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Extreme Value Laws

Consider a stationary stochastic processX0,X1,X2, . . . with marginal d.f. F.
Let F̄ = 1− F and uF = sup{x : F(x) < 1}.
We have an exceedance of the level u ∈ R at time j ∈ N if the event {Xj > u}
occurs. Define a new sequence of random variables (r.v.) M1,M2, . . . given by

Mn = max{X0, . . . ,Xn−1}. (1)

Definition
We say that we have an EVL for Mn if there is a d.f. H : R→ [0, 1], with
H(0) = 0 and, for all τ > 0, there exists a sequence of levels un = un(τ), s.t.

nP(X0 > un)→ τ, as n→∞, (2)

and for which the following holds:

P(Mn ≤ un)→ H̄(τ), as n→∞. (3)
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The independent case

In the case X0,X1,X2, . . . are i.i.d. r.v. then since

P(Mn ≤ un) = (F(un))n

we have
(1− P(X > un))n ∼

(
1− τ

n

)n
→ e−τ

which implies that if (2) holds, then (3) holds with H̄(τ) = e−τ and vice
versa.

When X0,X1,X2, . . . are not i.i.d. but satisfy some mixing condition D(un)
introduced by Leadbetter then something can still be said about H.
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Condition D(un) from Leadbetter

Let Fi1,...,indenote the joint d.f. of Xi1 , . . . ,Xin , and set
Fi1,...,in(u) = Fi1,...,in(u, . . . , u).

Condition (D(un))

We say that D(un) holds for the sequence X0,X1, . . . if for any integers
i1 < . . . < ip and j1 < . . . < jk for which j1 − ip > m, and any large n ∈ N,∣∣Fi1,...,ip,j1,...,jk(un)− Fi1,...,ip(un)Fj1,...,jk(un)

∣∣ ≤ γ(n,m),

where γ(n,mn) −−−→
n→∞

0, for some sequence mn = o(n).
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Extremal Index

Theorem (Leadbetter)
If D(un) holds for X0,X1, . . . and the limit (3) exists for some τ > 0 then there
exists 0 ≤ θ ≤ 1 such that H̄(τ) = e−θτ for all τ > 0

Definition
We say that X0,X1, . . . has an Extremal Index (EI) 0 ≤ θ ≤ 1 if we have an
EVL for Mn with H̄(τ) = e−θτ for all τ > 0.
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Absence of clustering

Assuming D(un) holds let, (kn)n∈N be a sequence of integers such that

kn →∞ and kntn = o(n). (4)

Condition (D′(un))
We say that D′(un) holds for the sequence X0,X1, . . . if

lim sup
n→∞

n
[n/kn]∑
j=1

P(X0 > un,Xj > un) = 0. (5)

Theorem (Leadbetter)

Let {un} be such that n(1− F(un))→ τ , as n→∞, for some τ ≥ 0. Assume
that conditions D(un) and D′(un) hold. Then

lim
n→∞

P(Mn ≤ un) = e−τ .
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The general case

For some u ∈ R, q ∈ N, we define the events:

U(u) := {X0 > u} and A(q)(u) := {X0 > u,X1 ≤ u, . . . ,Xq ≤ u}. (6)

We also set A(0)(u) := U(u), Un := U(un) and A(q)
n := A(q)(un), for all n ∈ N

and q ∈ N0.
Let B ∈ B be an event. For some s, ` ∈ N0, we define:

Ws,`(B) =

s+`−1⋂
i=s

T−i(Bc). (7)

We will write W c
s,`(B) := (Ws,`(B))c. Whenever is clear or unimportant which

event B ∈ B applies, we will drop the B and write just Ws,` or W c
s,`. Observe

that
W0,n(U(u)) = {Mn ≤ u}.
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Crucial observation

Proposition

Given an event B ∈ B, let q, n ∈ N be such that q < n and define
A = B \

⋃q
j=1 T−j(B). Then

|P(W0,n(B)− P(W0,n(A))| ≤
q∑

j=1

P
(
W0,n(A) ∩ T−n+j(B \ A)

)
.
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New mixing condition

Condition (Д(un))

We say that Д(un) holds for the sequence X0,X1, . . . if for every `, t, n ∈ N
and q ∈ N0,∣∣∣P(A(q)

n ∩Wt,`

(
A(q)

n

))
− P

(
A(q)

n

)
P
(
W0,`

(
A(q)

n

))∣∣∣ ≤ γ(q, n, t), (8)

where γ(q, n, t) is decreasing in t for each q, n and, for every q ∈ N0, there
exists a sequence (tn)n∈N such that tn = o(n) and nγ(q, n, tn)→ 0 when
n→∞.

For some fixed q ∈ N0, consider the sequence (tn)n∈N, given by condition
Д(un) and let (kn)n∈N be another sequence of integers such that

kn →∞ and kntn = o(n). (9)
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New general clustering condition

Condition (Д′q(un))

We say that Д′q(un) holds for the sequence X0,X1,X2, . . . if there exists a
sequence {kn}n∈N satisfying (9) and such that

lim
n→∞

n
bn/knc∑

j=1

P
(

A(q)
n ∩ T−j

(
A(q)

n

))
= 0. (10)

Remark

Note that condition Д′q(un) is condition D(q)(un) from [CHM91]. Moreover,
if q = 0 then we get condition D′(un) from Leadbetter. Thus the following
result, Theorem 4, gives in particular a generalisation of [CHM91,
Corollary 1.3] since Д(un) is much weaker than the original D(un) of
Leadbetter. Moreover, as discussed above, condition Д(un) follows from
sufficiently fast decay of correlations of the underlying stochastic processes.
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Theorem (FFT14)

Let X0,X1, . . . be a stationary stochastic process and (un)n∈N a sequence
satisfying (2), for some τ > 0. Assume that conditions Д(un) and Д′q(un), for
some q ∈ N0, are satisfied. Then, there exists C > 0 such that for all n ∈ N
we have

∣∣P(Mn ≤ un)− e−θτ
∣∣ ≤ C

(
kntn

τ

n
+ nγ(q, n, tn) + qP

(
Un \ A(q)

n

))

+ e−θτ
(∣∣∣θτ − nP

(
A(q)

n

)∣∣∣+
τ 2

kn

)
+ n

bn/knc∑
j=1

P
(

A(q)
n ∩ T−j

(
A(q)

n

))
,

where the EI θ is given by equation O’Brien’s formula:

θ = lim
n→∞

P
(

A(q)
n

)
P(Un)

. (11)
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The setting

Take a system (X ,B,P, f ), where X is a Riemannian manifold, B is the Borel
σ-algebra, f : X → X is a measurable map and P an f -invariant probability
measure.
Consider the time series X0,X1, . . . arises from such a system simply by
evaluating a given observable ϕ : X → R ∪ {±∞} along the orbits of the
system:

Xn = ϕ ◦ f n, for each n ∈ N. (12)

We assume that the r.v. ϕ : X → R ∪ {±∞} achieves a global maximum at
ζ ∈ X (we allow ϕ(ζ) = +∞). We also assume that ϕ and P are sufficiently
regular so that:
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(R1) for u sufficiently close to uF := ϕ(ζ), the event

U(u) = {X0 > u} = {x ∈ X : ϕ(x) > u}

corresponds to a topological ball centred at ζ. Moreover, the quantity
P(U(u)), as a function of u, varies continuously on a neighbourhood of
uF.

(R2) If ζ ∈ X is a repelling periodic point, of prime period p ∈ N, then we
have that the periodicity of ζ implies that for all large u,
{X0 > u} ∩ f−p({X0 > u}) 6= ∅ and the fact that the prime period is p
implies that {X0 > u} ∩ f−j({X0 > u}) = ∅ for all j = 1, . . . , p− 1.
Moreover, the fact that ζ is repelling means that we have backward
contraction implying that there exists 0 < θ < 1

P
(
{X0 > u} ∩ f−p({X0 > u})

)
∼ (1− θ)P(X0 > u),

for all u sufficiently large.
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Hitting Times Statistics

Consider a set A ∈ B. We define a function that we refer to as first hitting time
function to A, denoted by rA : X → N ∪ {+∞} where

rA(x) = min
{

j ∈ N ∪ {+∞} : f j(x) ∈ A
}
. (13)

The restriction of rA to A is called the first return time function to A. We
define the first return time to A, which we denote by R(A), as the infimum of
the return time function to A, i.e.,

R(A) = inf
x∈A

rA(x). (14)

Given a point ζ ∈ X, by Kac Lemma the expected value of rBε(ζ) when
restricted to the ε-ball Bε(ζ) is 1/µ(Bε(ζ)). We say that the system has HTS
H for balls around ζ if for each t ∈ [0,∞),

lim
ε→0

µ
({
µ(Bε(ζ))rBε(ζ) > t

})
= H(t)

for some d.f. H : [0,∞)→ [0, 1].
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Decay of correlations

Definition (Decay of correlations)

Let C1, C2 denote Banach spaces of real valued measurable functions defined
on X . We denote the correlation of non-zero functions φ ∈ C1 and ψ ∈ C2
w.r.t. a measure P as

CorP(φ, ψ, n) :=
1

‖φ‖C1‖ψ‖C2

∣∣∣∣∫ φ (ψ ◦ f n) dP−
∫
φ dP

∫
ψ dP

∣∣∣∣ .
We say that we have decay of correlations, w.r.t. the measure P, for
observables in C1 against observables in C2 if, there exists a rate function
γ : N→ R, with limn→∞ γ(n) = 0, such that, for every φ ∈ C1 and every
ψ ∈ C2, we have

CorP(φ, ψ, n) ≤ γ(n).

We say that we have decay of correlations against L1 observables whenever
this holds for C2 = L1(P) and ‖ψ‖C2 = ‖ψ‖1 =

∫
|ψ| dP.
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A dichotomy for the extremal behaviour

Theorem ([AFV13], [FFT13])

Consider a continuous dynamical system (X ,B,P, f ) for which there exists a
Banach space C of real valued functions such that for all φ ∈ C and
ψ ∈ L1(P), CorP(φ, ψ, n) ≤ γ(n), where

∑
n≥0 γ(n) <∞. Let X0,X1, . . . be

given by (12), where ϕ has a global maximum at ζ ∈ X
If ζ is a non periodic point then we have an EVL for Mn with EI θ = 1.

If ζ is a periodic point of prime period p, then we have an EVL for Mn

with EI θ < 1 given by the expansion rate at ζ stated in (R2).

Remark
The dichotomy can be extended to the context of point processes.

Remark
The existence of a such a dichotomy is present in the following (probably
incomplete) list of papers: [FFT12, FP12, K12, KR13].
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Systems with decay of correlations against L1 observables:

Uniformly expanding maps on the circle

Markov maps

Piecewise expanding maps of the interval like Rychlik maps

Higher dimensional piecewise expanding maps like in [S00]

Remark

Observe that decay of correlations against L1(P) observables is a very strong
property. In fact, regardless of the rate, as long as it is summable, one can
actually show that the system has exponential decay of correlations of Hölder
observables against L∞(P). See [AFLV11, Theorem B].

Remark

If we add noise then the dichotomy vanishes and the standard Poisson process
always appears in the limit. See [AFV13].
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Motivated by the work of

Abadi [A04]

Keller [K12],

we build up on the assumption of existences of decay of correlations against
L1 observables to produce sharper error terms.
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Improved error terms for EVLs

Theorem

Assume that the system has decay of correlations of observables in a Banach
space C against observables in L1 with rate function γ : N→ R, where γ is
independent of the given observables and there exists δ > 0 such that
n2+δγ(n)→ 0, as n→∞. Let un be as in (2). Assume that there exists
q ∈ N0 such that

q := min
{

j ∈ N0 : lim
n→∞

R(A(j)
n ) =∞

}
.

For each n ∈ N, let An := A(q)
n , Rn := R(A(q)

n ), where R is defined as in (14),
and let kn, tn be integers minimising

{
ktP(An) + n2

k γ(t) + (nP(An))2

k

}
. Assume

that there exists M > 0 such that ‖1An‖C ≤ M for all n ∈ N.
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Theorem
Then there exists C > 0 such that for all n ∈ N

∣∣∣P(Mn ≤ un)− e−θτ
∣∣∣ ≤Ce−θτ

(∣∣θτ − nP(An)
∣∣+ kntn

θτ

n
+

n2

kn
γ(tn)

+
(θτ)2

kn
+ θτ

`n−1∑
j=Rn

γ(j)

)
,

where `n = bn/knc − tn and the EI θ is given by equation (11).
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Improved error terms for HTS

In what follows Bε(ζ) denotes the open ball of radius ε, around the point
ζ ∈ X , w.r.t. a given metric on X . Also set set A(0)

ε (ζ) := Bε(ζ) and, for each
q ∈ N, let A(q)

ε (ζ) := Bε(ζ) ∩
⋂q

i=1 f−i((Bε(ζ))c).

Theorem

Assume that the system has decay of correlations of observables in a Banach
space C against L1, with rγ : N→ R independent of the given observables
and there exists δ > 0 such that n2+δγ(n)→ 0, as n→∞. Fix some point
ζ ∈ X and assume that there exists q ∈ N0 such that

q := min
{

j ∈ N0 : lim
ε→0

R(A(j)
ε (ζ)) =∞

}
.

For each ε > 0, let Bε := Bε(ζ), Aε := A(q)
ε (ζ), Rε := R(A(q)

ε (ζ)), where R is
defined as in (14), and kε, tε ∈ N minimize ktP(Bε) + P(Bε)−2

k γ(t) + 1
k .
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Theorem
Let `ε = bP(Bε)−1/kεc − tε and assume that there exists M > 0 such that
‖1Aε‖C ≤ M for all ε > 0.
Then there exists C > 0, depending on ε but not on τ , such that for all ε > 0
and τ > 0∣∣∣P(rBε(ζ) >

τ

P(Bε)

)
− e−θτ

∣∣∣ ≤ C
(
τ 2αεΓε +

τ 2

kε
Γε +

τ 3

kε
αεΓε

)
e−(θ−kεΥAε )τ ,

with αε = |θ − P(Aε)
P(Bε) + tεkεP(Aε)| and ΥAε is s.t. kεΥAε ≤ CΓε, for some

C > 0, where Γε =
(

kεtεP(Aε) + P(Bε)−2γ(tε)
kε + 1

kε +
∑`ε−1

j=Rε
γ(j)

)
.

θ = lim
ε→0

P(Aε)
P(Bε)

. (15)
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Escape rates in the zero-hole limit

Fix a hole Bε(ζ) around some chosen point ζ and compute the rate of escape
of mass through the hole, i.e., find the limit, if it exists,

− lim
τ→∞

1
τ

logP
(
rBε(ζ) > τ

)
.

Moreover, one can consider, as in [KL09, FP12], what happens when the size
of the ball goes to zero too.

Corollary
Suppose that the system is as in the previous theorem. Then

− lim
ε→0

1
P(Bε(ζ))

lim sup
τ

1
τ

logP
(

rBε(ζ) >
τ

P(Bε)

)
≥ θ.

(CMUP) 23 / 23



M. Abadi, Sharp error terms and necessary conditions for exponential
hitting times in mixing processes, Ann. Probab. 32 (2004), no. 1A,
243–264.

J. F. Alves, J. M. Freitas, S. Luzzatto, and S. Vaienti, From rates of
mixing to recurrence times via large deviations, Adv. Math. 228 (2011),
no. 2, 1203–1236.

H. Aytaç, J. M. Freitas, and S. Vaienti, Laws of rare events for
deterministic and random dynamical systems, To appear in Transactions
of the American Mathematical Society (2013).

M. R. Chernick, T. Hsing, and W. P. McCormick, Calculating the
extremal index for a class of stationary sequences, Adv. in Appl. Probab.
23 (1991), no. 4, 835–850.

A. Ferguson and M. Pollicott, Escape rates for gibbs measures, Ergodic
Theory Dynam. Systems 32 (2012), no. 3, 961–988.

(CMUP) 23 / 23



A. C. M. Freitas, J. M. Freitas, and M. Todd, The extremal index, hitting
time statistics and periodicity, Adv. Math. 231 (2012), no. 5, 2626 –
2665.

A. C. M. Freitas, J. M. Freitas, and M. Todd, The compound Poisson limit
ruling periodic extreme behaviour of non-uniformly hyperbolic dynamics,
Comm. Math. Phys. 321 (2013), no. 2, 483–527.

G. Keller, Rare events, exponential hitting times and extremal indices via
spectral perturbation, Dynamical Systems 27 (2012), no. 1, 11–27.

G. Keller and C. Liverani, Rare events, escape rates and
quasistationarity: some exact formulae, J. Stat. Phys. 135 (2009), no. 3,
519–534.

Y. Kifer and A. Rapaport, Poisson and compound Poisson
approximations in a nonconventional setup, To appear in Probability
Theory and Related Fields (2013).

B. Saussol, Absolutely continuous invariant measures for
multidimensional expanding maps, Israel J. Math. 116 (2000), 223–248.

(CMUP) 23 / 23


