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The Fluctuation Theorem

The Fluctuation Theorem is a simple but remarkable phenomenon
in reversible systems, discovered by Cohen and Gallavotti and
rigorously proved (for hyperbolic maps) by Gallavotti in the mid
1990s.

Rougly speaking, it says that the time-n average of volume
contraction is approximately p with probability enp greater than
that it is approximately −p. A more precise statement will appear
later.



Hyperbolic Diffeomorphisms

T : M → M diffeomorphism, X ⊂ M closed, T -invariant.

T : X → X hyperbolic if

1. TXM = E s + Eu, continuous DT -invariant splitting, such
that ‖DT n|E s‖, ‖DT−n|Eu‖ ≤ Ce−cn, for all n ≥ 0, for some
C , c > 0;

2. T : XtoX is transitive (i.e. has a dense orbit);

3. periodic orbits are dense in X ;

4. there exists an open set U ⊃ X such that X =
⋂∞

n=−∞ T nU.

T is mixing if, for all non-empty open subsets V ,V ′ of X , there
exists N ≥ 0 such that T−nV ∩ V ′ 6= ∅ for all n ≥ N.



Anosov diffeomorphisms

T : M → M is an Anosov diffeomorphism if 1 holds with X = M
(in which case, 3 and 4 are automatically satisfied).



Time reversal symmetry

The Fluctuation Theorem concerns hyperbolic diffeomorphisms
T : X → X with time reversal symmetry: there exists an involution
i : X → X such that

i ◦ T ◦ i = T−1.

For simplicity, we shall also assume our systems are mixing.



Examples

1. Smale horseshoe (conjugate to a full shift).

i((xn)∞n=−∞) = (yn)∞n=−∞,

where yn = x−n.
Then

i((. . . , x−2, x−1, x0, x1, x2, . . .)) = (. . . , x2, x1, x0, x−1, x−2, . . .)

T ((. . . , x2, x1, x0, x−1, x−2, . . .)) = (. . . , x1, x0, x−1, x−2, x−3, . . .)

i((. . . , x1, x0, x−1, x−2, x−3, . . .)) = (. . . , x−3, x−2, x−1, x0, x1)

= T−1((. . . , x−2, x−1, x0, x1, x2, . . .)).



Examples

2. Given an Anosov diffeomorphism T0 : M → M, define

T : M ×M → M ×M : (x , y) 7→ (T0x ,T−10 y).

If i(x , y) = (y , x) then

i ◦ T ◦ i(x , y) = i ◦ T (y , x) = i(T0y ,T−10 x)

= (T−10 x ,T0y) = T−1(x , y).



Examples

3. Define a hyperbolic total automorphism T : T2 → T2 by

T (x , y) = (y ,−x + ay),

a ∈ Z, |a| > 2.
Set i(x , y) = (y , x). Then

i ◦ T ◦ i(x , y) = i ◦ T (y , x) = i(x ,−y + ax)

= (−y + ax , x) = T−1(x , y).



Examples

4. (Not a diffeomorphism!) Let φt : SM → SM be the geodesic
flow over a manifold M.
Defining i(x , v) = (x ,−v), for (x , v) ∈ SxM, we have

i ◦ φt ◦ i = φ−t .



Abstract set up

As before T : X → X hyperbolic diffeormorphism, i : X → X time
reversing involution.

We consider a Hölder continuous function ϕ : X → R and define

ψ = ϕ− ϕ ◦ i ◦ T .

Let µϕ and µψ denote the respective Gibbs measures: the Gibbs
measure µf for a Hölder function f is uniquely determined by the
condition

hµf (T ) +

∫
f dµf = sup

ν∈MT

(
hν(T ) +

∫
f dν

)
,

where MT is the set of all T -invariant probability measures on X .



Abstract set up

We suppose that µψ is not the measure of maximal entropy µ0 or,
equivalently, that ψ is not cohomologous to a constant (i.e. ψ
cannot be written as u ◦ T − u + c , for u continuous and c ∈ R.)



Prototypical example

T : X → X Anosov or, more generally, a C 2 attractor and

ϕ = log | det DT |Eu|,

where Eu is the unstable (expanding) bundle. Then µϕ is the SRB
measure and

ψ = log | det DT |.

This is interesting when T is not volume preserving, so ψ is not
constant.



Fluctuation Theorem

Write ψn for the Birkhoff sum

ψn = ψ + ψ ◦ T + · · ·+ ψ ◦ T n−1.

Theorem (Gallavotti, 1995)

For T , ϕ, ψ as above, we have

(i)
∫
ψ dµϕ > 0,

(ii) there exists p∗ > 0 such that if |p| < p∗ then

lim
δ→0

lim
n→∞

1

n
log

(
µϕ{x : ψn(x)/n ∈ (p − δ, p + δ)}

µϕ{x : ψn(x)/n ∈ (−p − δ,−p + δ)}

)
= p.



Birkhoff averages

By the ergodic theorem,

lim
n→∞

ψn(x)

n
=

∫
ψ dµϕ

for µϕ-a.e. x ∈ X , so, if an interval J does not contain
∫
ψ dµϕ,

then

lim
n→∞

µϕ

{
x :

ψn(x)

n
∈ J

}
= 0.

The Fluctuation Theorem and the Large Deviation Theorem
(below) compare the rates in this convergence.



Large Deviations

The Fluctuation Theorem can be understood through the theory of
large deviations. Let

Iψ =

{∫
ψ dν : ν ∈MT

}
.

Theorem (Kifer, 1990; Orey & Pelikan, 1989)

Suppose ψ : X → R Hölder continuous and not cohomologous to a
constant. Then, for α ∈ int(Iψ),

lim
δ→0

lim
n→∞

1

n
log

(
µϕ

{
x :

ψn(x)

n
∈ (α− δ, α + δ)

})
= −I (α),

where the rate function I (α) ≥ 0 is given by

−I (α) = inf
q∈R

(P(ϕ+ qψ)− qα) .



Pressure and the rate function

The pressure function P(f ) is defined by

P(f ) = sup

{
hν(T ) +

∫
f dν : ν ∈MT

}
= lim

n→∞

1

n
log

∑
T nx=x

ef
n(x).

The rate function I : int(Iψ)→ R+ is real analytic, strictly convex
and satisfies

I

(∫
ψ dµϕ

)
= 0.



Application to the Fluctuation Theorem

The Fluctuation Theorem follows from the Large Deviation
Theorem and the following two facts.

1. Iψ = [−p∗, p∗], for some p∗ > 0.

2. For |p| < p∗,
−I (p) + I (−p) = p.

These both follow from the symmetry in the definition of ψ, which
gives

P(ϕ+ tψ) = P(ϕ− (1 + t)ψ),

and the definition of I in terms of pressure.



Shrinking intervals

Under a mild condition on ψ, one can show that Fluctuation
Theorem holds for shrinking intervals (p − δn, p − δn) and
(−p − δn,−p − δn), where δn → 0, as n→∞, at some suitably
slow rate.
Diophantine Condition: T : X → X has three periodic orbits
T ni xi = xi , i = 1, 2, 3, such that

ξ :=
ψn3(x3)− ψn1(x1)

ψn2(x2)− ψn1(x1)

is Diophantine, i.e. there exists c > 0 and β > 1 such that

|qξ − p| ≥ cq−β

for all p ∈ Z, q ∈ N.



Main Theorem

Theorem (Pollicott & Sharp, 2009)

Under the Diophantine Condition, there exists κ > 0 such that if
δn → 0 and δ−1n = O(n1+κ) then

lim
n→∞

1

n
log

(
µϕ{x : ψn(x)/n ∈ (p − δn, p + δn)}

µϕ{x : ψn(x)/n ∈ (−p − δn,−p + δn)}

)
= p.

This follows from a Large Deviations Theorem with similar
hypothesis.



Why is it true?

Using symbolic dynamics (Markov partitions), it is sufficient to
prove large deviations with shrinking intervals for a two-sided
subshift of finite type It is more convenient to work with T a
one-sided subshift and it can be shown that a proof in this case is
sufficient.
Suppose we wish to study

µϕ{x : ψn(x)/n ∈ (α− δn, α + δn)}.

This is equal to

µϕ{x : ψ
n
(x) ∈ (−εn, εn)},

where ψ = ψ − α and εn = nδn.



Why is it true?

If χ is the indicator function of (−1, 1) and χn(y) = χ(y/εn) then

µϕ{x : ψ
n
(x) ∈ (−εn, εn)} =

∫
χn(ψ

n
(x)) dµϕ(x).

It is convenient to modify χ to be a C k function. (This means
χ̂(t) = O(|t|−k), as |t| → ∞.)



Why is it true?

Then, using the inverse Fourier transform formula,∫
χn(ψ

n
(x)) dµϕ(x) =

1

2π

∫ ∞
−∞

(∫
e itψ

n
(x) dµϕ(x)

)
χ̂n(t) dt

=
1

2π

∫ ∞
−∞

(∫
e(σ
∗+it)ψ

n
(x) dµϕ(x)

)
ω̂n(t) dt

=
1

2π

∫ ∞
−∞

(∫
Ln
ϕ+(σ∗+it)ψ

1(x) dµϕ(x)

)
ω̂n(t) dt,

where
ωn(y) = e−σ

∗yχn(y)

and σ∗ ∈ R is some specifically chosen value to make the analysis
work.



The transfer operator

On the previous slide, Lϕ+(σ∗+it)ψ denoted the Ruelle transfer
operator defined by

Lϕ+(σ∗+it)ψw(x) =
∑

Tx ′=x

eϕ(x
′)+(σ∗+it)ψ(x ′)w(x ′).



Dolgopyat bounds

Theorem follows from LCLT-type calculations (for |t| small) and
Dolgopyat bounds on the transfer operator (for |t| large):

Lemma
Under the Diophantine Condition, given a > 0, there exists
γ, d , c1, c2 > such that, for |t| ≥ a and m ≥ 1,

‖L2Nm
ϕ+(σ∗+it)ψ

1‖∞ ≤ c1e−nI (α)
(

1− c2
|t|γ

)m

,

where N = [d log |t|].



More precisely . . .

More precisely, for |t| small, one can show that

1

2π

∫
|t|<a

(∫
Ln
ϕ+(σ∗+it)ψ

1(x) dµϕ(x)

)
ω̂n(t) dt ∼ C χ̂(0)

εne−nI (α)√
n

,

where C > 0 is independent of χ, which has exponential growth
rate −I (α).



More precisely . . .

Meanwhile, for |t| ≥ a,

1

2π

∫
|t|≥a

(∫
Ln
ϕ+(σ∗+it)ψ

1(x) dµϕ(x)

)
ω̂n(t) dt

= O
(

e−nI (α)ε
−(k−1)
n n(1−k)δ

)
,

for some δ > 0, which tends to zero faster than the leading
contribution provided we choose κ < δ.



Thank you for listening!


