing continuous interval maps.

III. Bowen lemma μ-generic points :

$$G_{\mu} := \left\{ x \in X : \frac{1}{n} \sum_{j=0}^{n-1} \delta_{T^{j}x} \xrightarrow{w^{*}} \mu \right\},\$$

Lemma (Bowen, 1973)

For any invariant measure μ , $h_{top}(G_{\mu}) \leq h_{\mu}$.

Lemma (Fan-Liao-Peyrière, 2008)

Suppose (X,T) has the specification property. We have $h_{\rm top}(G_{\mu})=h_{\mu}$ for any invariant measure $\mu.$

IV. Topological spectrum of V-statistics

$$\mathcal{M}_{\Phi}(\alpha) := \left\{ \mu \in \mathcal{M}_{inv} : \int \Phi d\mu^{\otimes \ell} = \alpha \right\}.$$

Theorem

(a) If $\mathcal{M}_{\Phi}(\alpha) = \emptyset$, we have $V_{\Phi}(\alpha) = \emptyset$. (b) If $\mathcal{M}_{\Phi}(\alpha) \neq \emptyset$, we have the conditional variational principle

$$h_{\rm top}(V_{\Phi}(\alpha)) = \sup_{\mu \in \mathcal{M}_{\Phi}(\alpha)} h_{\mu}.$$

(b) $\alpha \mapsto h_{top}(V_{\Phi}(\alpha))$ is u.s.c.

N. B. The case $\ell = 1$ is classical and when Φ is "smooth", $\alpha \mapsto h_{top}(V_{\Phi}(\alpha))$ is analytic. But when $\ell \geq 3$, even when Φ is very "smooth", there may be discontinuity (phase transition).

IV.(Example) Product and quotient of Birkhoff averages $f, g: X \to \mathbb{R}$ continuous functions.

Theorem

Assume g(x) > 0.

$$h_{\text{top}}\left\{x \in X : \lim_{n \to \infty} \frac{\sum_{j=0}^{n-1} f(T^j x)}{\sum_{j=0}^{n-1} g(T^j x)} = \alpha\right\}$$
$$= \sup\{h_{\mu} : \mu \text{ invariant}, \frac{\mathbb{E}_{\mu} f}{\mathbb{E}_{\mu} g} = \alpha\}.$$

Theorem

$$h_{\text{top}}\left\{x \in X : \lim_{n \to \infty} \frac{1}{n^2} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} f(T^i x) g(T^j x) = \alpha\right\}$$
$$= \sup\{h_{\mu} : \mu \text{ invariant}, \mathbb{E}_{\mu} f \cdot \mathbb{E}_{\mu} g = \alpha\}.$$

• • = •

Multiple ergodic averages a striking new phenomenon

4 注入

э

I. Example 1 On Σ_2 . $f_1(x) = f_2(x) = 2x_1 - 1$ (valued -1, 1). We have

$$F_{ ext{hausdorff}}(lpha) = rac{1}{2} + rac{1}{2}H\left(rac{1+lpha}{2}
ight), \quad F_{ ext{invariant}}(lpha) = H\left(rac{1+\sqrt{lpha}}{2}
ight)$$

where $H(x) = -x \log_2 x - (1-x) \log_2(1-x)$.

() ⇒) =) =

-

II. Example 2 On Σ_2 . $f_1(x) = f_2(x) = x_1$ (valued 0, 1).

 $F_{\text{invariant}}(\alpha) = H(\sqrt{\alpha})$

 $F_{\text{hausdorff}}(\alpha)$ is numerically computed : pressure $P(s) = 2 \log t_0(s)$, $x = t_0(s) > 0$ is the solution of the third order equation

$$x^{3} - (e^{s} + 1)x + (e^{s} - 1) = 0.$$

III. Remarks

- When $\ell = 1$, $F_{\text{hausdorff}} = F_{\text{invariant}}$. No longer the case when $\ell \geq 2$.
- It is possible that there is no invariant measure sitting on $E(\alpha)$. It is then necessary to construct non invariant measure for studying $E(\alpha)$.
- In general, $F_{\text{invariant}} \neq F_{\text{mixing}}$.
- $\alpha \mapsto F_{\text{mixing}}(\alpha)$ has discontinuity even for regular potentials.

Riesz product method [A. H. Fan, L. M. Liao, J. H. Ma]

э

I. A special case on $X = \{-1, 1\}^{\mathbb{N}}$

- $X = \{-1, 1\}^{\mathbb{N}}$, T is the shift.
- $f_i(x) = x_1$ the projection on the first coordinates $(i = 1, 2, \cdots, \ell)$
- for $\theta \in \mathbb{R}$, denote

$$B_{\theta} := \left\{ x \in \{-1,1\}^{\mathbb{N}} : \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} x_k x_{2k} \cdots x_{\ell k} = \theta \right\}.$$

Theorem (Fan-Liao-Ma, 2009)

For $\theta \notin [-1,1]$, $B_{\theta} = \emptyset$. For any $\theta \in [-1,1]$, we have

$$\dim_H(B_\theta) = 1 - \frac{1}{\ell} + \frac{1}{\ell} H\left(\frac{1+\theta}{2}\right),$$

where $H(t) = -t \log_2 t - (1 - t) \log_2(1 - t)$.

N.B. $\dim_H B_{\theta} \ge 1 - 1/\ell > 0$ if $\ell \ge 2$.

医下颌 医下颌

II. Proof using Riesz products

- Rademacher functions $r_n(x) = x_n$ are group characters
- Walsh functions

 $w_n = r_{n_1} \cdots r_{n_s}, \quad n = 2^{n_1 - 1} + 2^{n_2 - 1} + \dots + 2^{n_s - 1}, \quad 1 \le n_1 < n_2 < \dots$

is a Hilbert basis in $L^2(\{-1,1\}^{\mathbb{N}}).$

• The subsystem

$$\xi_k = r_k r_{2k} \cdots r_{\ell k} \quad (k \ge 1)$$

are dissociated in the sense of Hewitt-Zuckerman : different products of ξ_k give rise to different characters.

• The following Riesz product measure is well defined

$$d\mu_{\theta} = \prod_{k=1}^{\infty} (1 + \theta \xi_k(x)) dx.$$

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()

II. Proof (continued)

Lemma 1 (Expectation)

If $f(x) = f(x_1, \cdots, x_n)$, we have

$$\mathbb{E}_{\mu_{\theta}}[f] = \int f(x) \prod_{k=1}^{\lfloor n/\ell \rfloor} (1 + \theta \xi_k(x)) dx.$$

Proof. Because r_n are Haar-independent. QED

글 🖌 🖌 글 🛌

э

II. Proof (continued)

Lemma 2 (Law of large numbers)

If $f(x)=\sum_{n=0}^{\infty}g_nx^n$ with $\sum_n|g_n|<\infty,$ then for $\mu_{\theta}\text{-almost all }x,$

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} g(\xi_k(x)) = \mathbb{E}_{\theta}[g(\xi_1)].$$

Proof. Apply Menchoff Theorem to $\sum_{k=0}^{\infty} \frac{1}{k} \left(g(\xi_k) - \mathbb{E}_{\theta}[g(\xi_k)] \right)$ and conclude by Kronecker theorem :

•
$$\xi_k^{2n}(x) = 1, \ \xi_k^{2n-1}(x) = \xi_k(x) \ \forall n \ge 1.$$

•
$$g(\xi_k) = \sum_{n=0}^{\infty} g_{2n} + \xi_k \sum_{n=1}^{\infty} g_{2n-1}.$$

•
$$\mathbb{E}_{\theta}(\xi_k) = \theta, \mathbb{E}_{\theta}(\xi_j \xi_k) = \theta^2, \quad (j \neq k).$$

•
$$\mathbb{E}_{\theta}[g(\xi_k)] = \sum_{n=0}^{\infty} g_{2n} + \theta \sum_{n=1}^{\infty} g_{2n-1}.$$

•
$$g(\xi_j) - \mathbb{E}_{\theta}g(\xi_k)$$
 are μ_{θ} -orthogonal.

QED

-

II. Proof (continued) : Proof of Theorem $\mu_{\theta}(B_{\theta}) = 1$ (Lemma 2 applied to g(x) = x) :

$$\mu_{\theta} - a.e. \ x \quad \lim_{m \to \infty} \frac{1}{m} \sum_{k=1}^{m} \xi_k(x) = \mathbb{E}(\xi_1) = \theta.$$

By Lemma 1 (applied to $1_{I_n})$: $\forall x$, $\forall n \geq \ell$,

$$P_{\theta}(I_n(x)) = \frac{1}{2^n} \prod_{k=1}^{\lfloor n/\ell \rfloor} (1 + \theta \xi_k(x)).$$

Notice that $\log(1 + \theta \xi_k(x)) = -\sum_{n=1}^{\infty} \frac{\theta^{2n}}{2n} + \sum_{n=1}^{\infty} \frac{\theta^{2n-1}}{2n-1} \xi_k(x)$. Then for all points $x \in B_{\theta}$,

$$\lim_{m \to \infty} \frac{1}{m} \sum_{k=1}^{m} \log(1 + \theta \xi_k(x)) = -\sum_{n=1}^{\infty} \frac{\theta^{2n}}{2n} + \sum_{n=1}^{\infty} \frac{\theta^{2n-1}}{2n-1} \theta.$$

The right hand side can be written as

$$\theta \log(1+\theta) - \frac{\theta - 1}{2} \log(1-\theta^2) = \left[1 - H\left(\frac{1+\theta}{2}\right)\right] \log 2.$$

We conclude by Billingsley's theorem. QED

III. Riesz product : on $\mathbb{T} = \mathbb{R}/\mathbb{Z}$

• F. Riesz (1918) : singular BV function

$$F(x) = \lim_{N \to \infty} \int_0^x \prod_{n=1}^N (1 + \cos 2\pi 4^n t) dt$$

• Zygmund (1932) : $a_n = r_n e^{2\pi i \phi_n} \in \Delta$, $3\lambda_n \le \lambda_{n+1}$

$$F(x) = \lim_{N \to \infty} \int_0^x \prod_{n=1}^N (1 + r_n \cos 2\pi (\lambda_n t + \phi_n)) dt$$

Notation

$$\mu_a := \prod_{n=1}^{\infty} (1 + r_n \cos 2\pi (\lambda_n t + \phi_n)) := \mu_F.$$

4 3 b.

Riesz product : on a compact abelian G• $\Gamma = \{\gamma_n\}(\subset \widehat{G})$ is dissociated if $\#W_n(\Gamma) = 3^n$ $W_n := W_n(\Gamma) := \{\epsilon_1\gamma_1 + \dots + \epsilon_n\gamma_n : \epsilon_j = -1, 0, 1\}$ • Notation : $a = (a_n)_{n \ge 1} \subset \mathbb{C}, |a_n| \le 1$

$$P_{a,n}(x) = \prod_{k=1}^{n} (1 + \operatorname{Re} a_k \gamma_k(x))$$

Remarkable relation

$$W_{n+1} = W_n \sqcup (-\gamma_{n+1} + W_n) \sqcup (\gamma_{n+1} + W_n)$$
$$\widehat{P}_{a,n+1}(\gamma) = \widehat{P}_{a,n}(\gamma) \quad \forall \gamma \in W_n.$$

(3)

Riesz product : some properties

• Zygmund dichotomy (1932)

F singular $\Leftrightarrow (a_n) \notin \ell^2$; F a.c. $\Leftrightarrow (a_n) \in \ell^2$.

• Peyrière criterion (1973)

$$\sum |a_n - b_n|^2 = \infty \Rightarrow \mu_a \perp \mu_b;$$

$$\sum |a_n - b_n|^2 < \infty \Rightarrow \mu_a \ll \mu_b$$

N. B. The second implication is proved under $\sup |a_n| < 1$.

- Parreau (1990) : $\sup |a_n| < 1$ replaced by $|a_n| = |b_n|$.
- Kilmer-Saeki (1988) : " $\sum |a_n b_n|^2$ " not "sufficient".
- Equivalence problem

- E - E

Riesz product : randomization

• Random Riesz products of Rademacher type :

$$\prod_{n=1}^{\infty} (1 + \operatorname{Re} \pm a_n \gamma_n(x))$$

• Random Riesz products of Steinhaus type : $\forall \omega \in G^{\mathbb{N}}$

$$\mu_{a,\omega} := \prod_{n=1}^{\infty} (1 + \operatorname{Re} a_n \gamma_n(x + \omega_n))$$

• Homogeneous martingale (Kahane random multiplication) :

$$Q_n(x) := \prod_{k=1}^n (1 + \operatorname{Re} a_k \gamma_k(x + \omega_k)), \quad \forall x \in G.$$

- E - N

Riesz product : two conjectures

• Conjecture 1 :
$$\forall \omega \in G^{\mathbb{N}}$$

 $\mu_{a,\omega} \perp \mu_{b,\omega} \Leftrightarrow \mu_a \perp \mu_b; \quad \mu_{a,\omega} \ll \mu_{b,\omega} \Leftrightarrow \mu_a \ll \mu_b.$

• Conjecture 2 :

$$\mu_a \perp \mu_b \Leftrightarrow \prod_{n \equiv 1}^{\infty} I(a_n, b_n) = 0.$$
$$\mu_a \ll \mu_b \Leftrightarrow \prod_{n=1}^{\infty} I(a_n, b_n) > 0.$$

 $I(a_n, b_n) := \mathbb{E}\sqrt{(1 + \operatorname{Re} a_k \gamma_k)(1 + \operatorname{Re} b_k \gamma_k)}.$

(B)

Riesz product : return to $\mathbb T$

 \bullet A distance $d(\cdot, \cdot)$ on the unit disk :

$$ds^{2} = d\theta^{2} + \frac{dr^{2}}{\sqrt{1-r}}, \quad z = re^{2\pi i\theta}.$$
$$d(z_{1}, z_{2})^{2} \asymp |z_{1} - z_{2}|^{2} \left(1 + \frac{\cos^{2}(\phi - \psi)}{\sqrt{2 - |z_{1} + z_{2}|}}\right)$$

$$\phi = \arg(z_1 + z_2), \quad \psi = \arg(z_1 - z_2).$$

Conjecture 2 becomes

$$\sum d(a_n, b_n)^2 = \infty \Rightarrow \mu_a \perp \mu_b,$$
$$\sum d(a_n, b_n)^2 < \infty \Rightarrow \mu_a \ll \mu_b.$$

B> B

IV. A special case on $X = \{0, 1\}^{\mathbb{N}}$

- $X = \{0, 1\}^{\mathbb{N}}$, T is the shift.
- $f_i(x) = x_1$ the projection on the first coordinates $(i = 1, 2, \cdots, \ell)$
- for $\theta \in \mathbb{R}$, denote

$$A_{\theta} := \left\{ x \in \{0,1\}^{\mathbb{N}} : \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} x_k x_{2k} \cdots x_{\ell k} = \theta \right\}.$$

Remarks

- $f_i(T^ix) = x_i$ are not group characters.
- Riesz product method doesn't work and the study of A_{θ} is more difficult than B_{θ} .
- The study of A_{θ} was the motivation.

V. An attempt : a subset of A_0 For $\ell = 2$, define

$$X_0 := \left\{ x \in \{0,1\}^{\mathbb{N}} : x_n x_{2n} = 0, \quad ext{for all } n
ight\}.$$

Fibonacci sequence : $a_0 = 1$, $a_1 = 2$, $a_n = a_{n-1} + a_{n-2}$ $(n \ge 2)$.

Theorem (Fan-Liao-Ma, 2009)

$$\dim_B(X_0) = \frac{1}{2\log 2} \sum_{n=1}^{\infty} \frac{\log a_n}{2^n} = 0.8242936\cdots$$

Theorem (Kenyon-Peres-Solomyak, 2011)

$$\dim_H(X_0) = -\log_2 p = 0.81137\cdots (p^3 = (1-p)^2).$$

Remarks

- $\dim_H(X_0) < \dim_B(X_0).$
- A class of sets like X₀ is studied by Kenyon-Peres-Solomyak.
- $\dim_H(X_0) = \dim_H(A_0).$

VI. Combinatorial proof (of box dimension) Starting point

$$\dim_B X_0 = \lim_{n \to \infty} \frac{\log_2 N_n}{n}$$

where N_n is the cardinality of

$$\{ (x_1 x_2 \cdots x_n) : x_k x_{2k} = 0 \text{ for } k \ge 1 \text{ such that } 2k \le n \}.$$
Let $\{1, \cdots, n\} = C_0 \sqcup C_1 \sqcup \cdots \sqcup C_m \text{ with}$

$$C_0 := \{1, 3, 5, \ldots, 2n_0 - 1\},$$

$$C_1 := \{2 \cdot 1, 2 \cdot 3, 2 \cdot 5, \ldots, 2 \cdot (2n_1 - 1)\},$$

$$\ldots$$

$$C_k := \{2^k \cdot 1, 2^k \cdot 3, 2^k \cdot 5, \ldots, 2^k \cdot (2n_k - 1)\},$$

$$\ldots$$

$$C_m := \{2^m \cdot 1\},$$

The conditions $x_k x_{2k} = 0$ with k in different columns in the above table are independent. On each column, (x_k, x_{2k}) is conditioned to be different from (1, 1). Counting column by column, we get

$$N_n = a_{m+1}^{n_m} a_m^{n_{m-1}-n_m} a_{m-1}^{n_{m-2}-n_{m-1}} \cdots a_1^{n_0-n_1}.$$

Mega-Gibbs measure and nonlinear transfer operator [A. H. Fan, J. Schmeling, M. Wu]

I. Setting

- $X = \Sigma_m = \{0, 1, \cdots, m-1\}^{\mathbb{N}}$ $(m \ge 2)$, T is the shift.
- $\Phi: X \times X \to \mathbb{R}$ continuous $(\ell = 2)$.

.∋.) ∋

I. Invariance spectrum Fiber of measures :

$$\mathcal{M}_{\Phi}(\alpha) := \{\mu : \mathbb{E}_{\mu \otimes \mu} \Phi = \alpha\}$$

Theorem (F-S-W)

If $\mathcal{M}_{\Phi}(\alpha) \neq \emptyset$, then

$$F_{\text{invariance}}(\alpha) = F_{\text{mixing}}(\alpha) = \sup_{\mu \in \mathcal{M}_{\Phi}(\alpha)} \dim \mu.$$

Remark 1 : It coincides with the spectrum of the V-statistics. But it is no longer the case for $\Phi : X \times X \times X \to \mathbb{R}$. Remark 2 : If $\Phi = (\phi_1, \phi_2)$ with $\phi_1 = \phi_2$ taking negative values α , no invariant measure is supported by $E(\alpha)$ but dim $E(\alpha) > 0$.

II. Hausdorff spectrum : partial result

Assumption : $\Phi(x, y) = \varphi(x_1, y_1)$ depend only on the first coordinates. Nonlinear transfer equation :

$$t_s(x)^2 = \sum_{Ty=x} e^{s\Phi(x,y)} t_s(y), \quad \forall s \in \mathbb{R}.$$

Fact : $t_s : \Sigma_m \to \mathbb{R}_+$ depends only on the first coordinate. $s \mapsto P(s)$ is strictly convex and analytic. **Pressure** :

$$P(s) = \log \int_{\Sigma_m} t_s(x) dx + \log m, \quad \forall s \in \mathbb{R}.$$

Theorem (F-S-W)

For any $\alpha \in [\alpha_{\min}, \alpha_{\max}]$, $P'(s) = \alpha$ has a unique solution s_{α} and we have

$$F_{\text{hausdorff}}(\alpha) = \frac{1}{2\log m} \left(P(s_{\alpha}) - s_{\alpha} P'(s_{\alpha}) \right)$$

医下颌 医下颌

-

III. Mega-Gibbs measures Markov measure μ_s :

$$\pi(i) = \frac{t_s(i)}{\sum_{j=0}^{m-1} t_s(j)}, \qquad p_{i,j} = e^{s\varphi(i,j)} \frac{t_s(j)}{t_s(i)^2}.$$

Decomposition $\mathbb{N}^* = \bigsqcup_{i:2|\ell} \Lambda_i$ with $\Lambda_i = \{i2^k\}_{k\geq 0}$ Decomposition $\Sigma_m = \prod_{i:2|\ell} \{0, 1, \cdots, m-1\}^{\Lambda_i}$. Mega-Gibbs measure \mathbb{P}_s : Take a copy μ_s on each $\{0, 1, \cdots, m-1\}^{\Lambda_i}$ and then define

$$\mathbb{P}_s = \mu_s \times \cdots \times \mu_s \times \cdots$$

IV. Gibbs measure For $n \ge 1$, μ_n is the probability measure uniformly distributed on each nq-cylinder and such that

$$\mu_n([x_1, ..., x_{2n}]) = \frac{1}{Z_n(t)} \exp(t \sum_{j=1}^n \varphi(x_j, x_{2j})).$$

Theorem (Existence of Gibbs measure)

For each t, the measures μ_n converge weakly to a probability measure μ_t , called Gibbs measure.

Theorem (Distribution of μ_t)

Let $N \ge 1$ and $F_1, ..., F_N$ be N arbitrary real functions defined on $S \times S$. We have

$$\lim_{n\to\infty}\int\prod_{j=1}^N F_j(x_j,x_{jq})d\mu_n = \prod_{k=1}^{\lfloor\log_q N\rfloor}\prod_{\frac{N}{q^k} < i \leq \frac{N}{q^{k-1}}}\frac{1^t(\prod_{j=0}^{k-1}\Phi_{F_{iqj}}(t))w(t)}{\rho(t)^k}.$$

V. Sketched proof for Hausdorff spectrum $\underline{D}(\mathbb{P}_s, x)$ (lower local dimension of \mathbb{P}_s at x) : $\forall x \in E(\alpha)$, we have

$$\underline{D}(\mathbb{P}_s, x) \le \frac{1}{2\log m} [P(s) - \alpha s].$$

 $\mathbb{P}_{s_\alpha}(E(P'(s_\alpha)))=1:\varphi(T^jx,T^{2j}x)$ is $\mathbb{P}_s\text{-mixing.}$ So we have the law of large numbers :

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \varphi(T^j x, T^{2jx}) = P'(s) \quad \mathbb{P}_s\text{-a.e.}.$$

VI. Study of transfer equation

$$t_i = \left(\sum_{j=0}^{m-1} A(i,j)t_j\right)^{1/2}, \qquad 0 \le i \le m-1.$$

Lemma

If the matrix \boldsymbol{A} is positive, the above equation admits a unique positive solution.

The RHS of the equation defines a map $F:\mathbb{R}_+^{*m}\to\mathbb{R}_+^{*m}$ such that

 $F\uparrow$, $F([a,b]^m) \subset [a,b]^m$ $(a = \min A(i,j), b = \max A(i,j)).$

 $\lim F^n(a, \cdots, a)$ is a fixed point of F.

Lemma

If $A(i, j) = e^{s\varphi(i, j)}$, the solution t(s) is analytic and $\log \sum_j t_j(s)$ is convex.

同 ト イヨ ト イヨ ト 二 ヨ

VI. Open questions

• Nearly nothing is known for

$$f_1(T^j x) f_2(T^{2j} x) f_3(T^{3j} x).$$

[Riesz product method applicable to $f_1(x) = f_2(x) = f_3(x) = x_1 = \pm 1$.] If $f_i(x) = f_i(x_1)$ (i = 1, 2, 3), the mixing spectrum = the spectrum of the V-statistics, but the mixing spectrum \neq invariant spectrum. There is phase transition.

• The methods cannot be adapted to the case

$$f_1(x) = f_1(x_1, x_2), \quad f_2(x) = f_2(x_1, x_2).$$

Because we lose the independence like : $x|_{\Lambda_i}$ and $x|_{\Lambda_j}$ $(i \neq j)$ are independent.