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Abstract. This paper presents some facts related to the exponential statistic
of return times. We first investigate the question of computing the speed
of convergence to this limiting law. We show that this speed carries some
informations about the system under consideration, while via a local analysis we
can relate it to some combinatorial property of some orbits. Next, we prove that
for an arbitrary dynamical system, the existence of an exponential statistic for
the return times implies the equivalence between the fluctuations of the empirical
entropies and the repetition times.
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1. Introduction

Given a map T : X → X which preserves a probability measure µ, and a measurable
subset A ⊂ X, after Poincaré we know that almost any point from A will return into
A again under iterations of T . In this setting, it is natural to ask for the quantitative
version of this observation. Which proportion of points inside A will return before a
time t into A ?

An approximate answer may be obtained by Chebychev’s inequality via Kac’s
theorem, which says that the expectation on A of the return time into A is finite,
bounded by 1/µ(A), with equality if for example the measure µ is ergodic.

To be more precise, given a measurable A ⊂ X of positive measure we define

τA(x) = inf{k > 0 : T kx ∈ A}.
We call τA(x) the first return time or first entrance time into A whether x belongs to
A or not, respectively. Setting µA

def= 1
µ(A)µ|A we can define the distribution of return

times into the set A by

FA(t) def= µA
(
x ∈ A : τA(x) >

t

µ(A)
)
.

In a wide variety of (sufficiently) mixing dynamical systems it was proven that
the distribution of return times is close to an exponential, which means that FA(t)
converges to exp(−t) as µ(A)→ 0, when A is chosen in a suitable family of sets (e.g.
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balls, cylinders). Suppose that for each point x a sequence of neighborhood (Ωε(x))ε
with µ(Ωε(x)) → 0 as ε → 0 is given. We say that the return times on the family
{Ωε(x):x ∈ X, ε > 0} are exponentially distributed if

Eµ(Ωε(x))→ 0 as ε→ 0, for µ-almost every x, (1)

where for any measurable A of positive measure we set

Eµ(A) def= sup
t≥0
|FA(t)− exp(−t)| .

This kind of result is proven for Axiom A diffeomorphism [9], some intermittent
maps of the interval [10] and some rational maps [8]. The exponential distribution of
entrance times — which is implied by the exponential distribution of return times [10]
— has also been proven in a variety of different systems. Among them, topological
Markov chains [15], intermittent map of the interval [5, 4, 3] some ϕ-mixing dynamical
systems [7] and some Collet-Eckmann unimodal maps [1].

At this time it seems that this exponential statistic holds very often, thus it
makes sense to ask for the reciprocal question: what kind of systems may enjoy an
exponential statistic for the return times ?

A partial answer is that FA is close to the exponential law if and only if
F ∗A

def= µ(τA > t
µ(A) ), the distribution of the first entrance time, is close to FA; see (5).

This can be viewed as a (kind of) mixing property. Yet it is not easy to relate this
property to well known characteristics of the system, like hyperbolicity.

Indeed, all the available explicit estimates of Eµ(A) are given in terms of mixing
properties of the system and short recurrence of the set A (see Sections 2 and 4
for details). However, it is unclear if these properties are really essential. That is
why we are particularly interested in the effect of slow mixing and short recurrence
on the statistic of return times. We give in Section 2 a comprehensive answer to
these questions, by showing that the speed of convergence to the exponential law
is intimately related to these characteristics. First, this question is addressed in a
one-parameter family of intermittent maps (with polynomial rate of mixing), and we
show in Subsection 2.1 that this rate of convergence vanishes when the map looses its
hyperbolicity. We believe that this rate of convergence can be used to recover some
hyperbolic properties of much more general systems. Second, for subshifts of finite type
with Gibbs measures (with exponential rate of mixing), we obtain in Subsection 2.2
that the rate of convergence is equal to some quantity defined in terms of a first return
time of cylinder sets, and also vanishes for points with short recurrence.

After this attempt to understand which ingredients a system needs to possess in
order to have an exponential statistic of return times, we look at an interesting possible
application of this statistical property. There is a deep link between recurrence and
entropy, as expressed by Ornstein and Weiss theorem [13], which says that a stationary
ergodic process will repeats its first n symbols after a time of order exp(nh) where h is
the entropy of the process. This is of particular interest in the theory of compression
algorithms and sequences analysis [18, 13, 11, 6].

For numerical analysis of dynamical systems this provides a new way of computing
the measure theoretic entropy of a map, simply by looking at a typical orbit. Moreover,
no storage of information is needed. Let Z be a finite partition of Z, and denote by Zxn
the element of the partition Z∨T−1Z∨· · ·∨T−n+1Z which contains the point x ∈ X. If
µ is ergodic, then the Ornstein-Weiss theorem says that 1

n log τZxn(x) converges almost
surely to the entropy of µ relative to Z. Another method to compute the entropy is
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well known. Take the same partition and compute the measure of the set Zxn around
the typical point x. By Shannon-McMillan-Breiman theorem, − 1

n logµ(Zxn) converges
almost surely to the entropy. The problem here is to estimate the measure of Zxn.
With the repetition time there is no need to know the measure, only a typical point
is needed, hence it is in principle much simpler to implement.

It could be that for numerical purpose the (Lempel-Ziv)-Ornstein-Weiss method is
not adapted, because the fluctuations of 1

n log τZxn(x) could be much stronger than the
one of − 1

n logµ(Zxn). We prove in Section 3 that this is never the case when the return
time are exponentially distributed on cylinders of Z. Under this assumption, the
fluctuations in the two methods are exactly the same (this phenomenon was addressed
and prove in [11, 6] in the case of rapidly mixing dynamical systems with log-normal
fluctuations).

2. Speed of convergence to the exponential law

We consider a measure preserving dynamical system (X,T, µ) together with a
countable measurable partition Z. For ϕ-mixing process with ϕ summable, Galves
and Schmitt have shown in [7] an upper bound of the type |F ∗A(t)− e−t| = O(µ(A)β).
We want here to give a precise meaning to this exponent β.

Definition 2.1 We define the local (lower and upper) rates of convergence of the
distribution of return times to the exponential-one law by

βZ(x) = lim
n→∞

log Eµ(Zxn)
logµ(Zxn)

and βZ(x) = lim
n→∞

log Eµ(Zxn)
logµ(Zxn)

.

We recall Proposition 2.3 in [10] which says that for any dynamical system with
a measurable partition Z, and for any point x ∈ X, the rate of convergence to the
exponential law lies in the interval [0, 1].

0 ≤ βZ(x) ≤ βZ(x) ≤ 1. (2)

A rate of convergence βZ = 1 is therefore optimal. We will try now to see how this
quantity depends on the system under consideration. As already pointed out in the
introduction, the estimates for Eµ involve a rate of mixing and short recurrence. In
Subsection 2.1 we try to understand how β evolves while the rate of mixing becomes
slower and slower, as a map becomes less and less “hyperbolic”. On the other hand,
even if the rate of mixing is exponential it is unlikely that the return times statistic
around a periodic point is exponential, because too many points would return too fast,
hence for these points we should have βZ(x) = 0; the effect of short recurrence will be
treated in Subsection 2.2.

2.1. Speed of convergence versus hyperbolicity

Let α ∈ (0, 1) and consider the map Tα defined on X = [0, 1] by

Tα(x) =
{
x(1 + 2αxα) if x ∈ [0, 1

2 ],
2x− 1 otherwise.

The rate of decay of correlation depends strongly on hyperbolic properties of the map,
as showed in the family Tα. In this sense the non-uniform hyperbolicity of the map
reflects in the decay of correlations. We would like to show that the exponent β may
also contain some informations about the hyperbolicity of a map.
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Let Z be the countable partition generated by the left preimages an of 1,
Z = {Am : m ∈ N} with Am = (an+1, an]. Let µα denotes the invariant measure
absolutely continuous with respect to Lebesgue (see e.g. [17, 12] for the existence and
properties). Next proposition shows that for any cylinder of the dynamical partition
Z, the tail of the distribution is polynomial.

Proposition 1 Let Z ∈ Zn = Z ∨ T−1Z ∨ · · · ∨ T−n+1Z be any cylinder of the
dynamical partition of order n. The distribution of entrance time is bounded from
below, for some constant C(Z) > 0 by

µα(τZ > t) ≥ C(Z) t1−
1
α

for any t ≥ 0.

This shows in particular that the first moment of the entrance time does not exist
whenever α > 1

2 , since in this case∫
τZdµα ≥ tµα(τZ > t) ≥ Ct2− 1

α → +∞ as t→∞.

Note that this does not contradict Kac’s theorem, which says that the first moment
of the return time always exists; the existence of the first moment of the entrance
time is in fact equivalent to the existence of the second moment of the return time
(Proposition 1.5 in [16]). Despite this polynomial tail, when the cylinders Zxn shrink
to almost any point x —due to the normalization by 1/µα(Zxn)— this tail goes away,
and we recover an exponential distribution of the return times, as proven in [10], with
a rate at least 1− α. These observations are essential to establish the following.

Theorem 2 For any α ∈ (0, 1) we have for the system ([0, 1], Tα, µα)

1− α ≤ βZ ≤ βZ ≤
1
α
− 1 µα-a.e..

In particular, if α > 1/2 then βZ < 1 almost everywhere, and ‖βZ‖L∞(µα) vanishes
as α tends to one.

Note that the upper bound is interesting only when α ∈ ( 1
2 , 1). This non optimal rate

of convergence to the exponential law corresponds also to the range of parameter α
where the central limit theorem may fail to hold (due to a non-summable decay of
correlations, see Theorem 4.1 in [12]).

2.2. Speed of convergence versus short recurrence

From now on, let (X,T ) be a topologically mixing subshift of finite type. The statistic
will be done with respect to the Gibbs measure µ associated to an Hölder continuous
potential ϕ : X → R (see [2] for details). Let Z be the finite partition of X into
1-cylinders. We focus on the dependence of the speed of convergence with respect to
some local quantity defined in terms of first return time of cylinders, the first return
time of a set A ⊂ X being defined by τ(A) = infx∈A τA(x).

Definition 2.2 We define the local (lower and upper) rate of return for cylinders by

RZ(x) = lim
n→∞

τ(Zxn)
n

and RZ(x) = lim
n→∞

τ(Zxn)
n

.

Note that RZ ≤ 1 by specification, and for periodic points one has RZ = RZ = 0.
By an easy construction it can be shown that the set of points x for which 0 < RZ(x) <
RZ(x) = 1 is dense in X.
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Definition 2.3 A point x ∈ X is called, say, ϕ-regular if it is a generic point for the
function ϕ, which means 1

n

∑n−1
k=0 ϕ(T kx) converges as n→∞.

We emphasize the fact that a lot of points are ϕ-regular; for example, by
Birkhoff theorem almost all points with respect to any invariant probability measure
are ϕ-regular. Note also that the set of ϕ-regular point is invariant. When ϕ is
(cohomologous to) a constant, that is to say that µ is the measure of maximal entropy,
then obviously all the points are regular.

Theorem 3 The rate of convergence of the distribution of return times to the
exponential-one law and the rate of return for cylinders are the same for ϕ-regular
points, which means that if x ∈ X is ϕ-regular then

βZ(x) = RZ(x) and βZ(x) = RZ(x).

Theorem 3 not only says that for the points with neighborhoods with long
recurrence (i.e. RZ(x) > 0) the convergence to the exponential law is fast
(exponential), but also that this is a necessary condition. We believe that this
phenomenon appears in much more general situations. This explains why to establish
the exponential statistic of the return time one really has to consider the problem of
short recurrence.

Remark 4 From the equality given by Theorem 3, it is clear that βZ (resp. βZ)
has the same properties than RZ (resp. RZ) on ϕ-regular points. Hence, by
Proposition 3.6 in [10] we obtain that for any ergodic invariant measure ν we have
ν-a.e. x ∈ X

βZ(x) = RZ(x) = const and βZ(x) = RZ(x) = const.

An easy adaptation of the proof of Proposition 3.7 in [10] yields to the following
theorem, which was stated in the same paper in this special setting.

Theorem 5 ([10]) For every Gibbs measure ν with Hölder potential,

RZ = RZ = 1 ν-a.e..

Collecting the results of Theorem 5 and Theorem 3 we find out that almost all
points with respect to Gibbs measures with Hölder potential have an optimal rate of
convergence (βZ = 1) to the exponential law.

Remark 6 In a forthcoming paper with S. Vaienti and S. Troubetzkoy we show that
indeed for any invariant measure ν with non zero entropy we have RZ ≥ 1, ν-a.e..

3. Convergence in law of the repetition time

In this section, (X,B, µ) is a probability space, T : X → X is a measurable map, and
Z is a countable measurable partition of X. We define the n-repetition time of x by
Rn(x) = τZxn(x). Rn(x) is the smallest time k > 0 such that x and T kx lies in the
same component of Zn. Let a = (an)n∈N be some sequence converging to +∞ and
let h ≥ 0. We define the law of the fluctuations of the measure of n-atoms and of the
n-repetition time by

M(n)
a (t) def= µ

{
x ∈ X :

− logµ(Zxn)− nh
an

> t

}
,

R(n)
a (t) def= µ

{
x ∈ X :

logRn(x)− nh
an

> t

}
.
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We also define the corresponding limiting law by

Ma(t) = lim
n→∞

M(n)
a (t), Ma(t) = lim

n→∞
M(n)

a (t), and Ma(t) = lim
n→∞

M(n)
a (t)

whenever the last limit exists. We do the same for the repetition time Ra.
We are now able to give our results saying that the fluctuations of the measure

are equal to the fluctuations of the repetition time when the map has an exponential
statistic for the return times.

Theorem 7 If the return times are exponentially distributed on cylinders of Z
(see (1)) then the following properties hold:

(i) for all t ∈ R we have

Ma(t+) ≤ Ra(t) ≤Ma(t−) and Ma(t+) ≤ Ra(t) ≤Ma(t−);

(ii) in particular for all but countably many points we have

Ra = Ma and Ra = Ma;

(iii) moreover, the limit Ma exists on a dense set if and only if Ma and Ra exists for
all but countably many points, and in this case the two limits are equal;

(iv) finally, one can exchange R and M is all of these statements.

It is possible to sharpen this result when the distributions are continuous.

Theorem 8 Suppose that the return time on cylinders of Z are exponentially
distributed (see (1)).

The limiting distribution Ma exists and is continuous if and only if the limiting
distribution Ra exists and is continuous. In this case, Ra = Ma and R

(n)
a converges

uniformly to Ra if and only if M
(n)
a converges uniformly to Ma.

Remark 9 We emphasize that in Theorem 7 and Theorem 8:

(i) the measure µ does not have to be invariant;
(ii) it is in fact not necessary that the sequence of partition Zn is given by Z∨T−1Z∨
· · ·∨T−n+1Z for some fixed partition Z. Actually all the results remain true when
(Zn)n∈N is an arbitrary sequence of countable measurable partitions, such that the
return times are exponentially distributed on atoms of (Zn)n.

We now discuss the case of an ergodic measure preserving dynamical system
(X,T, µ). Suppose that Hµ(Z) = −

∑
Z∈Z µ(Z) logµ(Z) is finite. Under these

assumptions, the Shannon-McMillan-Breiman theorem tells us that − 1
n logµ(Zxn)

converges µ-almost surely to the metric entropy relative to Z denoted by hµ(T,Z).
A similar result holds for the repetition time, as proven by Ornstein and Weiss [13].
Namely, if Z is finite, 1

n logRn converges µ-almost surely to hµ(T,Z). Hence we must
set h = hµ(T,Z) in order to obtain a non-trivial law. Theorem 8 applies, hence the
fluctuations of the measure and of the repetition time are equal if they are given by a
continuous distribution.

For log-normal fluctuations, taking an = σ
√
n for some σ ∈ (0,∞) and h =

hµ(T,Z) we get the immediate corollary of Theorem 8.

Corollary 10 Let (X,T, µ) be an ergodic measure preserving dynamical system.
Assume that the return times are exponentially distributed on cylinders of Z. For
any σ ∈ (0,∞) we have the equivalence:
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(i) the random variable logRn−nh
σ
√
n

converges in law to N(0, 1);

(ii) the random variable − log µ(Zn)−nh
σ
√
n

converges in law to N(0, 1).

In [6] an explicit formula is given in the case where the variance σ vanishes. However,
in this full generality we do not know what happens when the variance is zero or
infinity.

The case of log-normal distribution was treated in some papers using the following
sketch (see [6, 14]), and inspired us to formulate Theorem 8 :

(i) the measure of the cylinders have log-normal fluctuations;
(ii) the law of entrance time in cylinders is exponential, with some sharp control on

the rate of convergence to the limiting law,∣∣µ(τZxn > t/µ(Zxn))− exp(−t)
∣∣ = O(µ(Zxn)β);

(iii) small returns have small probabilities.

Another approach of a more probabilistic nature was developed in [11] and was
essentially a strong approximation between the measure of a cylinder and the
repetition time for strongly mixing stationary processes.

4. Proofs of the results in Section 2

Before the proofs, we recall the definition of the quantities involved in the paper [10]
and the related results.

Proposition 11 (Theorem 2.1 and Lemma 2.4 in [10]) Given a dynamical sys-
tem (X,T, µ) and a measurable set U with positive measure we define

aN (U) = µU (τU ≤ N),
bN (U) = sup

{
|µU (T−NV )− µ(V )|;V measurable

}
,

c(U) = sup
k≥0
|µU (τU > k)− µ(τU > k)|,

Eµ(U) = sup
t≥0
|µU (τU > t/µ(U))− e−t|.

The distance to the exponential law of the distribution of return time on U is bounded
from above by

Eµ(U) ≤ 4µ(U) + c(U)(1− log c(U)) ; (3)

and conversely

c(U) ≤ 2µ(U) + Eµ(U)(2− log Eµ(U)); (4)

while the quantity c(U) may be estimated by

c(U) ≤ inf{aN (U) + bN (U) +Nµ(U) : N is an integer }. (5)
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4.1. Proofs of the results in Subsection 2.1

Proof of Proposition 1 Let α ∈ (0, 1) and denote by µ = µα the Tα-invariant
measure absolutely continuous with respect to Lebesgue. Let Z be a cylinder of the
dynamical partition Zn and let m = m(Z) ≥ n be the minimal integer such that
TmZ = X. This implies that Z∩ [0, am) = ∅, hence for any integer k, any point inside
[0, am+k) has an entrance time in Z bigger than k, which gives

µ(τZ > k) ≥ µ([0, am+k)).

An easy modification of Lemma 3.2 in [10] gives ap ≥ c1p−
1
α , while the density hα of

the invariant measure µα satisfies hα(x) ≥ c2x−α (see [17]). Hence

µ([0, am+k)) =
∫ am+k

0

hα(x)dx ≥ c1c2(m+ k)1− 1
α ≥ c1c2(m+ 1)1− 1

α k1− 1
α

which proves the proposition, with C(Z) = c1c2(m(Z) + 1)1− 1
α . �

Proof of Theorem 2 Let α ∈ (0, 1) and set µ = µα. Let x ∈ X be such that
βZ(x) ≥ 1 − α > 0 and limn→∞− 1

n logµ(Zxn) = hµ > 0; by Theorem 3.8 in [10] and
the Shannon-McMillan-Breiman theorem this concerns µ-a.e. points. Let ε ∈ (0, 1−α)
be arbitrary. Setting Z = Zxn, by (4) in Proposition 11 we get for any k > 0
µ(τZ > k)− e−kµ(Z) ≤ |µ(τZ > k)− µZ(τZ > k)|+ |µZ(τZ > k)− e−kµ(Z)|

≤ 2µ(Z) + Eµ(Z)(3− log Eµ(Z)).
With k = 1/µ(Zxn)1+ε, Proposition 1 yields to

βZ(x) ≤ lim
n→∞

log[C(Zxn)µ(Zxn)( 1
α−1)(1+ε) − exp(−µ(Zxn)−ε)]
logµ(Zxn)

. (6)

Note that Zxn = Zxm(Zxn) where m(Zxn) is as in the proof of Proposition 1 and that

limn→∞− 1
n logµ(Zxn) > 0. Consequently, limn→∞ log C(Zxn)

µ(Zxn) = 0, hence (6) gives us

βZ(x) ≤ (
1
α
− 1)(1 + ε).

The conclusion follows since ε > 0 was arbitrary. �

4.2. Proofs of the results in Subsection 2.2

In the sequel we suppose without loss of generality that the potential ϕ is normalized,
so that its pressure is zero, and the invariant density is the constant function 1I. We
refer the reader to [2] for details. Let P be the Perron-Frobenius operator of (X,T, ϕ),
which satisfies P1I = 1I, and µ(f ◦ Tg) = µ(fPg) for all continuous f, g : X → R.

Proposition 12 For any ϕ-regular point x ∈ X and 0 ≤ r ≤ 1, we have

lim
n→∞

logµ(Zx[rn])

logµ(Zxn)
= r.

Proof of Proposition 12 If r = 0 then the result is obvious, because Z generates;
so let us suppose that r 6= 0.

As usual, we write Snϕ =
∑n−1
k=0 ϕ ◦ T k. Let x ∈ X be a ϕ-regular point, and

ϕ∗(x) be the limit of the Birkhoff average. By the Gibbs property, it is easy to see
that limn→∞

1
n logµ(Zxn) = ϕ∗(x), which implies

logµ(Zx[rn])

logµ(Zxn)
=
r 1
rn logµ(Zx[rn])
1
n logµ(Zxn)

−→
n→∞

r.

�
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Lemma 13 There exists a constant c3 such that for any x ∈ X, and any integer
n > 0, the following bound holds:

c(Zxn) ≤ c3nµ(Zxnrn).

whenever rn = τ(Zxn)/n ≤ 1, where c(Zxn) is defined in Proposition 11.

Proof of Lemma 13 We first compute aN (Zxn):

aN (Zxn) ≤
N∑

k=nrn

1
µ(Zxn)

µ(Zxn ∩ T−kZxn)

=
N∑

k=nrn

1
µ(Zxn)

∫
Zxn

P k1IZxndµ

≤ N‖Pnrn1IZxn‖∞ ≤ N exp(Snrnϕ(x)) ≤ c1Nµ(Zxnrn).

The last two inequalities follow from the bounded distortion and the Gibbs property.
For bN (Zxn), we observe that since our system enjoys an exponential decay of

correlations, there exists some Λ < 1 such that bN (Zxn) ≤ c2ΛN−n. Thus, taking
N = (K + 1)n, with K sufficiently large (but which does not depend on n) leads to
bN (Zxn) ≤ ΛKn ≤ µ(Zxnrn). And finally, with this particular choice of N , applying (5)
in Proposition 11 yields to the result. �

Proof of Theorem 3 Let x ∈ X be a ϕ-regular point.
We first show that βZ(x) ≥ RZ(x). We use the estimate (3) in Proposition 11,

then we apply Lemma 13, and finally Proposition 12 (we set rn = τ(Zxn)/n)

β(x) = lim
n→∞

log Eµ(Zxn)
logµ(Zxn)

≥ lim
n→∞

log c(Zxn)
logµ(Zxn)

≥ lim
n→∞

logµ(Zxnrn)
logµ(Zxn)

= lim
n→∞

rn = RZ(x).

The case βZ(x) ≥ RZ(x) follows in the same way.
We now compute the other bound: βZ(x) ≤ RZ(x). Suppose that RZ(x) < 1,

otherwise there is nothing to prove; see (2). There exists a subsequence of integers
such that rn = τ(Zxn)/n→ RZ(x), with rn < 1. Fix such an integer n, and let k = nrn
and C = Zxn. Let us put D = Zxk ∩ T−kC. One can check that D ⊂ C, and any point
in D returns in C after exactly k iterations. We shall prove then that the measure
µC(D) is quite big. The Gibbs property tells us that for any y ∈ D, the following
holds:

µC(D) ≥ c4
exp(Sn+kϕ(y))
exp(Snϕ(y))

= c4
exp(Skϕ(y)) exp(Snϕ(T ky))

exp(Snϕ(y))
≥ c5 exp(Skϕ(x)) ≥ c6µ(Zxk ).

Here we used the fact that both y and T ky belong to Zxn, and the bounded distortion
inequality. This ensures that between [nrn, nrn + 1], the distribution of return times
has a jump

µZxn(τZxn > nrn)− µZxn(τZxn > nrn + 1) ≥ µC(D) ≥ c6µ(Zxnrn),

while the jump of the exponential e−kµ(Zxn) in this interval is only

exp(−nrnµ(Zxn))− exp(−[nrn + 1]µ(Zxn)) = O(µ(Zxn)).
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This proves that

βZ(x) = lim
n→∞

log Eµ(Zxn)
logµ(Zxn)

≤ lim
n→∞

logµ(Zxrnn)
logµ(Zxn)

= lim
n→∞

rn = RZ(x).

The case βZ(x) ≤ RZ(x) follows in the same way. �

5. Proofs of the results in Section 3

The following simple lemma will be of interest for the proof of Theorem 7, it shows
up a very interesting property of limiting distributions (notice that distributions are
decreasing functions).

Lemma 14 If un : R→ [0, 1] is a sequence of decreasing functions, then we have the
equivalence

(i) un converges on some dense set;
(ii) un converges except possibly for countably many points.

Proof of Lemma 14 We first define u(t) = limun(t) and u(t) = limun(t). Both u
and u are decreasing, hence v = u− u ≥ 0 is of bounded variation. If un converges on
some dense set then v = 0 on the same dense set. This implies that {x : v(x) > 1/n}
is finite for all integer n, hence {v > 0} is at most countable, which proves the
implication. The reciprocal is trivial. �

Proof of Theorem 7

(i) Let ε > 0 and define

Kε,N = {x : Eµ(Zxn) < ε for all n ≥ N}.
By assumption the set E = ∩ε>0 ∪N∈N Kε,N is of full µ-measure. Choose then
N(ε) sufficiently large such that for all n > N(ε) we have µ(Kε,n) > 1 − ε and
exp(−an) < ε.
Let n > N(ε) and t ∈ R. Define An(t) = {x ∈ X : logRn(x)−nh

an
> t} and set

δn = log an/an. We are interested in the limit of R
(n)
a (t) = µ(An(t)). We first

decompose the measure along cylinders Z ∈ Zn according to whether or not they
intersect Kε,n:

R(n)
a (t) =

∑
Z∈Zn,Z∩Kε,n 6=∅

µ(Z ∩An(t)) +
∑

Z∈Zn,Z∩Kε,n=∅

µ(Z ∩An(t)) (7)

The second term is bounded by µ(X \Kε,n) ≤ ε, while whenever Z ∩Kε,n 6= ∅,
we have Eµ(Z) ≤ ε. Thus if we notice that Rn(x) = τZ(x) when x ∈ Z we get
that for these Z

µ(Z ∩An(t)) = µ(Z)µZ(τZ > exp(tan + nh))
≤ µ(Z)

[
exp
[
−µ(Z) exp(tan + nh)

]
+ ε
]
.

Accordingly, we have

R(n)
a (t) ≤ 2ε+

∫
X

exp
[
−µ(Zxn) exp(tan + nh)

]
dµ(x). (8)

Let fn(t, x) = µ(Zxn) exp(tan + nh) and Bn(t) = {x ∈ X : fn(t, x) < an}. We
decompose the integral in (8) according to whether or not x ∈ Bn(t). First,∫

X\Bn(t)

e−fn(t,x)dµ(x) ≤ sup
X\Bn(t)

e−fn(t,x) ≤ e−an ≤ ε. (9)
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On the other hand,∫
Bn(t)

e−fn(t,x)dµ(x) ≤ µ(Bn(t))

≤ µ
(
{x :

− logµ(Zxn)− nh
an

> t− log an
an
}
)

≤M(n)
a (t− δn). (10)

Using estimates (8), (9) and (10) we finally end up with

R(n)
a (t) ≤M(n)

a (t− δn) + 3ε.

If we consider the complement of X \ An(t) instead of An(t) itself, a similar
computation yields to 1− R

(n)
a (t) ≤ 1−M

(n)
a (t+ δn) + 3ε. Thus

M(n)
a (t+ δn)− 3ε ≤ R(n)

a (t) ≤M(n)
a (t− δn) + 3ε. (11)

Since δn → 0 as n→∞ and one-sided limits of Ma exists we get

Ma(t+)− 3ε ≤ Ra(t) ≤Ma(t−) + 3ε.

As ε was arbitrary, this finishes the first part of the proof. The limit Ra van be
treated in the same way.

(ii) It suffices to remark that decreasing functions can have at most a countable
number of discontinuities.

(iii) Lemma 14 ensures that if Ma exists on a dense set then it exists for all reals
except for an at most countable set C. Moreover, Ma|X\C is decreasing, hence it
is continuous except may be on countably many points D. Hence Ma exists and is
continuous on X \ (C ∪D) where C ∪D is at most countable. The first statement
of the theorem implies then that Ra exists and is equal to Ma on X \ (C ∪D).

(iv) From Inequality (11) applied once with t = s− δn then with t = s+ δn we get

R(n)
a (s+ δn)− 3ε ≤M(n)

a (s) ≤ R(n)
a (s− δn) + 3ε.

The rest of the proof follows exactly in the same way.

�

Proof of Theorem 8 When Ma or Ra is continuous Theorem 7 gives us that
Ma = Ra. Remark then that the distribution is uniformly continuous, because the
limits in ±∞ exist. Then for all ε > 0 it is possible to find a δ = δ(ε) independent
of t, s ∈ R such that |Ma(t) −Ma(s)| ≤ ε whenever |t − s| ≤ δ. In addition, if the
convergence of M

(n)
a to Ma is uniform, taking M(ε) sufficiently large we get that for

any n > M(ε) and real s, |M(n)
a (s)−Ma(s)| < ε and δn = log an/an < δ. Thus for all

real t,

Ma(t)− 2ε ≤M(n)
a (t+ δn) ≤M(n)

a (t− δn) ≤Ma(t) + 2ε.

Let N(ε) be as in the proof of Theorem 7. Inequality (11) in the proof of Theorem 7
gives that for all real t and for any n > max{N(ε),M(ε)}

Ma(t)− 5ε ≤ R(n)
a (t) ≤Ma(t) + 5ε.

This completes the proof. �
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