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Introduction

Hs : significant wave height, parameter related to wave energy in a sea state
Historical definition: mean height of the one-third highest waves
Current definition: four times the standard deviation of the sea surface elevation

Aim: develop a method to estimate the extremal properties of Hs
Quantities of interest: return levels, storm durations,...
Example: 20-year return levels in the North Atlantic (method explained hereafter)

P. Ailliot, N. Raillard (LCSM) Modeling extreme values of processes observed at irregular time steps 2/ 18



Introduction Data available Method Analysis of Hs data Conclusion

Introduction

Hs : significant wave height, parameter related to wave energy in a sea state
Historical definition: mean height of the one-third highest waves
Current definition: four times the standard deviation of the sea surface elevation

Aim: develop a method to estimate the extremal properties of Hs
Quantities of interest: return levels, storm durations,...
Example: 20-year return levels in the North Atlantic (method explained hereafter)

P. Ailliot, N. Raillard (LCSM) Modeling extreme values of processes observed at irregular time steps 2/ 18



Introduction Data available Method Analysis of Hs data Conclusion

Introduction

Hs : significant wave height, parameter related to wave energy in a sea state
Historical definition: mean height of the one-third highest waves
Current definition: four times the standard deviation of the sea surface elevation

Aim: develop a method to estimate the extremal properties of Hs
Quantities of interest: return levels, storm durations,...
Example: 20-year return levels in the North Atlantic (method explained hereafter)

  50oW   40oW   30oW   20oW   10oW 

  32oN 

  40oN 

  48oN 

  56oN 

 

 

S
ig

ni
fic

an
t w

av
e 

he
ig

ht
 (

m
)

4

6

8

10

12

14

16

P. Ailliot, N. Raillard (LCSM) Modeling extreme values of processes observed at irregular time steps 2/ 18



Introduction Data available Method Analysis of Hs data Conclusion

Plan of the talk
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2 Method
Usual methods in the iid case
Generalization to dependent sequences
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Data available
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Introduction
What are the data available to estimate the extremal properties of Hs

Reanalysis data

Rich space-time sampling
Standard statistical method apply!
Underestimation for high Hs?

Buoy data
Sparse spatial sampling
Rich time sampling
Most reliable for high Hs?

Satellite altimeter data
Sparse space-time sampling
Good spatial coverage
Quality of the data for high Hs?
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Figure : Data available on 15/12/2002.
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Hs data

Single site analysis

Buoy Brittany (47.5 N, 8.5 W)

10 years of data available, ∆t = 1h

7.7% of missing data
Breakdowns linked to extreme events?

Reanalysis data: ERA interim (ECMWF)

Same years than buoy, ∆t = 6h

Satellite data

15 years of data available, 7 different satellites
Closest observations in the satellite tracks which intersect a
3o × 3o box
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Figure : Hs data for dec. 1999
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Hs data

Single site analysis

Buoy Brittany (47.5 N, 8.5 W)

10 years of data available, ∆t = 1h

7.7% of missing data
Breakdowns linked to extreme events?

Reanalysis data: ERA interim (ECMWF)

Same years than buoy, ∆t = 6h

Satellite data

15 years of data available, 7 different satellites
Closest observations in the satellite tracks which intersect a
3o × 3o box

How can we analyze the extremal behavior of such time series?

Need for methods which can deal with missing data and irregular time sampling

Can we get useful information on extreme Hs from satellite data?
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Probabilistic background (iid case)

Let Mn = max
i=1,...,n

Xi with (Xi ) i.i.d. sample with c.d.f. G ;

If P
{

Mn−bn
an

≤ x
}

= Gn(anx + bn) → F (x), then F is a max-stable distribution ie

F n(αnx + βn) = F (x)

Fisher-Tippett (1928), Gnedenko (1943): Max-stable distributions have cdf

F (x ;µ, σ, ξ) = exp

[

−

(

1 + ξ
x − µ

σ

)−1/ξ

+

]

∈ GEV(µ, σ, ξ)

This GEV distribution includes the Weibull (finite upper bound, ξ < 0), Fréchet
(heavy tail, ξ > 0) and Gumbel (ξ = 0) distributions

The GEV is a natural distribution for modeling the maximum of a large number of
i.i.d. random variables
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Usual methods for analyzing extremes of i.i.d. sequences

Block maxima method

Group the data into blocks of equal lengths (usually one year to remove seasonal effects)
Fit a GEV distribution to the sample of block maxima
Waste of data (only the yearly maxima are kept to fit the GEV)

Only 10 observations to fit the GEV for buoy data although more storms are observed!

Peaks Over Threshold (POT)
Choose a high threshold u
Fit a GPD distribution to the exceedances above u

Xi − u|Xi > u ∼i.i.d GPD(σ̃, ξ)
with λ = P(Xi > u) an extra unknown parameter
Similar results when fitting a censored GEV distribution

u1l[Xi ≤ u] + Xi 1l[Xi > u] = u1l[Yi ≤ u] + Yi 1l[Yi > u] with Yi ∼i.i.d GEV(µ, σ, ξ)

GEV and GPD distributions lead to similar tail approximations. If x → x+ then

exp

[

−

(

1 + ξ
x − µ

σ

)−1/ξ

+

]

≈ 1 −

(

1 + ξ
x − µ

σ

)−1/ξ

+

Successive exceedances are generally dependent
A "declustering" step is generally applied to keep only one value per "storm";P. Ailliot, N. Raillard (LCSM) Modeling extreme values of processes observed at irregular time steps 9/ 18
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Max-stable processes

Max-stable processes are natural approximations of processes over high thresholds;
Similar to the GEV in the i.i.d. case;
No unified parametric representation for max-stable processes.

A particular max-stable process: the Gaussian extreme value process;
Assume that {Yt } has GEV marginal distribution distribution with parameter (µ, σ, ξ).
Let

Zt = − 1

log(F (Yt ; µ, σ, ξ))
,

{Zt } has unit Fréchet marginal distribution. Assume that

Zt = max

{

ζi

ν
√

2π
exp

(

− (si − t)2

2ν2

)}

,

with {(ζi , si ), i ≥ 1} the points of a Poisson process with intensity ζ−2dζ × ds.
The full joint distribution is not tractable but bivariate distributions are

P(Yt1
≤ yt1

, Yt2
≤ yt2

) = exp

[

− 1

zt1

Φ

(

a

2
+

1

a
log

zt2

zt1

)

− 1

zt2

Φ

(

a

2
+

1

a
log

zt1

zt2

)]

with a =
|t1−t2|

ν , Φ the cdf of the standard normal distribution and zti
= −1

log F (yti
;µ,σ,ξ)

.

Continuous time process... permits to deal with irregular time sampling
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Max-stable processes

Max-stable processes are natural approximations of processes over high thresholds;
Similar to the GEV in the i.i.d. case;
No unified parametric representation for max-stable processes.

A particular max-stable process: the Gaussian extreme value process;
Assume that {Yt } has GEV marginal distribution distribution with parameter (µ, σ, ξ).
Let

Zt = − 1

log(F (Yt ; µ, σ, ξ))
,

{Zt } has unit Fréchet marginal distribution. Assume that

Zt = max

{

ζi

ν
√

2π
exp

(

− (si − t)2

2ν2

)}

,

with {(ζi , si ), i ≥ 1} the points of a Poisson process with intensity ζ−2dζ × ds.
The full joint distribution is not tractable but bivariate distributions are
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Proposed methodology

Let {Xt}t∈{t1,...,tn} be a stationary process observed at time (t1, ..., tn)

Chose a high threshold u

Model the process censored at u as a censored max-stable process

u1l[Xti ≤ u] + Xti 1l[Xti > u] = u1l[Yti ≤ u] + Yti 1l[Yti > u]

with {Yt} a Gaussian extreme value process with parameter θ = (µ, σ, ξ, ν)

Process with marginal distribution GEV (µ, σ, ξ), ν describes the time structure

Estimate θ by maximizing the pairwise likelihood function

PL(θ; ỹt1 , ..., ỹtn ) =

n−1
∏

i=1

p
Ỹ
(ỹti , ỹti+1 ; θ)

of the censored sequence (ỹt1 , ...ỹtn ) with ỹt = u1l[yt ≤ u] + yt1l[yt > u]
Consistent estimator
Better results when using only closest neighbors in the pairwise likelihood function

Use simulations of the fitted model to estimate quantities of interest
Distribution of the estimator (parametric bootstrap)
Return values, length of the storms, number of storm per year,...
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Validation on classical time series models

Xi ∼iid N (0, 1)
Xi = αXi−1 + ǫi

ǫi ∼iid N (0, 1)

Xi = log(Ui )
Ui = max{(1 − α)Ui−1, αǫi }
{ǫt} iid unit Fréchet

dXt = −αXtdt + dWt
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Figure : Comparison of the extremal behavior of classical processes (solid line) against the fitted
Gaussian extreme value process (dashed line). Results obtained by simulating 1000 years of each
model (one observation per day).
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Plan of the talk

1 Data available

2 Method
Usual methods in the iid case
Generalization to dependent sequences

3 Analysis of Hs data
Data available
A few results
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Data analysis

Focus on December to remove seasonality
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Figure : Hs data for dec. 1999

The quantiles of the satellite data are the closest to the ones of the buoy
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A few results

The model has been fitted to the different data sets

It seems to provide a realistic extrapolation of the extremal properties of the data
Comparison of statistics for the buoy data and the fitted model
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Comparison of parameters and return values for the different data sets

20 years return levels in the North Atlantic computed using satellite data
Independent analysis at each location, no spatial information, ξ = 0.
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A few results

The model has been fitted to the different data sets

It seems to provide a realistic extrapolation of the extremal properties of the data

Comparison of parameters and return values for the different data sets

Reanalysis Buoy Satellite
Threshold

u (m) 6 8 6
No. obs > u 74 59 48

Parameter values
µ 2.19 [-6.85,3.80] 5.12 [-7.3,6.67] 3.80 [2.23,4.47]
σ 1.70 [0.81,8.83] 0.50 [0.11,7.23] 1.33 [0.86,2.69]
ξ -0.17 [-0.6,-0.02] 0.07 [-0.40,0.32] 0.01 [-0.25,0.17]
ν 0.12 [0.07,0.18] 1e-3 [8e-4,2e-3] 0.05 [0.03,0.08]

Return levels
q10 8.2[7.3,9.1] 10.4[9.3,12.2] 12.1[10.7,14.6]
q20 8.5[7.5,9.6] 10.8[9.4,13.8] 12.9[11.1,16.4]
q50 8.8[7.6,10.1] 11.4[9.6,16.0] 14.0[11.5,19.1]
q100 9.0[7.7,10.6] 11.8[9.7,18.8] 14.7[11.7,21.6]

Confidence intervals (computed using parametric bootstrap) are wide!
Gumbel type distributions (ξ = 0) except for the reanalysis data (ξ < 0)

Lower tail for the reanalysis data?

Higher value of ν for the reanalysis data (smoother, longer storms)
Buoy and satellite lead to similar fitted models

20 years return levels in the North Atlantic computed using satellite data
Independent analysis at each location, no spatial information, ξ = 0.
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A few results

The model has been fitted to the different data sets
It seems to provide a realistic extrapolation of the extremal properties of the data
Comparison of parameters and return values for the different data sets
20 years return levels in the North Atlantic computed using satellite data

Independent analysis at each location, no spatial information, ξ = 0.
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Conclusion

The proposed methodology permits to analyze the extremal behavior of dependent
sequences

Still valid in presence of missing data or irregular time sampling

Theoretical results show that the estimator is consistent

The method has been successfully validated on classical time series models

Similar models are identified on satellite and buoy data

Longer storm and lighter tails are identified on reanalysis data

Preprint available:
Raillard N., Ailliot P., Yao J.F., Modeling extreme values of processes observed at
irregular time steps. Application to significant wave height. To appear in the Annals

of Applied Statistics.
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Preuve de la consistance

N. Raillard, P. Ailliot, and J.F. Yao.
Modelling extreme values of processes observed at irregular time step. application to
significant wave height.
Submitted, 2011.

R. L. Smith.
Max-stable processes and spatial extremes.
Unpublished, 1990.
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Preuve de la consistance

Estimation des paramètres
Propriétés

Théorème

Soit ν̂ = argmax
CL1(xt1

,...,xtn ;θ)

. Si ν∗ ∈ Θ := [ν−, ν+] où 0 < ν− < ν+, alors ν̂ est un

estimateur convergeant de ν∗.

Idées de la preuve: Estimation en deux étapes.

1 Estimation des paramètres marginaux ;

2 Estimation du paramètre de dépendance.
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Preuve de la consistance

Estimation des paramètres
Propriétés

Théorème de Pfzangal

Soit {Zi }i=1,...,n un processus stationnaire ergodique dont la loi dépend d’un paramètre
ν∗ ∈ Θ avec Θ un compact de R et soit Qn un contraste tel que

Qn(ν) =
1
n

∑n−1

i=1
f (Zi , Zi+1; ν), où f est une fonction mesurable continue en ν. Si

1 E infν∈Θ f (Z1, Z2; ν) > −∞;

2 ν 7→ Ef (Z1, Z2; ν) possède un unique minimum fini en ν∗.

alors l’estimateur au minimum de contraste ν̂n = arg minν∈Θ Qn(ν) est fortement
consistant:

lim
n→∞

ν̂n = ν∗ p.s.
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Preuve de la consistance

Estimation des paramètres
Propriétés

Un processus Z extrémal gaussien, est ergodique (Stoev, 2008).

Définitions

FZ (z1, z2; ν) := P(Z1 < z1, Z2 < z2) = exp {−V (z1, z2; ν)}

V (z1, z2; ν) :=
Φ(a/2+1/a log

z2
z1

)

z1
+

Φ(a/2+1/a log
z1
z2

)

z2

p(Z1, Z2; ν) :=
∂2

∂z1∂z2
FZ (z1, z2; ν) ;

f (Z1, Z2; ν) := − log p(Z1, Z2; ν) ;

Expression du contraste

f (z1, z2; ν) = V (z1, z2; ν) − log

[

Φ(w)Φ(v)

a2z1z2
+

ϕ(w)

az2
1

z2

]

avec

w := w(z1, z2; ν) := a/2 + 1/a log z2
z1

v := v(z1, z2; ν) := a/2 − w
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Preuve de la consistance

Estimation des paramètres
Propriétés

Preuve de (1) (Minoration)

On a d’après le slide précédent: f (z1, z2; ν) = V (z1, z2; ν) − log

[

Φ(w)Φ(v)

a2z1z2
+

ϕ(w)

az2
1

z2

]

.

On a grâce à la borne de Fréchet (1951): infν{V (z1, z2; ν)} ≥ min
(

− 1
z1

, − 1
z2

)

;

Si ν ∈ [ν−, ν+], log

[

Φ(w)Φ(v)

a2z1z2
+

ϕ(w)

az2
1

z2

]

≥ 1 −
ν2
+

z1z2

Si Z ∼ Fréchet(1), 1/Z ∼ E(1), donc E 1
Z

= 1 < ∞ ;

Donc E infν∈Θ f (Z1, Z2; ν) > −∞
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Preuve de la consistance

Estimation des paramètres
Propriétés

Preuve de (2) (Identifiabilité)

Distance de Kullback-Leibler: K(Pν∗ , Pν) := Eν∗

[

− log
p(Z1,Z2;ν)

p(Z1,Z2;ν∗)

]

K = 0 ⇔ ∀z1, z2 : p(z1, z2; ν
∗) = p(z1, z2; ν)

En particulier: pour z1 = z2 = z, on a:

exp

[

−
2

z
Φ

(

1

2ν

)]

[

Φ
(

1
2ν

)2

z2
ν2 +

ϕ
(

1
2ν

)

z3
ν

]

= exp

[

−
2

z
Φ

(

1

2ν∗

)]

[

Φ
(

1
2ν∗

)2

z2
ν∗2 +

ϕ
(

1
2ν∗

)

z3
ν∗

]

Quand z → 0: Φ
(

1
ν

)

= Φ
(

1
ν∗

)
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