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Extreme Value Theory

Consider a stationary stochastic process Xy, X, Xo, . .. with marginal
d.f. F.

Let F =1 — F and ur = sup{x : F(x) < 1}.

The main goal of the Extreme Value Theory (EVT) is the study of the
distributional properties of the maximum

M, = max{Xo,...,Xn_1} (1)
as n — oo.

(CMUP & FEP) 2/33



Extreme Value Laws

Definition

We say that we have an Extreme value law (EVL) for M, if there is a
non-degenerate d.f. H: R — [0, 1] (with H(0) = 0) and for all = > 0,
there exists a sequence of levels u, = u,(7) such that

nP(Xo > up) — 7 as n — oo, (2)

and for which the following holds:

P(M, < up) — H(1) as n — oc. (3)
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The independent case

In the case Xy, X1, Xo, ... are i.i.d. r.v. then since
P(Mp < up) = (F(un))"

we have that if (2) holds, then (3) holds with H(7) = e~ ":

P(Mp < up) = (1 — P(Xy > up))" ~ (1 — %)n —~e 7T as n— oo,

and vice-versa.

When X, Xi, X, ... are not i.i.d. but satisfy some mixing condition
D(up) introduced by Leadbetter then something can still be said about
H.
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Condition D(u,,) from Leadbetter

Let F;, .. ;denote the joint d.f. of Xj,, ..., X;,, and set
,:i 'n(u) = I:I'1,.4.,i,,(u,-..,U).

1 yeeesl

Condition (D(uy))

We say that D(up) holds for the sequence Xy, Xi, ... if for any integers
It <...<lpandjj <...< jxforwhich j; —ip > t, and any large n € N,

|Fi17"'»ip7j1""7jk(un) o ,:i17""ip(un)Fj17"'7jk(un)’ S /Y(n7 t)7

where ~(n, t,) — 0, for some sequence t, = o(n).
[e.9]
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Extremal Index

Theorem ([C81], see also [LLR83])

If D(un) holds for Xo, X4, ... and the limit (3) exists for some T > 0 then
there exists 0 < 6 < 1 such that H(t) = e~ for all T > 0.

Definition

We say that Xo, Xi, ... has an Extremal Index (El) 0 < 6 <1 if we have
an EVL for M, with H(7) = e~ for all 7 > 0.
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Linear normalising sequences

The sequences of real numbers u, = up(7), n=1,2,..., are usually
taken to be one parameter linear families such as u, = any + bn,
where y ¢ Rand a, > 0, forall n € N.

Observe that = depends on y through up, and, in fact, depending on the
tail of the marginal d.f. F, we have that = = 7(y) is of one of the
following 3 types (for some a > 0):

Type1: 7(y)=e Y fory e R,
Type 2: 7m(y)=y “fory >0,
Type 3: 73(y) = (—y)* for y <0.
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Characterization of the three types

Theorem (Gnedenko)

Necessary and sufficient conditions for T to be of one of the three
types are:

Type 1: There exists some strictly positive function g such that, for all
real y,

A =F(t+yg(t)

I 0 e

Type 2: up = oo and limi_,(1 — F(ty))/(1 — F(t)) =y %, a >0, for
eachy > 0.

Type 3: ur < oo and
limpo(1 — F(up — yh))/(1 — F(up — h)) = y*,a > 0, foreach y > 0.

v
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Corollary
The constants a, and b, may be taken as follows:

Type 1: an = g(vn), bn = Vn;
Type 2: dn = Yns bn = 0,.
Type 3: an = UF — Yn, bn = UF,

where yp = F~1(1 —1/n) = inf{x : F(x) >1—1/n}.
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Examples

1. If F(x) =1 — e X then 7 is of type 1.
2. 1f F(x)=1—kx=* a>0,K >0, x> K" then 7 is of type 2.

3. If F(x) =x,0 < x <1, then 7 is of type 3.
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Hitting Times and Kac’s Lemma

Consider the system (X, 3, i, ), where X is a topological space, 5 is
the Borel og-algebra, f : X — X is a measurable map and p is an
f-invariant probability measure, i.e., u(f~'(B)) = u(B), for all B € B.

For a set A C X let ra(x) the first hitting time to A of the point x, i.e.
ra(x) =min{j e N: f/(x) € A}.

Let 14 denote the conditional measure on A, i.e. ua := %.

By Kac’s Lemma, the expected value of rq with respect to 4 is

/ Fa djip = 1/u(A).
A
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Hitting Time Statistics and Return Time Statistics

Definition

Given a sequence of sets (Un)nen s0 that (Up) — 0, the system has
RTS G for (Up)pen ifforall t > 0

KU, (run < M(Ln)> — G(t) as n — . (4)

and the system has HTS G for (Up)pen if forall t > 0

1 <fun < (ltJn)) — G(t) as n — oo, (5)
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Stationary stochastic processes arising from chaotic dynamics

Consider a discrete dynamical system
(X7 B) :LL’ f)7

where

X is a d-dimensional Riemannian manifold,
B is the Borel o-algebra,

f: X — Xisamap,

1 is an f-invariant probability measure.
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In this context, we consider the stochastic process Xy, X, ... given by
Xp=¢of" foreachneN, (6)

where o : X - RU {40} is an observable (achieving a global
maximum at £ € X) of the form

p(x)=g (/L(Bdist(xyg)(on ) (7)
where £ € X, “dist” denotes a Riemannian metric in X and the function

g :[0,+00) - RU {+00} has a global maximum at 0 and is a strictly
decreasing bijection for a neighborhood V of 0.
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We assume throughout this presentation that the following condition
holds:

(R1) for u sufficiently close to ug = ¢(¢), the event
Uu) ={xeX: ¢o(x)>u}={Xo > u} (8)

corresponds to a topological ball centered at (. Moreover, the
quantity u(U(u)) varies continuously, as a function of u, in a
neighbourhood of ur.

So, if at time j € N we have an exceedance of the level u sufficiently
large, i.e. Xj(x) > u, then we have an entrance of the orbit of x in the
ball U(u) at time j, i.e. f/(x) € U(u).

The behaviour of 1 — F(u), as u — uf, depends on the form of g .
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Connection between EVL and HTS

Motivated by Collet’s work, [C01], we obtained:

Theorem ([FFT10],[FFT11])

@ If we have HTS G for balls centred on £ € X, then we have an
EVL for M, with H = G.

Theorem ([FFT10],[FFT11])

@ If we have an EVL H for M, then we have HTS G = H for balls
centred on &.
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Idea of the proof:

n—1

{x : Ma(x) < tp} = [ {x: Xj(x) < un}
j=0
n—1
= (){x: g(dist(f(x),€)) < un}
j=0

n—1
- ﬂ{x : dist(f/'(x)’g) > g—1(un)} ={x: ng71(un)(§)(X) > n}
j=0

Thus,

WX Mn(X) < tn} = pix 15, ((X) > 1}
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Note that

p 1 ) = (B () & (

T

Bg*‘(un)(f))

and so

(X Mp(X) S Upy ~p xirg . (o(X)> — 1-G(7)
H M{ Bty (€) u( un)(§)>}
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Consider now a sequence ¢, — 0. We want to study

" ({x 1By, () (X) < M(B(;t(g))}>

Choose ¢, such that g~ (u;,) ~ 6,. We have that

lp—1
X My, () < b = () £ X5(x) < g}
j=0
ln—1 _ :
= () {x: gldist((x),)) < ui,}
j=0
o |
= () e dist(P0),€) > g7 (u)} = (X g, (0(X) = fa)
j=0
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As before,

Tt = Fu) = (B (©)) ~ 1 By, (€)) o ~

n

In this way,

{5 000 < g gy 1 b M 00 < 1) 5 HO)
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Assuming D(up) holds, let (kn)nen be a sequence of integers such that

kn — oo and knpt, = o(n). 9)

Condition (D'(up))
We say that D'(up) holds for the sequence Xy, Xj, ... if
[n/k]
limsup n > P{Xy > unand X; > up} =0. (10)

n—oo

=
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Assuming D(up) holds, let (kn)nen be a sequence of integers such that

kn — oo and knpt, = o(n). 9)

Condition (D'(up))
We say that D'(up) holds for the sequence Xy, Xj, ... if

[n/K]
limsup n > P{Xy > unand X; > up} =0. (10)

n—o0 ,
J=1

Theorem (Leadbetter)

Let{un} be such that n(1 — F(up)) — 7, as n — oo, for some > 0.
Assume that conditions D(up) and D'(up) hold. Then

PMn,<up) —e ™ asn— oo.
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Motivated by the work of Collet (2001) we introduced:

Condition (D> (up))

We say that D»(up) holds for the sequence Xy, Xi, ... if for any integers
f,tand n

|P{Xo > upnmax{X,...,Xere—1 < Un}}—
P{Xo > un}P{M,; < un}| < ~(n,t),

where ~(n, t) is nonincreasing in t for each nand nvy(n, t,) — 0 as
n — oo for some sequence t, = o(n).
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Motivated by the work of Collet (2001) we introduced:

Condition (D> (up))

We say that D»(up) holds for the sequence Xy, Xi, ... if for any integers
f,tand n

|P{Xo > upnmax{X,...,Xere—1 < Un}}—
P{Xo > un}P{M,; < un}| < ~(n,t),

where ~(n, t) is nonincreasing in t for each nand nvy(n, t,) — 0 as
n — oo for some sequence t, = o(n).

Theorem ([FF08al])

Let {un} be such that n(1 — F(up)) — 7, as n — oo, for some v > 0.
Assume that conditions Dy(u) and D'(up) hold. Then

PM,<up —e ™ asn— oo.
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Periodic points

From here on we are going to assume that:

(R2) ¢ € X is a repelling periodic point of period p € N. The periodicity
of ¢ implies that for all u sufficiently large, {Xo > u} N {X, > u} # 0
and {Xo > u}N{X;>u} =0forallj=1,...,p— 1. The fact that
¢ is repelling means that we have backward contraction implying
that there exists 0 < § < 1 such that

P{Xo>u}n{Xp>u})~(1-0)P(Xo > u),

for all u sufficiently large.

Under this assumption, D’'(up,) does not hold since

[n/kn]
n " P(Xo > Un, Xj > Un) > nP(Xo > Un, Xp > Un) — (1 = 0)r
=
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Define the event Q, o(u) := {Xo > u, Xp < u}.

Observe that for u sufficiently large, Qpo(u) corresponds to an annulus
centred at &.

Define the events: Q, j(u) := {X; > u, Xi1p < u},

Qp (1) == {X; > U} \ Qpj(u) and Qp s o(u) = Mg QS (u).
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Theorem ([FFT12])

Let (un)nen be such that nP(Xy > un) — 7, for some > 0. Suppose
Xo, X1,...is asin (6) and (R2) is satisfied forp € N and 6 € (0,1).
Then

lim P(Mp < up) = lim P(Qpo.n(uUn)) (11)

n—oo n—oo

@ First observe that {M, < up} C QpOn(un)

@ Moreover, Qp o n(Un) \ {Mn < un} C U7 {X,- > Up, Xiyp >
Un, .., Xiysp > Un}, where s; = [2=1=1].

@ [t follows by (R2) and stationarity that

P(Qp,0,n(Un) \ {Mn < un}) < pP(Xo > Un, Xp > Un)
T
=P(1=0); 520 O
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Condition (DP(up))

We say that DP(ujp,) holds forXy, Xj, ... if forany ¢, t and n
’P (Qp,o(un) N Qp,t,((un)) - P(Qp,o(un))P(Qp,O,E(Un))} <~(n,t),

where ~(n, t) is nonincreasing in t for each nand nvy(n, t;) — 0 as
n — oo for some sequence t, = o(n).

Let (kn)nen be a sequence of integers such that k, — oo and
Koty = o(n).

Condition (D},(up))

We say that D;,(un) holds for the sequence Xy, Xj, Xa, . . . if there exists
a sequence {kp}nen satisfying (9) and such that

[n/kn]
j=1
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Theorem ([FFT12])

Let (un)nen be such that nP(Xy > un) — 7, for some T > 0. Suppose
Xo, Xi,...isas in (6) and (R1) and (R2) are satisfied. Assume further
that conditions DP(un) and Dy,(up) hold. Then

lim P(Mp < un) = lim P(Qpo,n(un)) = €. (13)

V.

Note that
P(Qpo(u)) = P(Xo > u, Xp < u) =
=P(Xo > u)—P(Xo > u,Xp, > u) =
~P(Xo>u)—(1-0)P(Xo > u)=0P(Xo > u),
and so

P(Qpo(u))

0~ ——"——=.
P(Xo > U)
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Decay of correlations implies D>(up)

Suppose that there exists a nonincreasing function v : N — R such
that for all ¢ : X — R with bounded variationand ¢ : X — R € L*°,
there is C > 0 independent of ¢, and n such that

‘ [o-woridu— [odu MHL‘ < CVar(@) [l (), ¥n >0,

(14)
where Var(¢) denotes the total variation of ¢ and nvy(t,) — 0, as
n — oo for some sequence t, = o(n).

Taking ¢ = 1{X>Un} and 'lﬂ = 1{Me§Un}’ then
(14) = DQ(Un),

(with +(n, 1) = CVar(1 x=u) 11 m<un o7 (t) < C'A(2) and for the
sequence {t,} such that t,/n — 0 and nvy(t;) — 0 as n — o).
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Decay of correlations against L' implies Dy (un)

Suppose that there exists a nonincreasing function v : N — R such
that for all ¢ : X — R with bounded variationand ¢ : X - R € L',
there is C > 0 independent of ¢, and n such that

’/¢‘(¢°ft)du—/¢du/¢du’ < CVar(9)|[¢[l1~(t), V¥n=>0,

(15)
where Var(¢) denotes the total variation of ¢ and nvy(t,) — 0, as
n — oo for some sequence t, = o(n).

Taking ¢ = 1Qp(Un) and ’Lﬂ = 1Qp(Un)’ then
(15) = Dj(un),

P(Qp.0(un) N Qp j(Un)) < P(Qpo(un))? + C'P(Qoo(un))7(j) <
(r/n)? + C'(r/n)y(j).
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Doubling map
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Rychlik map
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Intermittent map
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Benedicks-Carleson maps
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