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Benôıt Saussol
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Abstract. We establish a conditional variational principle for hyper-
bolic flows. In particular we provide an explicit expression for the topo-
logical entropy of the level sets of Birkhoff averages, and obtain a simple
new proof of the corresponding multifractal analysis. One application is
that for a geodesic flow ϕt on a compact Riemannian manifold of neg-
ative sectional curvature, if there exists a geodesic ϕtx with “average”
scalar curvature κ, i.e.,

lim
t→∞

1

t

∫ t

0

K(ϕsx) ds = κ,

then there exist uncountably many geodesics with the same “average”
scalar curvature κ. The variational principle can also be used to es-
tablish the analyticity of several new classes of multifractal spectra for
hyperbolic flows.

1 Introduction

In this paper we consider a class of C1 flows on compact manifolds and study the
asymptotic behavior of their orbits. This study reveals an unsuspected complexity
behind the already well-known stochastic properties exhibited by certain flows.
Instead of considering here the most general situation, we would like to illustrate
our statements with an explicit example.
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Consider a compact orientable Riemannian surface M with (sectional) curva-
ture K. The Gauss–Bonnet theorem says that∫

M

K dλM = 2πχ(M), (1)

where λM is the volume measure on M , and χ(M) denotes the Euler characteristic
of M . Let Φ = {ϕt}t denote the corresponding geodesic flow on the unit tangent
bundle SM . The geodesic flow preserves the normalized Liouville measure λSM on
SM , induced from the volume on M . By the Birkhoff ergodic theorem the limit

κ(x) def= lim
t→∞

1
t

∫ t

0

K(ϕsx) ds (2)

exists for λSM -almost every x ∈ SM . It follows from (1) and (2) that∫
SM

κ dλSM =
∫

M

K dλM = 2πχ(M). (3)

Assume now that M has strictly negative curvature K. In this case M must
have genus at least 2. The geodesic flow is ergodic, i.e., every set which is invari-
ant under the geodesic flow is either of zero or full measure (see [1] for details).
Therefore, besides (3), we have

κ(x) =
∫

M

K dλM = 2πχ(M). (4)

for λSM -almost every x ∈ SM . More generally, the identity in (4) holds almost
everywhere with respect to any measure preserved by the geodesic flow.

However, it is not at all clear that the function κ may take only the value
2πχ(M), i.e., the level sets

SMα = {x ∈ SM : κ(x) = α}

may very well be nonempty for several values of α. This question appears naturally
in the so-called multifractal analysis of dynamical systems (see [8] for details). The
following is a consequence of our work in [2].

Theorem 1 Given a compact orientable surface M with χ(M) < 0, for each
metric g in an open set of C3 metrics on M of strictly negative curvature, there
exists an open interval Ig containing 2πχ(M) such that SMα ⊂ SM is a nonempty
proper dense subset with positive topological entropy for every α ∈ Ig.

See Section 2 for the definition of topological entropy. In particular, Theorem 1
implies that for a metric g as in the theorem, the set SMα is uncountable for every
α ∈ Ig. This reveals an extreme complexity behind the Birkhoff ergodic theorem.

Notice that SM = N ∪
⋃

α SMα, where

N =
{
x ∈ SM : lim inf

t→∞

1
t

∫ t

0

K(ϕsx) ds < lim sup
t→∞

1
t

∫ t

0

K(ϕsx) ds
}
,

and that this union is composed of pairwise disjoint sets. Due to the Birkhoff
ergodic theorem the setN has zero measure with respect to every invariant measure.
This observation strongly contrasts with the following statement, which is also a
consequence of our work in [2] (using ideas in [4]).
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Theorem 2 Given a compact orientable surface M with χ(M) < 0, for each
metric g in an open set of C3 metrics on M of strictly negative curvature, the set
N ⊂ SM is a nonempty proper dense subset with topological entropy equal to that
of SM .

There is a good number of rigorous related results, concerning the multifractal
analysis of maps. We refer the reader to the book [8] for details and further refer-
ences. In the case of flows, to our best knowledge, there exist only the works [2]
and [9] in the literature.

In this paper we shall provide a simpler new proof of the multifractal analysis
for hyperbolic flows, or more precisely for C1 flows with a hyperbolic set (see Sec-
tion 3.1 for the definition). In particular we shall also consider higher-dimensional
manifolds. For example, geodesic flows on compact Riemannian manifolds with
negative sectional curvature are hyperbolic. Furthermore, time changes and small
C1 perturbations of hyperbolic flows are also hyperbolic flows.

The new approach to multifractal analysis is based on a conditional varia-
tional principle for the topological entropy (see Theorem 5 below). This variational
principle is of considerable importance by itself. It virtually contains all known
statements of multifractal analysis, and thus unifies and extends all known results
concerning the multifractal analysis of topological entropy. In particular it can be
used to obtain a much simpler proof of Theorem 1.

We now describe in what consists the conditional variational principle. Let

E(α) = h(Φ|SMα)

be the topological entropy of the set SMα. The function E is called entropy spec-
trum. One of the main objectives of multifractal analysis is to describe the prop-
erties of the function E. In most works addressing related problems the function
E is described in terms of a Legendre transform involving the topological pressure
(see Section 2 for the definition). We provide a different description, in terms of a
variational principle.

Denote by hµ(Φ) the measure-theoretic entropy of the geodesic flow with re-
spect to the measure µ, and by M(SM) the set of probability measures on SM
preserved by the geodesic flow. We also write

A =
{∫

SM

K dµ : µ ∈ M(SM)
}
.

Since M(SM) is weakly compact and convex, the set A is a closed interval. The
following is our variational principle for the spectrum E.

Theorem 3 For a compact orientable surface M and a metric of strictly neg-
ative curvature on M , for every α ∈ intA we have

E(α) = max
{
hµ(Φ) :

∫
SM

K dµ = α and µ ∈ M(SM)
}
.

The structure of the paper is as follows. In Section 2 we provide some necessary
notions from the thermodynamic formalism. In Section 3 we present a much more
general version of the conditional variational principle, and describe the main prop-
erties of the entropy spectrum. In particular we also consider the so-called “mixed”
multifractal spectra (see [3]). Some applications are given in Section 4. Related
results in the case of suspension flows are described in Section 5. We also present a
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higher-dimensional version of the variational principle in Section 6. The proofs are
collected in Section 7, and are entirely based on the thermodynamic formalism.

Acknowledgment. We thank the editors for the opportunity to participate
in this volume. Waldyr Oliva has always been an inspiration for us, both in math-
ematics and in life. Together with his gentle and cheerful personality, our countless
mathematical and non-mathematical conversations in Lisbon, have always helped
us remember that research is a noble activity, although never unrelated to a propi-
tious humane environment. Waldyr Oliva’s contribution to both is invaluable.

2 Notions from the thermodynamic formalism

In this section we recall some basic notions from the thermodynamic formalism,
in the case of flows. Let Φ = {ϕt}t be a continuous flow on the compact metric
space (X, d), that is, a family of transformations ϕt : X → X such that (t, x) 7→ ϕtx
is continuous, with ϕt ◦ϕs = ϕt+s for every t, s ∈ R, and ϕ0x = x for every x ∈ X.
Given x ∈ X, t > 0, and ε > 0, we define

B(x, t, ε) = {y ∈ X : d(ϕsy, ϕsx) < ε for every 0 ≤ s ≤ t}. (5)

Let u : X → R be a continuous function and write

u(x, t, ε) = sup
{∫ t

0

u(ϕsy) ds : y ∈ B(x, t, ε)
}
.

For each set Z ⊂ X and each α ∈ R, we define

M(Z, u, α, ε) = lim
T→∞

inf
Γ

∑
(x,t)∈Γ

exp(u(x, t, ε)− αt),

where the infimum is taken over all finite or countable sets Γ = {(xi, ti)}i such that
(xi, ti) ∈ X × [T,∞) for each i, and

⋃
iB(xi, ti, ε) ⊃ Z. One can easily verify that

it exists the limit in

PΦ(u|Z) def= lim
ε→0

inf{α : M(Z, u, α, ε) = 0}. (6)

The number PΦ(u|Z) is called the topological pressure of u on Z (with respect to
the flow Φ). We emphasize that the set Z need not be compact nor Φ-invariant.
For simplicity we shall write PΦ(u) = PΦ(u|X). We also write h(Φ|Z) = PΦ(0|Z)
and call h(Φ|Z) the topological entropy of Φ on Z.

When the set Z is compact and Φ-invariant, we can express the topological
pressure as

PΦ(u|Z) = lim
ε→0

lim inf
t→∞

1
t

log inf
Γ

∑
x∈Γ

exp(u(x, t, ε))

= lim
ε→0

lim sup
t→∞

1
t

log inf
Γ

∑
x∈Γ

exp(u(x, t, ε)),

where the infimum is taken over all finite or countable sets Γ = {xi}i ⊂ X such
that

⋃
iB(xi, t, ε) ⊃ Z. In particular, when Z is compact and Φ-invariant, we can

express the topological entropy as

h(Φ|Z) = lim
ε→0

lim inf
t→∞

logNZ(t, ε)
t

= lim
ε→0

lim sup
t→∞

logNZ(t, ε)
t

,

where NZ(t, ε) is the least number of sets B(x, t, ε) needed to cover Z.
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We shall denote by MΦ(X) the set of Φ-invariant Borel probability measures
on X, i.e., the Borel probability measures µ on X such that µ(ϕtA) = µ(A) for
every t ∈ R and every Borel set A ⊂ X. For every measure µ ∈ MΦ(X), the limit

hµ(Φ) def= lim
ε→0

inf{h(Z, ε) : µ(Z) = 1} (7)

is well-defined, where

h(Z, ε) = inf{α : M(Z, 0, α, ε) = 0}.

The number hµ(Φ) is called the entropy of Φ with respect to µ. The entropy defined
in this way coincides with the “classical” entropy obtained from the entropy of
partitions (in the case of metric spaces); this can be shown using similar arguments
to those in [8, §11] in the case of discrete time.

Proposition 4 (Variational principle for flows) For every continuous flow
Φ on the compact metric space X and every continuous function u : X → R we have

PΦ(u) = sup
{
hµ(Φ) +

∫
X

u dµ : µ ∈ MΦ(X)
}
. (8)

We say that µ ∈ MΦ(X) is an equilibrium measure for the function u (with
respect to the flow Φ) if the supremum in (8) is attained at this measure, i.e., if

PΦ(u) = hµ(Φ) +
∫

X

u dµ.

For example, when the map µ 7→ hµ(Φ) is upper semi-continuous each continuous
function has an equilibrium measure (which need not be unique). In particular, if
Φ is expansive then the measure-theoretic entropy is upper semi-continuous. Recall
that Φ is expansive if there exists ε > 0 such that given any continuous function
s : R → R with s(0) = 0 and point x, y ∈M with

d(ϕtx, ϕs(t)x) < ε and d(ϕtx, ϕs(t)y) < ε

for every t ∈ R, then x = y.
The reader can see [7, 8, 11] for details.

3 Conditional variational principle

3.1 Hyperbolic flows. Let Φ = {ϕt}t be a C1 flow of the smooth compact
manifold M . A closed Φ-invariant set Λ ⊂ M is called hyperbolic for Φ if there
exists a continuous splitting

TΛM = Es ⊕ Eu ⊕ E0,

and constants c > 0 and λ ∈ (0, 1) such that for each x ∈ Λ the following properties
hold:

1. the vector d
dt (ϕtx)|t=0 generates E0(x);

2. dxϕtE
s(x) = Es(ϕtx) and dxϕtE

u(x) = Eu(ϕtx) for each t ∈ R;
3. ‖dxϕtv‖ ≤ cλt‖v‖ for every v ∈ Es(x) and every t > 0;
4. ‖dxϕ−tv‖ ≤ cλt‖v‖ for every v ∈ Eu(x) and every t > 0.

For example, geodesic flows on compact Riemannian manifolds with strictly neg-
ative sectional curvature have the whole unit tangent bundle as a hyperbolic set.
Furthermore, time changes and small C1 perturbations of flows with a hyperbolic
set also possess a hyperbolic set.
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A closed Φ-invariant hyperbolic set Λ is said to be locally maximal if there
exists an open neighborhood U of Λ such that

Λ =
⋂
t∈R

ϕt(U).

Recall that Φ|Λ is topologically transitive if for every nonempty open sets U and V
intersecting Λ there exists t ∈ R such that ϕt(U)∩V ∩Λ 6= ∅. Furthermore, Φ|Λ is
topologically mixing if for every nonempty open sets U and V intersecting Λ there
exists t ∈ R such that ϕs(U) ∩ V ∩ Λ 6= ∅ for every s > t.

For a locally maximal hyperbolic set Λ such that Φ|Λ is topologically transitive,
each Hölder continuous function u : Λ → R has a unique equilibrium measure.
The reader can see [7] for details. Furthermore, the topological pressure, or more
precisely the function u 7→ PΦ(u), is analytic in the space of Hölder continuous
functions on Λ. This statement is well known in the case of hyperbolic maps (see
[11]). One can reduce the case of flows to the case of maps by using a symbolic
representation of the flow in terms of a suspension flow over a subshift of finite type
(see Section 5), and applying the implicit relation given by Proposition 12 below.

3.2 Conditional variational principle. Let Λ ⊂ M be an invariant set of
a continuous flow Φ = {ϕt}t on M . We denote by C(Λ) the space of continuous
functions a : Λ → R. Given a, b ∈ C(Λ) with b > 0, we set

Kα = Kα(a, b) =

{
x ∈ Λ : lim inf

t→∞

∫ t

0
a(ϕsx) ds∫ t

0
b(ϕsx) ds

= lim sup
t→∞

∫ t

0
a(ϕsx) ds∫ t

0
b(ϕsx) ds

= α

}
.

One can easily verify that the set Kα is Φ-invariant. Let also

α = α(a, b) = inf
{∫

Λ
a dµ∫

Λ
b dµ

: µ ∈ MΦ(Λ)
}

and

α = α(a, b) = sup
{∫

Λ
a dµ∫

Λ
b dµ

: µ ∈ MΦ(Λ)
}
.

The function F = F(a,b) defined by

F(α) = h(Φ|Kα)

is called the entropy spectrum for the pair of functions (a, b).
We now present the main result of this section.

Theorem 5 Let Λ ⊂ M be a locally maximal hyperbolic set of a C1 flow Φ
such that Φ|Λ is topologically mixing, and a, b : Λ → R Hölder continuous functions
with b > 0. Then the following properties hold:

1. if α 6∈ [α, α] then Kα = ∅;
2. if α ∈ (α, α) then Kα 6= ∅,

F(α) = max
{
hµ(Φ) :

∫
Λ
a dµ∫

Λ
b dµ

= α and µ ∈ MΦ(Λ)
}
, (9)

and
F(α) = min{PΦ(qa− qαb) : q ∈ R}. (10)
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The identity in (9) is called a conditional variational principle for the entropy
spectrum. Observe that Theorem 3 is a particular case of Theorem 5. By Theo-
rem 5, if α < α then Kα 6= ∅ for every α in (α, α). Theorem 6 below establishes
a necessary and sufficient condition, in terms of the functions a and b, so that the
strict inequality α < α takes place.

Let us now explain how to obtain a measure where the maximum in (9) is
attained. Let q(α) ∈ R be a point where the function q 7→ PΦ(qa − qαb) attains
its infimum (it is established in the proof of Theorem 5 that the infimum is indeed
attained). Then the unique equilibrium measure µα of the function q(α)(a − αb)
satisfies (see the proof of Theorem 5 for details):

F(α) = hµα(Φ) and

∫
Λ
a dµα∫

Λ
b dµα

= α. (11)

Using similar arguments to those in [3] in the case of discrete time, we can
extend Theorem 5 to the situation when the measure-theoretic entropy is upper
semi-continuous, for continuous functions with unique equilibrium measures. For
example, for locally maximal hyperbolic sets of topologically mixing C1 flows the
measure-theoretic entropy is upper semi-continuous, and any continuous function
with bounded variation has a unique equilibrium measure. Recall that a continuous
function a : X → R has bounded variation if there exist ε > 0 and κ > 0 such that∣∣∣∣∫ t

0

a(ϕsx) ds−
∫ t

0

a(ϕsy) ds
∣∣∣∣ < κ

whenever d(ϕsx, ϕsy) < ε for every s < t.

3.3 Analyticity of the spectrum. We say that a function a : Λ → R is Φ-
cohomologous to a function b : Λ → R if there exists a bounded measurable function
q : Λ → R such that

a(x)− b(x) = lim
t→0

q(ϕtx)− q(x)
t

for every x ∈ Λ. The following theorem shows that whenever a is not Φ-cohomol-
ogous to a multiple of b the spectrum F is real analytic on its domain.

Theorem 6 Let Λ ⊂ M be a locally maximal hyperbolic set of a C1 flow Φ
such that Φ|Λ is topologically mixing, and a, b : Λ → R Hölder continuous functions
with b > 0. Then the following properties hold:

1. if a is Φ-cohomologous to a multiple cb of b, then α = α = c and Kc = Λ;
2. if a is Φ-cohomologous to no multiple of b, then α < α and the function F

is real analytic on the interval (α, α).

One can easily verify that if a is Φ-cohomologous to the multiple cb of b, then
c =

∫
Λ
a dµ/

∫
Λ
b dµ for every µ ∈ MΦ(Λ).

In the special case when b = 1 the statement in Theorem 6 was established in
[2] with a different method.

We now show that “most” Hölder continuous functions satisfy the second al-
ternative in Theorem 6. Let Cα(Λ) be the space of Hölder continuous functions on
Λ with Hölder exponent α ∈ (0, 1]. We also denote by Cα

+(Λ) the subset of Cα
+(Λ)

composed of the strictly positive functions. Given a ∈ Cα(Λ) we define its norm by

‖a‖α = sup{|a(x)| : x ∈ Λ}+ sup
{
|a(x)− a(y)|
d(x, y)α

: x, y ∈ Λ and x 6= y

}
,
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where d denotes the distance on M .

Theorem 7 Let Λ ⊂M be a locally maximal hyperbolic set of a C1 flow Φ such
that Φ|Λ is topologically transitive. Then, for each α ∈ (0, 1), the set of functions
(a, b) ∈ Cα(Λ)× Cα

+(Λ) such that a is Φ-cohomologous to no multiple of b is open
and dense in Cα(Λ)× Cα

+(Λ).

Combining Theorems 5, 6, and 7 we readily obtain the following statement,
formulated without using the notion of cohomology.

Theorem 8 Let Λ ⊂M be a locally maximal hyperbolic set of a C1 flow Φ such
that Φ|Λ is topologically mixing. Given α ∈ (0, 1], for each (a, b) ∈ Cα(Λ)×Cα

+(Λ)
in an open and dense set, the entropy spectrum F is real analytic on the nonempty
interval (α, α), and satisfies the identities (9) and (10) for every α ∈ (α, α).

3.4 Relation with multifractal analysis. The above study can be used to
provide a new proof of the multifractal analysis of the entropy spectrum effected by
Barreira and Saussol in [2] when b = 1. This new proof avoids symbolic dynamics
(unlike the approach in [2] or the related approach in [9], for which symbolic dy-
namics in crucial), and in particular does not require the so-called Markov systems
introduced by Bowen and Ratner. Instead it provides a simple minded approach
entirely based on the thermodynamic formalism.

We set b = 1 and write

E(α) = h(Φ|Kα(a, 1)).

The function E is called the entropy spectrum for the Birkhoff averages of a. Note
that

Kα(a, 1) =
{
x ∈ Λ : lim inf

t→∞

1
t

∫ t

0

a(ϕsx) ds = lim sup
t→∞

1
t

∫ t

0

a(ϕsx) ds = α

}
.

Set T (q) = PΦ(qa). It follows from (10) in Theorem 5 that

E(α) = min{T (q)− qα : q ∈ R},

i.e., E is the Legendre transform of the T . Taking the derivative of the function
q 7→ T (q)− qα we obtain

E(T ′(q)) = T (q)− qT ′(q).

Furthermore, the function q 7→ T ′(q) is the inverse of the function α 7→ q(α) in
Section 3.2 (note that when b = 1 the number q(α) is uniquely defined; this is
in general not the case for an arbitrary function b). It follows from (11) that
E(T ′(q)) = hνq

(Φ), where νq is the unique equilibrium measure of qa.
Putting these observations together and using Theorem 6 we obtain the follow-

ing statement.

Theorem 9 ([2]) Let Λ ⊂M be a locally maximal hyperbolic set of a C1 flow Φ
such that Φ|Λ is topologically mixing, and a : Λ → R a Hölder continuous function.
Then the following properties hold:

1. E(T ′(q)) = T (q)− qT ′(q) = hνq
(Φ) for every q ∈ R;

2. if a is not Φ-cohomologous to a constant on Λ, then E and T are real analytic
strictly convex functions (forming a Legendre pair).
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We emphasize that Theorem 9 is not new (although in [2] it was formulated for
C1+ε flows). On the other hand, the way in which the theorem is obtained here (as
a simple application of Theorem 5) is indeed new and illustrates how the conditional
variational principle obtained in Theorem 5 can be used in a straightforward manner
to recover the multifractal analysis of the entropy spectra for hyperbolic flows.

4 Applications

In this section we present applications of the above results, in the case of
multifractal spectra obtained from local entropies and from Lyapunov exponents.

4.1 Multifractal spectra for local entropies. Let Λ ⊂M be an invariant
set of a continuous flow Φ = {ϕt}t on M , and ν a Φ-invariant Borel probability
measure on M . For each point x ∈ M we define the lower and upper ν-local
entropies of Φ at x by

hν(Φ, x) def= lim
ε→0

lim inf
t→∞

−1
t

log ν(B(x, t, ε))

and

hν(Φ, x) def= lim
ε→0

lim sup
t→∞

−1
t

log ν(B(x, t, ε)),

with B(x, t, ε) as in (5). Whenever hν(Φ, x) = hν(Φ, x), the common value is
denoted by hν(Φ, x) and is called the ν-local entropy of Φ at x. By the Shannon–
McMillan–Breiman theorem, the ν-local entropy of Φ is well-defined ν-almost ev-
erywhere. In addition, if ν is ergodic then hν(Φ, x) = hν(Φ) for ν-almost every
x ∈M .

The entropy spectrum for local entropies is defined by

H(α) = h(Φ|Kh
α),

where
Kh

α = {x ∈M : hν(Φ, x) = hν(Φ, x) = α}.
In the case of hyperbolic flows we have

Kh
α =

{
x ∈M : lim inf

t→∞
−1
t

log ν(B(x, t, ε)) = lim sup
t→∞

−1
t

log ν(B(x, t, ε)) = α

}
for all sufficiently small ε > 0, i.e., the limits in ε are not necessary (compare with
Proposition 11 in [2]).

Again for hyperbolic flows, there exists a unique measure mE of maximal en-
tropy, i.e., a unique invariant probability measure such that h(Φ) = hmE

(Φ). We
write

αh = inf
{
−
∫

Λ

a dµ : µ ∈ MΦ(Λ)
}

and αh = sup
{
−
∫

Λ

a dµ : µ ∈ MΦ(Λ)
}
.

The following can be readily obtained from Theorems 5 and 6 setting b = −1.

Theorem 10 Let Λ ⊂ M be a locally maximal hyperbolic set of a C1 flow Φ
such that Φ|Λ is topologically mixing, and ν an equilibrium measure of a Hölder
continuous function a : Λ → R such that PΦ(a) = 0. Then the following properties
hold:

1. if α 6∈ [αh, αh] then Kh
α = ∅;
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2. if α ∈ (αh, αh) then Kh
α 6= ∅, and

H(α) = max
{
hµ(Φ) : −

∫
Λ

a dµ = α and µ ∈ MΦ(Λ)
}

= min{PΦ(qa) + qα : q ∈ R};

3. if ν = mE, i.e., a is Φ-cohomologous to zero, then αh = αh = c and Kh
c = Λ;

4. if ν 6= mE, i.e., a is not Φ-cohomologous to zero, then αh < αh and the
function H is real analytic on the interval (αh, αh).

The second statement in the theorem shows that the spectrum H is the Le-
gendre transform of the function q 7→ PΦ(qa).

4.2 Multifractal spectra for Lyapunov exponents. We now consider the
case of Lyapunov exponents. We recall that the C1 flow Φ = {ϕt}t on M is said to
be conformal on a hyperbolic set Λ if the maps

dxϕt|Es(x) : Es(x) → Es(ϕtx) and dxϕt|Eu(x) : Eu(x) → Eu(ϕtx)

are multiples of isometries for each x ∈ Λ and t ∈ R.
Let Zs and Zu be, respectively, the sets of points x ∈ M for which there exist

the limits

λs(x)
def= lim

t→+∞

1
t

log‖dxϕt|Es(x)‖ and λu(x) def= lim
t→+∞

1
t

log‖dxϕt|Eu(x)‖.

By Kingman’s subadditive ergodic theorem, we have ν(M \ Zs) = ν(M \ Zu) = 0.
Pesin and Sadovskaya observed in [9] that when Φ is conformal on Λ we have

λs(x) = lim
t→+∞

1
t

∫ t

0

ζs(ϕτx) dτ and λs(x) = lim
t→+∞

1
t

∫ t

0

ζu(ϕτx) dτ,

where

ζs(x)
def=

∂

∂t
log‖dxϕt|Es(x)‖

∣∣∣∣
t=0

= lim
t→0

1
t

log‖dxϕt|Es(x)‖ (12)

and

ζu(x) def=
∂

∂t
log‖dxϕt|Eu(x)‖

∣∣∣∣
t=0

= lim
t→0

1
t

log‖dxϕt|Eu(x)‖. (13)

Since the distributions x 7→ Es(x) and x 7→ Eu(x) are Hölder continuous, the
functions ζs and ζu are Hölder continuous on Λ provided that the flow Φ is of class
C1+ε for some ε > 0.

The stable and unstable entropy spectra for Lyapunov exponents are defined by

Ls(α) = h(Φ|Ks
α) and Lu(α) = h(Φ|Ku

α),

where

Ks
α = {x ∈ Zs : λs(x) = α} and Ku

α = {x ∈ Zu : λu(x) = α}. (14)

We write

αs = inf
{∫

Λ

ζs dµ : µ ∈ MΦ(Λ)
}

and αs = sup
{∫

Λ

ζs dµ : µ ∈ MΦ(Λ)
}
,

and

αu = inf
{∫

Λ

ζu dµ : µ ∈ MΦ(Λ)
}

and αu = sup
{∫

Λ

ζu dµ : µ ∈ MΦ(Λ)
}
.

The following can be readily obtained from Theorems 5 and 6 setting a = ζs and
b = 1.
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Theorem 11 Let Λ ⊂M be a locally maximal hyperbolic set of a C1+ε flow Φ
with ε > 0 such that Φ|Λ is conformal and topologically mixing. Then the following
properties hold:

1. if α 6∈ [αs, αs] then Ks
α = ∅;

2. if α ∈ (αs, αs) then Ks
α 6= ∅, and

Ls(α) = max
{
hµ(Φ) :

∫
Λ

ζs dµ = α and µ ∈ MΦ(Λ)
}

= min{PΦ(qζs)− qα : q ∈ R};

3. if ζs is Φ-cohomologous to zero, then αs = αs = c and Ks
c = Λ;

4. if ζs is not Φ-cohomologous to zero, then αs < αs and the function Ls is
real analytic on the interval (αs, αs).

We can also formulate corresponding statements in the case of the spectrum Ls,
obtained from Theorems 5 and 6 setting a = ζu and b = 1.

In [9], Pesin and Sadovskaya obtained a complete multifractal analysis of the
spectrum Ls. Using similar arguments to those in Section 3.4, we can use The-
orem 11 to obtain a new proof of the multifractal analysis of the spectrum Ls.
A similar remark applies to the spectrum Lu.

5 Suspension flows

5.1 Preliminaries. It is well-known that hyperbolic flows can be modeled by
suspension flows over subshifts of finite type, using the so-called Markov systems
introduced by Bowen [5] and Ratner [10]. In this section we shall show how to
use this representation in order to describe the variational principle in Theorem 5
in terms of the discrete time dynamics in the base of the suspension. Instead of
formulating our results only for suspension flows obtain from hyperbolic flows we
shall instead consider arbitrary suspension flows over subshifts of finite type.

We briefly recall some notions concerning suspensions. Let T : X → X be a
homeomorphism of the compact metric space X, and τ : X → (0,∞) a Lipschitz
function. Consider the space

Y = {(x, s) ∈ X × R : 0 ≤ s ≤ τ(x)},

with the points (x, τ(x)) and (Tx, 0) identified for each x ∈ X. One can introduce
in a natural way a topology on Y which makes Y a compact topological space. This
topology is induced by a distance introduced by Bowen and Walters in [6] (see the
appendix in [2] for details).

The suspension flow over T with height function τ is the flow Ψ = {ψt}t on Y
where ψt : Y → Y is defined by

ψt(x, s) = (x, s+ t).

We extend τ to a function τ : Y → R by

τ(y) = min{t > 0 : ψty ∈ X × {0}},

and extend T to a map T : Y → X × {0} by

T (y) = ψτ(y)y.

Since there is no danger of confusion we continue to use the symbols τ and T for
the extensions. Given a continuous function a : Y → R we define a new function
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∆a : Y → R by

∆a(y) =
∫ τ(y)

0

a(ψsy) ds.

Combining the variational principles for the topological pressures of the flow
and the base map, we obtain a relation between the two topological pressures.

Proposition 12 If Ψ is a suspension flow on Y over T : X → X, and a : Y →
R is a continuous function, then

PT (∆a − PΨ(a)τ) = 0.

Recall that two functions A : X → R and B : X → R are said to be T -
cohomologous if there exists a bounded measurable function q : X → R such that

A(x)−B(x) = q(Tx)− q(x)

for every x ∈ X. The following is established in [2].

Proposition 13 If Ψ = {ψt}t is a suspension flow on Y over T : X → X, and
a : Y → R and b : Y → R are continuous functions, then the following properties
are equivalent:

1. a is Ψ-cohomologous to b on Y with

a(y)− b(y) = lim
t→0

q(ψty)− q(y)
t

for every y ∈ Y ;

2. ∆a is T -cohomologous to ∆b on X × {0} with

∆a(y)−∆b(y) = q(Ty)− q(y) for every y ∈ X × {0}.

This proposition allows us to characterize the cohomology of the flow Ψ entirely
in terms of the cohomology of the map T on the base.

We also have the following statement.

Proposition 14 Let Ψ = {ψt}t be a suspension flow on Y over T : X → X,
and a : Y → R and b : Y → R continuous functions. If x ∈ X and s ∈ [0, τ(x)],
then

lim inf
t→∞

∫ t

0
a(ψτ (x, s)) dτ∫ t

0
b(ψτ (x, s)) dτ

= lim inf
m→∞

∑m
i=0 ∆a(T ix)∑m
i=0 ∆b(T ix)

and

lim sup
t→∞

∫ t

0
a(ψτ (x, s)) dτ∫ t

0
b(ψτ (x, s)) dτ

= lim sup
m→∞

∑m
i=0 ∆a(T ix)∑m
i=0 ∆b(T ix)

.

These propositions will allow us to obtain a conditional variational principle
with respect to the base.

5.2 Conditional variational principle. Let Ψ be a suspension flow on Y
over a homeomorphism T : X → X of the compact metric space X, and µ a T -
invariant probability measure in X. The measure µ induces a Ψ-invariant proba-
bility measure ν in Y such that∫

Y

a dν =

∫
X

∆a dµ∫
X
τ dµ

(15)

for every continuous function a : Y → R. Furthermore, any Ψ-invariant measure ν
in Y is of this form for some T -invariant probability measure µ in X.
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Given continuous functions a, b : Y → R with b > 0, we define

Kα
def=

{
x ∈ Y : lim inf

t→∞

∫ t

0
a(ψsx) ds∫ t

0
b(ψsx) ds

= lim sup
t→∞

∫ t

0
a(ψsx) ds∫ t

0
b(ψsx) ds

= α

}
.

It follows from Proposition 14 that the set Kα is composed of the points (x, s) ∈ Y
such that

lim inf
m→∞

∑m
i=0 ∆a(T ix)∑m
i=0 ∆b(T ix)

= lim sup
m→∞

∑m
i=0 ∆a(T ix)∑m
i=0 ∆b(T ix)

= α

and s ∈ [0, τ(x)]. Let also

α
def= inf

{∫
Y
a dν∫

Y
b dν

: ν ∈ MΨ(Y )
}

= inf
{∫

X
∆a dµ∫

X
∆b dµ

: µ ∈ MT (X)
}

and

α
def= sup

{∫
Y
a dν∫

Y
b dν

: ν ∈ MΨ(Y )
}

= inf
{∫

X
∆a dµ∫

X
∆b dµ

: µ ∈ MT (X)
}
,

where MΨ(Y ) (respectively MT (X)) denotes the set of Ψ-invariant Borel probabil-
ity measures on Y (respectively the set of T -invariant Borel probability measures
on X).

The function F defined by

F(α) = h(Ψ|Kα)

is again called the entropy spectrum for the pair of functions (a, b).
We now consider the special case when T is a subshift of finite type.

Theorem 15 Let Ψ be a suspension flow on Y over a topologically mixing
two-sided subshift of finite type, and a : Y → R and b : Y → R Hölder continuous
functions. Then the following properties hold:

1. if α 6∈ [α, α] then Kα = ∅;
2. if α ∈ (α, α) then Kα 6= ∅ and

F(α) = max
{
hµ(T )∫
X
τ dµ

:

∫
X

∆a dµ∫
X

∆b dµ
= α and µ ∈ MT (X)

}
= min

{
sup

µ∈MT (X)

hµ(T ) +
∫

X
∆qa−qαb dµ∫

X
τ dµ

: q ∈ R

}
;

3. if a is Ψ-cohomologous to a multiple cb of b, i.e., if ∆a is T -cohomologous
to a multiple c∆b of b, then α = α = c and Kc = Λ;

4. if a is Ψ-cohomologous to no multiple of b, i.e., if ∆a is T -cohomologous to
no multiple of ∆b, then α < α and the function F is real analytic on the
interval (α, α).

6 Higher dimensional multifractal spectra

The purpose of this section is to obtain a higher dimensional version of the
conditional variational principle in Theorem 5. Essentially, instead of considering
Birkhoff averages (or ratios of Birkhoff averages) we want to consider vectors of
Birkhoff averages.
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Let again Λ ⊂ M be an invariant set of a continuous flow Φ = {ϕt}t. Let a1,
. . ., ad : Λ → R and b1, . . ., bd : Λ → R be continuous functions, such that bi > 0
for each i = 1, . . ., d. Set

A =
{(∫

Λ
a1 dµ∫

Λ
b1 dµ

, . . . ,

∫
Λ
ad dµ∫

Λ
bd dµ

)
: µ ∈ MΦ(Λ)

}
,

and for each α = (α1, . . . , αd) ∈ Rd let

Kα =

{
x ∈ Λ : lim

t→∞

(∫ t

0
a1(ϕsx) ds∫ t

0
b1(ϕsx) ds

, . . . ,

∫ t

0
ad(ϕsx) ds∫ t

0
bd(ϕsx) ds

)
= α

}
, (16)

in the sense that the limit in (16) exists and equals α. The function F = F(a,b)

defined by

F(α) = h(Φ|Kα)

is called the entropy spectrum for (a, b) = (a1, . . . , ad, b1, . . . , bd). The following
establishes a conditional variational principle for the spectrum F, thus providing a
higher dimensional version of Theorem 5.

Theorem 16 Let Λ ⊂ M be a locally maximal hyperbolic set of a C1 flow Φ
such that Φ|Λ is topologically mixing, and a1, . . ., ad : Λ → R and b1, . . ., bd : Λ → R
Hölder continuous functions with bi > 0 for each i = 1, . . ., d. Then the following
properties hold:

1. if α 6∈ A then Kα = ∅;
2. if α ∈ intA then Kα 6= ∅ and

F(α) = max
{
hµ(Φ) :

(∫
Λ
a1 dµ∫

Λ
b1 dµ

, . . . ,

∫
Λ
ad dµ∫

Λ
bd dµ

)
= α and µ ∈ MΦ(Λ)

}

= min

{
PΦ

(
d∑

i=1

(qiai − qiαibi)

)
: (q1, . . . , qd) ∈ Rd

}
.

One can also obtain higher dimensional versions of the remaining theorems in
Section 3.

We now illustrate Theorem 16 in the case of the Lyapunov exponents introduced
in Section 4.2. Namely, instead of considering separately the level sets Ks

α and Ku
α

in (14), we consider the level sets Ks
αs
×Ku

αu
of the pair (λs, λu).

Let ζs and ζu be the functions defined in (12) and (13), and take d = 2,
a1 = ζs, a2 = ζu, and b1 = b2 = 1. We assume that for each (qs, qu) ∈ R2 the
function qsζs + quζu is Φ-cohomologous to no constant. One can verify that this
assumption ensures that A = intA. For each point (αs, αu) in the dense set intA
it follows from Theorem 16 that Ks

αs
×Ku

αu
6= ∅ and

F(αs, αu) = max
{
hµ(Φ) :

(∫
Λ

ζs dµ,

∫
Λ

ζu dµ

)
= (αs, αu) and µ ∈ MΦ(Λ)

}
= min

{
PΦ(qsζs + quζu)− qsαs − quαu : (qs, qu) ∈ R2

}
.

In particular, the functions (αs, αu) 7→ F(αs, αu) and (qs, qu) 7→ PΦ(qsζs + quζu)
form a Legendre pair.
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7 Proofs

Proof of Theorem 3 This is an immediate consequence of Theorem 5.

Proof of Theorem 5 Suppose that Kα 6= ∅, and let x ∈ Kα. The sequence
of probability measures (µn)n∈N on Λ such that∫

Λ

u dµn =
1
n

∫ n

0

u(ϕsx) ds

for every u ∈ C(Λ) has an accumulation point µ ∈ MΦ(Λ). Therefore

α = lim
t→∞

∫ t

0
a(ϕsx) ds∫ t

0
b(ϕsx) ds

= lim
n→∞

∫
Λ
a dµn∫

Λ
b dµn

=

∫
Λ
a dµ∫

Λ
b dµ

∈ [α, α].

This establishes the first statement.
We now consider the second statement. By Proposition 4, for every α ∈ R we

have

inf
q∈R

PΦ(qa− qαb) = inf
q∈R

sup
{
hµ(Φ) +

∫
Λ

(qa− qαb) dµ : µ ∈ MΦ(Λ)
}

≥ sup
{
hµ(Φ) :

∫
Λ
a dµ∫

Λ
b dµ

= α and µ ∈ MΦ(Λ)
}
.

(17)

For each α ∈ (α, α) there exist measures ν− and ν+ in MΦ(Λ) such that∫
Λ
a dν−∫

Λ
b dν−

< α <

∫
Λ
a dν+∫

Λ
b dν+

.

Furthermore, for any q ∈ R and µ ∈ MΦ(Λ) we have

PΦ(qa− qαb) ≥ hµ(Φ) + q

(∫
Λ

a dµ− α

∫
Λ

b dµ

)
,

and hence,

lim inf
q→±∞

PΦ(qa− qαb) ≥ hν±(Φ) + lim inf
q→±∞

q

(∫
Λ

a dν± − α

∫
Λ

b dν±

)
= +∞.

In particular, the map q 7→ PΦ(qa − qαb) attains its infimum at some q = q(α) ∈
R. Furthermore this map is analytic (see [11] for details). Denoting by µα the
equilibrium measure of the function q(α)(a− αb) we obtain

0 =
d

dq
PΦ(qa− qαb)

∣∣∣∣
q=q(α)

=
∫

Λ

a dµα − α

∫
Λ

b dµα.

Consequently (17) is in fact an equality and

inf
q∈R

PΦ(qa− qαb) = hµα
(Φ)

= max
{
hµ(Φ) :

∫
Λ
a dµ∫

Λ
b dµ

= α and µ ∈ MΦ(Λ)
}
.

(18)

Since Λ is hyperbolic, the flow Φ|Λ is expansive, and thus it is easy to verify that
the identity in (7) simplifies to give

hµ(Φ) = inf{h(Φ|Z) : µ(Z) = 1}
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(i.e., the limits in ε in (6) and (7) are not necessary provided that ε is made
sufficiently small). Since µα is ergodic we have µα(Kα) = 1, and thus

hµα
(Φ) ≤ F(α). (19)

By (18) and (19) it remains to show that

F(α) ≤ inf
q∈R

PΦ(qa− qαb).

Assume that this is not the case. Then there exist q ∈ R, δ > 0, and c > 0 such
that

F(α)− δ > c > PΦ(qa− qαb). (20)
We set u = qa− αqb and

Kα,δ,τ =
{
x ∈ Λ :

∣∣∣∣∫ t

0

u(ϕsx) ds
∣∣∣∣ < δt for every t ≥ τ

}
.

Then Kα ⊂
⋃

τ∈N Kα,δ,τ
def= Kα,δ. From the basic properties of topological entropy

(see [8] for details) we obtain

lim
τ→+∞

h(Φ|Kα,δ,τ ) = h(Φ|Kα,δ) ≥ h(Φ|Kα) = F(α).

In particular, there exists τ ∈ N such that

c+ δ < h(Φ|Kα,δ,τ ). (21)

For every y ∈ B(x, t, ε) and every s ∈ [0, t], we have d(ϕsx, ϕsy) < ε and thus

|u(x, t, ε)| ≤
∣∣∣∣∫ t

0

u(ϕsy) ds
∣∣∣∣+ η(ε)t,

where
η(ε) def= sup {|u(x)− u(y)| : d(x, y) < ε} .

Furthermore, if B(x, t, ε) ∩Kα,δ,τ 6= ∅ then there exists y ∈ B(x, t, ε) such that∣∣∣∣∫ t

0

u(ϕsy) ds
∣∣∣∣ < δt

whenever t ≥ τ . These estimates yield

|u(x, t, ε)| ≤ [δ + η(ε)]t

whenever B(x, t, ε) ∩Kα,δ,τ 6= ∅ and t ≥ τ . Hence

M(Kα,δ,τ , u, c, ε) = lim
T→∞

inf
Γ

∑
(x,t)∈Γ

exp(u(x, t, ε)− ct)

≥ lim
T→∞

inf
Γ

∑
(x,t)∈Γ

exp(−[δ + η(ε)]t− ct)

= M(Kα,δ,τ , 0, c+ δ + η(ε), ε),

where the infimum is taken over all finite or countable sets Γ = {(xi, ti)}i such that
(xi, ti) ∈ X × [T,∞) for each i, and

⋃
iB(xi, ti, ε) ⊃ Kα,δ,τ . Since u is continuous

we have η(ε) → 0 as ε→ 0, and by the definition of topological entropy (21) implies
that

M(Kα,δ,τ , u, c, ε) > 0
for all sufficiently small ε > 0. Therefore

c ≤ PΦ(qa− qαb|Kα,δ,τ ) ≤ PΦ(qa− qαb),
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which contradicts the assumption in (20). This establishes the second statement.

Proof of Theorem 6 Assume that there exists a constant c such that a is
Φ-cohomologous to cb on Λ. We obtain∣∣∣∣∫ t

0

a(ϕτx) dτ − c

∫ t

0

b(ϕτx) dτ
∣∣∣∣ = lim

s→0

1
s

∣∣∣∣∫ s+t

s

q(ϕτx) dτ −
∫ t

0

q(ϕτx) dτ
∣∣∣∣

= lim
s→0

1
s

∣∣∣∣∫ s+t

t

q(ϕτx) dτ −
∫ s

0

q(ϕτx) dτ
∣∣∣∣

≤ 2 sup|q|,

(22)

and thus ∣∣∣∣∣
∫ t

0
a(ϕτx) dτ∫ t

0
b(ϕτx) dτ

− c

∣∣∣∣∣ ≤ 2 sup|q|
t inf|b|

for every x ∈ Λ and t > 0. Therefore Kc = Λ. Furthermore, by (22), if µ ∈ MΦ(Λ)
then

0 = lim
t→∞

∫
Λ

(
1
t

∫ t

0

a(ϕτx) dτ −
c

t

∫ t

0

b(ϕτx) dτ
)
dµ(x)

=
∫

Λ

a dµ− c

∫
Λ

b dµ,

and α = α = c. This establishes the first statement.
For the second statement, consider functions a and b such that a is Φ-co-

homologous to no multiple of b. We assume that α = α = c. In this case the
function

µ 7→
∫

Λ

a dµ− c

∫
Λ

b dµ

is constant and equal to zero. In particular, when µ is the invariant measure
supported on the periodic orbit of a point x = ϕTx we obtain

1
T

∫ T

0

a(ϕsx) ds = c
1
T

∫ T

0

b(ϕsx) ds.

By Livshitz’s theorem for flows (see, for example, Theorem 19.2.4 in [7]), the func-
tions a and cb must be Φ-cohomologous. This contradiction ensures that α < α.

We now proceed in a similar way to that in [3] to establish the analyticity of
the spectrum.

Lemma 1 If a − αb is Φ-cohomologous to no constant for every α ∈ R then
the spectrum F is real analytic on the interval (α, α).

Proof of the lemma Let α ∈ (α, α) and put

F (q, α) = PΦ(qa− qαb).

By Theorem 5 the number F(α) coincides with minq∈R F (q, α). It is well known
that F is real analytic in both variables. We want to apply the implicit function
theorem to show that the minimum is attained at some q = q(α) which is real
analytic in α.

We have

∂qF (q, α) =
∫

Λ

(a− αb) dνq,α,
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where νq,α is the equilibrium measure of qa − qαb. By Theorem 5 there exists
q = q(α) ∈ R at which the function q 7→ PΦ(qa−qαb) attains a minimum. We have
∂qF (q(α), α) = 0. Furthermore, the function q 7→ F (q, α) is strictly convex because
a − αb is Φ-cohomologous to no constant. Hence q = q(α) is the unique number
satisfying ∂qF (q, α) = 0. Again since a − αb is Φ-cohomologous to no constant,
the derivative ∂2

qF does not vanish (see [11]). It follows from the implicit function
theorem that the function α 7→ q(α) is real analytic. This completes the proof of
the lemma.

Assume now that a is not Φ-cohomologous to cb for every c ∈ R. By Lemma 1,
it remains to consider the case when there exist c, d ∈ R with d 6= 0, and a bounded
measurable function q : Λ → R such that

a(x)− cb(x) = d+ lim
t→0

q(ϕtx)− q(x)
t

(23)

for every x ∈ Λ. One can easily show that x ∈ Kα(a, b) if and only if x ∈
Kd/(α−c)(b, 1). Furthermore, it follows from (22) and (23) that∣∣∣∣∫ t

0

a(ϕτx) dτ − c

∫ t

0

b(ϕτx) dτ − dt

∣∣∣∣ ≤ 2 sup|q|.

Since b > 0 and d 6= 0 we conclude that c 6= α for every α ∈ R such that Kα(a, b) 6=
∅. Hence, the function α 7→ d/(α− c) is real analytic on (α, α).

Observe that b cannot be Φ-cohomologous to a constant γ ∈ R. Otherwise the
function a would be Φ-cohomologous to cb+d = (c+d/γ)b (since b > 0 the constant
γ would be positive), which is a contradiction. Hence we can apply Lemma 1 to
the pair of functions (b, 1) to conclude that F(b,1) is real analytic on the nonempty
interval (κ, κ), where

κ = inf
{∫

Λ

b dµ : µ ∈ MΦ(Λ)
}

and κ = sup
{∫

Λ

b dµ : µ ∈ MΦ(Λ)
}
.

Since b > 0 we have κ > 0.
The function F(a,b) is the composition of the real analytic functions α 7→ d/(α−

c) and F(b,1), and thus it is real analytic. Furthermore,

(α, α) =

{
(c+ d/κ, c+ d/κ) when d > 0
(c+ d/κ, c+ d/κ) when d < 0

.

This completes the proof of the theorem.

Proof of Theorem 7 Set H = Cα(Λ) × Cα
+(Λ), and denote by G ⊂ H the

set of pairs (a, b) ∈ H such that a is not Φ-cohomologous to any multiple of b. Let
(a, b) ∈ H \ G, that is, a is Φ-cohomologous to some multiple cb of b. Let also Γi

be distinct periodic orbits of points xi = ϕTixi for i = 0, 1. We write

〈g〉i =
1
Ti

∫ Ti

0

g(ϕtxi) dt

for each continuous function g : Λ → R and i = 0, 1. Choose a function h ∈ Cα(Λ)
with h|Γ0 = 〈b〉0 and h|Γ1 = 〈b〉1 + 1. This is always possible since Γ0 and Γ1 are
closed and disjoint. We consider the new pair of functions

(ã, b̃) = (a, b) + (εh, 0) ∈ H,
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where ε is a positive constant. For each c̃ ∈ R we have

ã− c̃b̃ = a− cb+ (c− c̃)b+ εh.

Thus if ã− c̃b̃ is Φ-cohomologous to zero we have

0 = 〈ã− c̃b̃〉0 = (c− c̃+ ε)〈b〉0 and 0 = 〈ã− c̃b̃〉1 = (c− c̃+ ε)〈b〉1 + ε.

Since 〈b〉0 ≥ min b > 0, we must have c− c̃+ ε = 0. But this is impossible in view
of the second identity and since ε 6= 0. This contradiction implies that (ã, b̃) ∈ G.
Since ε is arbitrary, the pair of functions (a, b) can be arbitrarily approximated in
H by pairs in G, and thus G is dense in H.

We now show that G is open. Let (a, b) ∈ G. Since b > 0 there exists a
unique c = c(a, b) ∈ R such that PΦ(a − cb) = PΦ(0). By Livshitz’s theorem
for flows (see, for example, Theorem 19.2.4 in [7]) there exists a periodic orbit Γ0

such that 〈a − cb〉0 6= 0. Choose ε ∈ (0,min b/2) and take (ã, b̃) ∈ H such that
‖a− ã‖α + ‖b− b̃‖α < ε. We have

|PΦ(ã− cb̃)− PΦ(0)| ≤ ‖ã− a− c(b̃− b)‖α < (1 + |c|)ε. (24)

Let now c̃ ∈ R be the unique number such that PΦ(ã− c̃b̃) = PΦ(0). Observe that
if ã was Φ-cohomologous to some multiple of b̃, then ã would be Φ-cohomologous
to c̃b̃ and to no other multiple of b̃. Since b̃ > min b/2 > 0 it follows from (24) that

|c− c̃| ≤ 1
min b̃

|PΦ(ã− c̃b̃)− PΦ(ã− cb̃)| < 2(1 + |c|)ε
min b

.

Therefore
|〈ã− c̃b̃〉0| ≥ |〈a− cb〉0| − |〈ã− a− (c̃b̃− cb)〉0|

≥ |〈a− cb〉0| − ‖ã− a‖α − |c̃− c| · ‖b̃‖α − |c| · ‖b̃− b‖α

≥ |〈a− cb〉0| −
(

1 +
2(1 + |c|)(‖b‖α + ε)

min b
+ |c|

)
ε > 0,

provided that ε is chosen sufficiently small (but only depending on a and b, since
c is uniquely determined once a and b are fixed). This implies that ã is not Φ-
cohomologous to c̃b̃. Hence the ball of radius ε centered at (a, b) is contained in G.
This shows that G is open.

Proof of Proposition 12 The Abramov entropy formula says that with ν
and µ as in (15) we have

hν(Ψ) =
hµ(T )∫
X
τ dµ

. (25)

Using (15) and (25) we obtain

PT (∆a − PΨ(a)τ) = sup
{
hµ(T ) +

∫
X

(∆a − PΨ(a)τ) dµ : µ ∈ MT (X)
}

= sup
{(

hν(Ψ) +
∫

Y

a dν − PΨ(a)
)∫

X

τ dµ : ν ∈ MΨ(Y )
}
.

The desired identity follows now immediately from

sup
{
hν(Ψ) +

∫
Y

a dν − PΨ(a) : ν ∈ MΨ(Y )
}

= 0,

and the fact that τ is continuous and positive.
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Proof of Proposition 14 The proof is a modification of Proposition 6 in [2].
Given m ∈ N, define a function τm : Y → R by

τm(x) =
m−1∑
i=0

τ(T ix).

When x ∈ Y and m ∈ N, one can easily verify that∫ τm(x)

0

a(ψsx) ds =
m−1∑
i=0

∆a(T ix). (26)

Given t > 0 there exists a unique m ∈ N such that τm(x) ≤ t < τm+1(x). One can
write t = τm(x) + κ for some κ ∈ (inf τ, sup τ) and thus∣∣∣∣∣

∫ t

0
a(ψsx) ds∫ t

0
b(ψsx) ds

−
∫ τm(x)

0
a(ψsx) ds∫ τm(x)

0
b(ψsx) ds

∣∣∣∣∣
=

∣∣∣∣∣∣
∫ t

τm(x)
a(ψsx) ds

∫ τm(x)

0
b(ψsx) ds−

∫ τm(x)

0
a(ψsx) ds

∫ t

τm(x)
b(ψsx) ds∫ t

0
b(ψsx) ds

∫ τm(x)

0
b(ψsx) ds

∣∣∣∣∣∣
≤ κ sup|a| · τm(x) sup b+ τm(x) sup|a| · κ sup b

τm(x) sup b · τm(x) sup b

=
2κ sup|a|
τm(x) sup b

.

When t→∞, we have m→∞ and τm(x) →∞. Hence, it follows from (26) that∣∣∣∣∣
∫ t

0
a(ψsx) ds∫ t

0
b(ψsx) ds

−
∑m−1

i=0 ∆a(T ix)∑m−1
i=0 ∆b(T ix)

∣∣∣∣∣→ 0

as t→∞. This implies the desired statement.

Proof of Theorem 15 It follows from (15) that∫
Y
a dν∫

Y
b dν

=

∫
X

∆a dµ∫
X

∆b dµ
. (27)

By (25) and (27), and using similar arguments to those in the proof of Theorem 5
we obtain the first and second statements in the theorem.

The two last statements follows from Proposition 13, using similar arguments
to those in the proof of Theorem 6.

Proof of Theorem 16 The proof of the first statement can be obtained in a
similar manner to that of the first statement in Theorem 5.

For the second statement, we give a brief description of what changes are re-
quired in the proof of Theorem 5 when d > 1. For any α = (α1, . . . , αd) ∈ intA
and any q = (q1, . . . , qd) ∈ Rd \ {0} we can choose measures νq

− and µq
+ such that

d∑
i=1

qi

(∫
Λ

ai dν
q
− − αi

∫
Λ

bi dν
q
−

)
< 0 <

d∑
i=1

qi

(∫
Λ

ai dν
q
+ − αi

∫
Λ

bi dν
q
+

)
.
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These measures play the role of the measures ν− and ν+ in the proof of Theorem 5.
In fact a similar argument to that in the proof of Theorem 5 shows that

lim inf
‖q‖→∞

PΦ

(
d∑

i=1

(qiai − qiαibi)

)
= +∞,

where ‖·‖ denotes any norm in Rn. This ensures that the function

F : (q1, . . . , qd) 7→ PΦ

(
d∑

i=1

(qiai − qiαibi)

)
attains its infimum at some point q(α) ∈ Rd, and ∇qF (q(α)) = 0. This property
allows one to use essentially the same argument as that in the proof of Theorem 5
by replacing a and b by the vectors (a1, . . . , ad) and (b1, . . . , bd).
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