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PRODUCT STRUCTURE OF POINCARÉ RECURRENCE

L. BARREIRA AND B. SAUSSOL

Abstract. We provide new non-trivial quantitative information on the
behavior of Poincaré recurrence. In particular we establish the almost
everywhere coincidence of the recurrence rate and of the pointwise di-
mension for a large class of repellers, including repellers without finite
Markov partitions.

Using this information, we are able to show that for locally maximal
hyperbolic sets the recurrence rate possesses a certain local product
structure, which closely imitates the product structure provided by the
families of local stable and unstable manifolds, as well as the almost
product structure of hyperbolic measures.

1. Introduction

It is well known that the classical Poincaré recurrence theorem only gives
information of qualitative nature. On the other hand it is clearly a matter of
intrinsic difficulty and not of lack interest that little is know concerning the
quantitative nature of recurrence. This paper contributes to the solution of
this problem and has two main objectives:

1. we want to provide new non-trivial quantitative information on the
behavior of recurrence, establishing the almost everywhere coinci-
dence of recurrence rate and of pointwise dimension for a large class
of repellers, possibly without finite Markov partitions;

2. we want to show that for hyperbolic sets the recurrence rate possesses
a product structure, which closely imitates the product structure pro-
vided by the families of local stable and unstable manifolds, and the
almost product structure of hyperbolic measures (see below for defi-
nitions and for a detailed description).

Instead of formulating general statements at this point, we choose to
illustrate our results with particular cases.

Fix d ∈ N and consider a d × d matrix A with integer entries. It induces
a toral endomorphism TA : T

d → T
d of the d-dimensional torus by left-

multiplication by A. The map TA is invertible if and only if |det A| = 1 and
in this case it is also called a toral automorphism.
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Theorem 1. If TA is a toral endomorphism of T
d induced by a matrix A

with all eigenvalues outside the unit disk, then

lim
r→0

log inf{n ∈ N : ‖TA
nx − x‖ < r}

− log r
= d (1)

for Lebesgue-almost every x ∈ T
d.

This statement shows that for Lebesgue-almost every point x ∈ T
d the

first time that the positive orbit of x under TA returns to the open ball
B(x, r) ⊂ T

d of radius r centered at x is approximately r−d, and we shall
also write

inf{n ∈ N : TA
nx ∈ B(x, r)} ∼

1

rd
as r → 0.

When d = 1, the endomorphism TA : [0, 1] → [0, 1] can be written in the
form TAx = mx (mod 1) for some integer m ∈ N \ {1}. Let x = 0.x1x2 · · ·
be the base-m representation of the point x ∈ [0, 1] (note that it is uniquely
defined except on a countable subset of [0, 1]). In this case the statement in
Theorem 1 can be reformulated in the following way: for Lebesgue-almost
every x ∈ [0, 1] we have

inf{n ∈ N : |0.xnxn+1 · · · − 0.x1x2 · · ·| < r} ∼
1

r
as r → 0.

We now consider another example.

Theorem 2. If T : (0, 1) → (0, 1) is the Gauss map, that is, T (x) = 1/x
(mod 1) for each x ∈ (0, 1), then

lim
r→0

log inf{n ∈ N : |T nx − x| < r}

− log r
= 1 (2)

for Lebesgue-almost every x ∈ (0, 1).

Writing each number x ∈ (0, 1) as a continued fraction

x = [m1,m2,m3, . . .]
def
=

1

m1 +
1

m2 +
1

m3 + · · ·

,

with mi = mi(x) ∈ N for each i (note that this representation is unique
except on a countable subset of (0, 1)), one can reformulate Theorem 2 in
the following way: for Lebesgue-almost every x ∈ (0, 1) we have

inf {n ∈ N : |[mn,mn+1, . . .] − [m1,m2, . . .]| < r} ∼
1

r
as r → 0.

Theorems 1 and 2 are consequences of the more general results in Sec-
tion 2 below, and provide new non-trivial information about the quantitative
behavior of recurrence.

The study of the quantitative behavior of recurrence started with the work
of Ornstein and Weiss [7], closely followed by the work of Boshernitzan [3].
In [7] the authors establish an identity similar to those in Theorems 1 and 2
(see (1) and (2)) in the case of symbolic dynamics, and thus for the corre-
sponding symbolic metric (see also Remark 2 in Section 3.2 below). On the
other hand, the paper [3] is closer in spirit to the present paper, in the sense
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that Boshernitzan also considered arbitrary metric spaces. More precisely,
he established a general inequality between quantities related to those in the
right and left-hand sides of the identities in (1) and (2) (although the result
in [3] is formulated differently it is shown in [2] how it can be rephrased in
this manner). We showed in [2] that this inequality is strict in general, and
provided a sharper inequality which becomes an identity for large classes of
maps. In particular, for sufficiently regular hyperbolic diffeomorphisms we
established an identity which is a version of the one obtained by Ornstein
and Weiss in [7] in the special case of symbolic dynamics. The present pa-
per is a further contribution to the study of the quantitative behavior of
recurrence.

We now consider a C1+α diffeomorphism f with a compact locally max-
imal hyperbolic set Λ. We want to show that the return time possesses a
certain local product structure. More precisely, we shall show that the return
time of the orbit of a point x ∈ Λ under f to the ball B(x, r) is approxi-
mately the product of the return times to the r-neighborhoods of the stable
and unstable manifolds of x. This includes:

1. the separate study of the return times in the stable and unstable
directions;

2. the study of the relation between these numbers and the return time
to a small neighborhood of a given point.

The first point can be addressed in the following manner. The diffeomor-
phism f can be modeled by two repellers for certain “stable” and “unstable”
maps (this is made precise in Section 4), respectively in the stable and un-
stable directions. For these repellers one can establish appropriate versions
of the results in Theorems 1 and 2.

In order to formulate these results, we consider the lower and upper stable
recurrence rates Rs(x) and R

s
(x), and the lower and upper unstable recur-

rence rates Ru(x) and R
u
(x) of a point x (see (16) and (17) in Section 3 for

the definition). Given a probability measure µ on Λ, we also consider the
families of conditional measures µs

x and µu
x associated respectively to the

partitions ξs and ξu into local stable and unstable manifolds constructed
by Ledrappier and Young in [6] (see Section 3 for details). We can now
formulate a rigorous statement (see also Theorem 9 below).

Theorem 3. For a topologically mixing C1+α diffeomorphism on a compact
locally maximal hyperbolic set Λ, and an equilibrium measure µ of a Hölder
continuous function, we have

Rs(x)
def
= Rs(x) = R

s
(x) = lim

r→0

log µs
x(Bs(x, r))

log r
(3)

and

Ru(x)
def
= Ru(x) = R

u
(x) = lim

r→0

log µu
x(Bu(x, r))

log r
(4)

for µ-almost every x ∈ Λ.

The limits in the right-hand side of the identities in (3) and (4) have been
shown to exist by Ledrappier and Young in [6]. We emphasize that the
identities in Theorem 3 relate quantities of very different nature. While the
numbers Rs(x) and Ru(x) are essentially quantities of geometric nature and
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are independent of the measure µ, the limits in (3) and (4) are essentially
of measure-theoretical nature.

It follows from work of Barreira, Pesin and Schmeling [1] on the product
structure of hyperbolic measures that

lim
r→0

log µs
x(B

s(x, r))

log r
+ lim

r→0

log µu
x(Bu(x, r))

log r
= lim

r→0

log µ(B(x, r))

log r
(5)

for µ-almost every x ∈ Λ. Furthermore, it follows from work of Barreira and
Saussol [2] that

lim
r→0

log µ(B(x, r))

log r
= lim

r→0

log inf{n ∈ N : d(fnx, x) < r}

− log r
(6)

for µ-almost every x ∈ Λ. Combining Theorem 3 with the identities in (5)
and (6) we obtain the remarkable identity

Rs(x) + Ru(x) = lim
r→0

log inf{n ∈ N : d(fnx, x) < r}

− log r

for µ-almost every x ∈ Λ. This identity implies that the return time to a
ball is approximately equal to the product of the return times into the stable
and the unstable balls of the same size. The precise formulation is given in
Section 3 (see Theorem 7 below).

The structure of the paper is as follows. In Section 2 we study the recur-
rence rate for repellers. In particular we consider a class of repellers without
finite Markov partitions (as in Theorem 2 above). In Section 3 we study the
product structure of Poincaré recurrence on locally maximal hyperbolic sets
of C1+α diffeomorphisms. The approach to this problem is effected through
a careful study of certain induced maps on the stable and unstable direc-
tions provided by the families of invariant manifolds; see Section 4. These
induced maps are special cases of the repellers considered in Section 2, and
thus the results in Sections 2 and 3 are strongly related. The proofs of the
results in Sections 1–3 are collected in Section 5.

In Appendix A we establish results of independent interest, and which
are crucial to the proofs. In particular we show that the µ-measure of the
ε-neighborhood of the boundary ∂R of a Markov partition R (for repellers
or locally maximal hyperbolic sets, and arbitrary Gibbs measures) is at most
polynomial in ε, i.e. there exist constants c > 0 and ν > 0 such that if ε > 0
then

µ({x ∈ Λ: d(x, ∂R) < ε}) ≤ cεν . (7)

Acknowledgment. We would like to thank P. Collet, Ya. Pesin, and
J. Schmeling for their valuable comments. P. Collet asked us whether
Poincaré recurrence possesses some type of product structure. Theorem 9
below answers this question in the affirmative. Ya. Pesin and J. Schmeling
mentioned to us that each of them can also establish the inequality in (7).

2. Recurrence rate for repellers

2.1. Repellers of smooth maps. Let T : M → M be a C1 map of a
smooth Riemannian manifold. Consider a compact f -invariant set X ⊂ M .
We say that T is expanding on X, and that X is a repeller of T if there
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exist constants c > 0 and β > 1 such that ‖dxT nu‖ ≥ cβn‖u‖ for all x ∈ X,
u ∈ TxM , and n ∈ N.

We define the return time of a point x ∈ M into the open ball B(x, r) by

τr(x)
def
= inf{n ∈ N : T nx ∈ B(x, r)} = inf{n ∈ N : d(T nx, x) < r}.

The lower and upper recurrence rates of x are defined by

R(x) = lim
r→0

log τr(x)

− log r
and R(x) = lim

r→0

log τr(x)

− log r
. (8)

Given a probability measure µ on X, the lower and upper pointwise dimen-
sions of µ at a point x ∈ X are defined by

dµ(x) = lim
r→0

log µ(B(x, r))

log r
and dµ(x) = lim

r→0

log µ(B(x, r))

log r
.

The following statement relates the recurrence rates with the pointwise
dimensions.

Theorem 4. Let X be a repeller of a topologically mixing C 1+α expanding
map, and µ an equilibrium measure of a Hölder continuous function. Then

R(x) = R(x) = dµ(x) = dµ(x) (9)

for µ-almost every x ∈ X.

In [9], Schmeling and Troubetzkoy proved that if µ is a probability mea-
sure invariant under a C1+α expanding map on X, then dµ(x) = dµ(x) for
µ-almost every x ∈ X.

We remark that Theorem 4 relates quantities of very different nature. In
particular, the numbers R(x) and R(x) do not depend on the measure, while
the numbers dµ(x) and dµ(x) do not depend on the map.

2.2. Generalized repellers. In this section we present a large class of
generalized repellers for which one can establish a version of Theorem 4.

Let g : W → W be a Borel-measurable transformation on the metric
space W , and µ a g-invariant probability measure on W . Recall that the
entropy of a finite or countable partition Z of W by measurable sets is given
by

Hµ(Z)
def
= −

∑

Z∈Z

µ(Z) log µ(Z).

For each n ∈ N we define the new partition Zn =
∨n−1

k=0 g−kZ. Given x ∈ W
and n ∈ N we denote by Zn(x) ∈ Zn the unique (mod 0) element of Zn

which contains the point x.

Theorem 5. Let g be a Borel-measurable transformation of a set W ⊂ R
d

for some d ∈ N, µ an ergodic g-invariant non-atomic probability measure
on W , and Z a finite or countable partition of W by measurable sets with
Hµ(Z) < ∞. Assume that:

1. there exists κ > 1 such that if n, m ∈ N and x ∈ W , then

µ(Zn+m(x)) ≤ κµ(Zn(x))µ(Zm(gnx)); (10)
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2. there exists λ > 0 such that for each sufficiently large n ∈ N we have

sup
Z∈Zn

diamZ < e−λn; (11)

3. for µ-almost every x ∈ X there exists γ > 0 such that B(x, e−γn) ⊂
Zn(x) for all sufficiently large n.

Then for µ-almost every x ∈ W , we have

R(x) = dµ(x) and R(x) = dµ(x). (12)

The hypotheses 2 and 3 in the theorem concern respectively the size and
“inner size” of the elements of the partitions Zn. The exponential behavior
justifies the expression “generalized repeller” when referring to the set W
in Theorem 5. On the other hand hypothesis 1 is a one-sided Gibbs-type
inequality for the measure µ with respect to the partition Z. It is related
to the occurrence of bounded distortion for the map g. By the Whitney
embedding theorem one can also apply Theorem 5 when W is a subset of a
smooth manifold.

Dynamical systems satisfying the hypotheses of Theorem 5 include:

1. repellers of C1+α expanding maps together with equilibrium mea-
sures of Hölder continuous functions (see Section 2.1 and the proof of
Theorem 4);

2. the Gauss map endowed with its unique absolutely continuous invari-
ant probability measure µ given by

µ(A) =
1

log 2

∫

A

dx

1 + x
(13)

(see the proof of Theorem 2);
3. induced maps in the stable and unstable directions for locally maximal

hyperbolic sets of C1+α diffeomorphisms together with equilibrium
measures of Hölder continuous functions (see Section 4 and the proof
of Theorem 10).

In particular, Theorems 2, 4, and 10 provide applications of Theorem 5 to
three different situations. One can also apply Theorem 5 to several trans-
formations obtained from the induction of non-uniformly expanding maps,
such as the Pommeau–Manneville map.

2.3. Dimension of measures. In this section we relate the previous results
with the dimension of measures invariant under the dynamical system.

We briefly recall the notion of Hausdorff dimension. Let X be a separable
metric space. Given a subset Z ⊂ X and a real number α ≥ 0, we define
the α-dimensional Hausdorff measure of Z by

mα(Z) = lim
δ→0

inf
U

∑

U∈U

(diam U)α,

where the infimum is taken over all finite or countable covers U of Z by sets
of diameter at most δ. The Hausdorff dimension of Z is defined by

dimH Z = inf{α : mα(Z) = 0}.
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We also define the lower and upper box dimensions of Z by

dimBZ = lim
r→0

log N(Z, r)

− log r
and dimBZ = lim

r→0

log N(Z, r)

− log r
,

where N(Z, r) denotes the smallest number of balls of diameter r needed to
cover Z. It is easy to verify that

dimH Z ≤ dimBZ ≤ dimBZ.

The Hausdorff dimension of a probability measure µ on X is given by

dimH µ = inf{dimH Z : µ(Z) = 1},

while the lower and upper box dimensions of µ are defined by

dimBµ = lim
δ→0

inf{dimBZ : µ(Z) ≥ 1 − δ}

and

dimBµ = lim
δ→0

inf{dimBZ : µ(Z) ≥ 1 − δ}.

One can easily verify that

dimH µ ≤ dimBµ ≤ dimBµ.

Under the assumptions of Theorem 4, the measure µ is ergodic and thus
(since the quantities in (9) are T -invariant µ-almost everywhere) there exists
a constant rµ such that

R(x) = R(x) = dµ(x) = dµ(x) = rµ

for µ-almost every x ∈ X. The following statement is now an immediate
consequence of a criterion of Young in [10].

Proposition 6. If X is a repeller of a topologically mixing C 1+α expanding
map, and µ is an equilibrium measure of a Hölder continuous function, then

dimH µ = dimBµ = dimBµ = rµ.

Other quantities of dimensional nature which also coincide with rµ are
described in [1].

Recall that a differentiable map T is said to be conformal on X if dxT is
a multiple of an isometry for every x ∈ X. For example, this happens when-
ever X is an interval or T is a holomorphic map. For conformal expanding
maps, we have

dµ(x) = dµ(x) = hµ(T )/χ(x)

for µ-almost every x ∈ X, where hµ(T ) the µ-entropy of T and χ(x) is the
Lyapunov exponent at x. By Birkhoff’s ergodic theorem, we have

χ(x)
def
= lim

n→∞

1

n
log‖dxT n‖ = lim

n→∞

1

n

n−1∑

k=0

log‖dT kxT‖ =

∫

X
log‖dT‖ dµ

for µ-almost every x ∈ X, and thus (for conformal maps) we obtain

dimH µ = dimBµ = dimBµ =
hµ(T )

∫

X log‖dT‖ dµ
= rµ.
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3. Product structure of return times

3.1. Product structure. Let f be a topologically mixing C 1+α diffeomor-
phism on a smooth Riemannian manifold M , and Λ ⊂ M a compact locally
maximal hyperbolic set for f .

To each point x ∈ Λ one can associate its stable and unstable (global)
manifolds defined by

W s(x) = {y ∈ M : d(fnx, fny) → 0 as n → +∞},

W u(x) = {y ∈ M : d(fnx, fny) → 0 as n → −∞},

where d denotes the Riemannian distance on M . We also denote by ds

and du the distances induced by d respectively on the manifolds W s(x) and
W u(x).

Given ε > 0, let W s
ε (x) and W u

ε (x) be respectively the connected com-
ponents of W s(x) ∩B(x, ε) and W u(x) ∩B(x, ε) containing x. There exists
ε > 0 (which does not depend on x ∈ Λ) such that W s

ε (x) and W u
ε (x)

are embedded manifolds, each dividing B(x, ε) into two connected compo-
nents. We call W s

ε (x) and W u
ε (x) respectively the local stable and unstable

manifolds of x ∈ Λ (of size ε).
Furthermore, there exists δ = δ(ε) > 0 such that for any x, y ∈ Λ with

d(x, y) ≤ δ the intersection W s
ε (x)∩W u

ε (y) contains exactly one point. One
can show that the map

[·, ·] : {(x, y) ∈ Λ × Λ : d(x, y) ≤ δ} → M

defined by

(x, y) 7→ [x, y]
def
= W s

ε (x) ∩ W u
ε (y)

is a (local) Hölder homeomorphism. For each ρ ≤ δ we define the stable
and unstable return times (see Figure 1) of x ∈ Λ into the ball of radius r
respectively by

τ s
r (x, ρ)

def
= inf{n ∈ N : d(f−nx, x) ≤ ρ and ds([x, f−nx], x) < r},

τu
r (x, ρ)

def
= inf{n ∈ N : d(fnx, x) ≤ ρ and du([fnx, x], x) < r}.

We note that the stable return time for f is equal to the unstable return
time for f−1.

Set

Rs(x, ρ)
def
= lim

r→0

log τ s
r (x, ρ)

− log r
and R

s
(x, ρ)

def
= lim

r→0

log τ s
r (x, ρ)

− log r
, (14)

Ru(x, ρ)
def
= lim

r→0

log τu
r (x, ρ)

− log r
and R

u
(x, ρ)

def
= lim

r→0

log τu
r (x, ρ)

− log r
. (15)

We define the lower and upper stable recurrence rates of the point x ∈ Λ by

Rs(x)
def
= lim

ρ→0
Rs(x, ρ) and R

s
(x)

def
= lim

ρ→0
R

s
(x, ρ), (16)

and the lower and upper unstable recurrence rates of the point x ∈ Λ by

Ru(x)
def
= lim

ρ→0
Ru(x, ρ) and R

u
(x)

def
= lim

ρ→0
R

u
(x, ρ). (17)
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[fnx, x]

W u
ε (x)

W s
ε (x)

x

fnx

B(x, ρ)

Figure 1. Definition of the unstable return time; the grey
zone is the set of points whose du-distance to W s

ε (x) is at
most r.

Since the functions ρ 7→ τ s
r (x, ρ) and ρ 7→ τu

r (x, ρ) are non-decreasing, the
limits in (16) and (17) are well-defined. One can easily show that the func-

tions Rs, R
s
, Ru, and R

u
are f -invariant on Λ. Whenever Rs(x) = R

s
(x)

we shall denote the common value by Rs(x), and whenever Ru(x) = R
u
(x)

we shall denote the common value by Ru(x).
When Λ is a compact locally maximal hyperbolic set for a topologically

mixing C1+α diffeomorphism, and µ is an equilibrium measure of a Hölder
continuous function, we can show (see Theorem 9 below) that for µ-almost
every x ∈ Λ each of the numbers in (14) and (15) are independent of ρ for
all sufficiently small ρ.

We also consider the return time of the point x ∈ Λ into the open ball
B(x, r) given by

τr(x) = inf{n ∈ N : d(fnx, x) < r},

and define its lower and upper recurrence rates R(x) and R(x) as in (8). One
can easily show that the functions R and R are f -invariant on Λ. Whenever
R(x) = R(x) we shall denote the common value by R(x).

We now state the main result of this section.

Theorem 7. Let Λ be a compact locally maximal hyperbolic set of a topo-
logically mixing C1+α diffeomorphism, and µ an equilibrium measure of a
Hölder continuous function. For µ-almost every x ∈ Λ the following prop-
erties hold:

1. the recurrence rate is equal to the sum of the stable and unstable re-
currence rates, i.e.

R(x) = Rs(x) + Ru(x);
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2. there exists ρ(x) > 0 such that for each ρ < ρ(x) and each ε > 0 there
exists r(x, ρ, ε) > 0 such that if r < r(x, ρ, ε) then

rε <
τ s
r (x, ρ) · τu

r (x, ρ)

τr(x)
< r−ε.

Theorem 7 reveals a local product structure for return times and a lo-
cal product structure for recurrence rates. Theorem 7 is an application of
Theorem 9 below and of work of Barreira and Saussol in [2].

The following is an application of Theorem 7.

Theorem 8. For a topologically mixing volume-preserving C 1+α Anosov
diffeomorphism on a compact d-dimensional manifold M , and for Lebesgue-
almost every x ∈ M there exists ρ(x) > 0 such that for each ρ < ρ(x) and
each ε > 0 there exists r(x, ρ, ε) > 0 such that if r < r(x, ρ, ε) then

rd+ε < τ s
r (x, ρ) · τu

r (x, ρ) < rd−ε.

Furthermore, under the hypotheses of Theorem 8, we have

R(x) = d, Rs(x) = ds, Ru(x) = du

for Lebesgue-almost every x ∈ M , where ds and du denote respectively the
dimensions of the stable and unstable manifolds. In particular, Theorem 8
readily applies to hyperbolic toral automorphisms.

3.2. Stable and unstable recurrence rates. Let now µ be a Borel prob-
ability measure invariant under a C1+α diffeomorphism on the manifold M .
In [6], Ledrappier and Young constructed two measurable partitions ξs and
ξu of M such that for µ-almost every x ∈ M :

1. ξs(x) ⊂ W s
ε (x) and ξu(x) ⊂ W u

ε (x);
2. there exists γ = γ(x) > 0 such that

ξs(x) ⊃ W s
ε (x) ∩ B(x, γ) and ξu(x) ⊃ W s

ε (x) ∩ B(x, γ).

We denote by µs
x and µu

x the conditional measures associated respectively to
the partitions ξs and ξu. Recall that any measurable partition ξ of M has
associated a family of conditional measures: for µ-almost every x ∈ M there
exists a probability measure µx defined on the unique (mod 0) element ξ(x)
of ξ containing x. The conditional measures are characterized completely
by the following property: if Bξ is the σ-subalgebra of the Borel σ-algebra
generated by unions of elements of ξ then for each Borel set A ⊂ M , the
function x 7→ µs

x(A ∩ ξ(x)) is Bξ-measurable and

µ(A) =

∫

A
µs

x(A ∩ ξ(x)) dµ.

We represent by Bs(x, r) ⊂ W s
ε (x) and Bu(x, r) ⊂ W u

ε (x) the open balls
centered at x with radius r with respect to the distances ds and du. It follows
from work of Ledrappier and Young in [6] that if µ is an ergodic f -invariant
probability measure supported on a locally maximal hyperbolic set Λ of a
C1+α diffeomorphism, then there exist constants ds

µ and du
µ such that

lim
r→0

log µs
x(Bs(x, r))

log r
= ds

µ and lim
r→0

log µs
x(Bu(x, r))

log r
= du

µ
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for µ-almost every x ∈ Λ. The following statement relates these quantities
with the stable and unstable recurrence rates.

Theorem 9. Let Λ be a compact locally maximal hyperbolic set of a topo-
logically mixing C1+α diffeomorphism, and µ an equilibrium measure of a
Hölder continuous function. For µ-almost every x ∈ Λ there exists ρ(x) > 0
such that if ρ < ρ(x) then

Rs(x) = Rs(x, ρ) = R
s
(x, ρ) = ds

µ

and
Ru(x) = Ru(x, ρ) = R

u
(x, ρ) = du

µ.

Theorem 7 above provides a non-trivial application of Theorem 9.

Remark 1. Theorem 7 is a counterpart for Poincaré recurrence of work by
Barreira, Pesin, and Schmeling in [1] for pointwise dimension. Both works
establish a local product structure, although for quite different quantities.
Theorem 9 is a counterpart for Poincaré recurrence of work by Ledrappier
and Young in [6] for the pointwise dimension.

Remark 2. The previous results should be compared with work of Ornstein
and Weiss for the entropy. They showed in [7] that if σ+ : Σ+ → Σ+ is a
one-sided subshift and µ+ is a σ+-invariant ergodic probability measure on
Σ+, then

lim
k→∞

log inf{n ∈ N : (in+1 · · · in+k) = (i1 · · · ik)}

k
= hµ+(σ) (18)

for µ+-almost every (i1i2 · · · ) ∈ Σ+. They also showed in [7] that if σ : Σ →
Σ is a two-sided subshift and µ is a σ-invariant ergodic probability measure
on Σ, then

lim
k→∞

log inf{n ∈ N : (in−k · · · in+k) = (i−k · · · ik)}

2k + 1
= hµ(σ) (19)

for µ-almost every (· · · i−1i0i1 · · · ) ∈ Σ.
Given a two-sided shift σ : Σ → Σ it has naturally associated two one-

sided shifts σ+ : Σ+ → Σ+ and σ− : Σ− → Σ− (respectively related with
the future and with the past). Furthermore, any σ-invariant measure on Σ
induces a σ+-invariant measure µ+ on Σ+ and a σ−-invariant measure µ−

on Σ−, such that
hµ+(σ+) = hµ−(σ−) = hµ(σ).

For each ω = (· · · i−1i0i1 · · · ) ∈ Σ and k ∈ N we set

τ+
k (ω) = inf{n ∈ N : (in+1 · · · in+k) = (i1 · · · ik)},

τ−
k (ω) = inf{n ∈ N : (i−n−k · · · i−n−1) = (i−k · · · i−1)},

τk(ω) = inf{n ∈ N : (in−k · · · in+k) = (i−k · · · ik)}.

It follows from (18) and (19) that for µ-almost every ω ∈ Σ, given ε > 0 if
k ∈ N is sufficiently large then

e−kε ≤
τ+
k (ω)τ−

k (ω)

τk(ω)
≤ ekε.

Theorems 7 and 9 can be considered versions of these statements in the case
of dimension.
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fRx

R∗

W u
ε (z) x

fz,ux

Figure 2. Construction of the induced map fz,u on W u
ε (z) ∩ R∗.

4. Induced dynamics

In order to help establishing Theorem 9 (to be proven in Section 5.1
below), we shall show here that one can relate the unstable recurrence rate
to the return rate of a certain “unstable map” which satisfies the hypotheses
of Theorem 5. This “unstable map” is induced by the dynamics on the
unstable direction of each element of a fixed Markov partition. A similar
study can be effected for the stable recurrence rate. This allows one to see
Theorem 9 as a further non-trivial application of Theorem 5.

Let f and Λ be as in Section 3.1. Let now R = {R1, . . . , R`} be a Markov
partition of the compact locally maximal hyperbolic set Λ. We recall that
R satisfies the following properties (with the interior computed with respect
to the induced topology on Λ):

1. if R ∈ R then R = intR;
2. if x, y ∈ R ∈ R then [x, y] ∈ R;
3. if x ∈ intRi ∩ f−1 int Rj then

f(W s
ε (x)∩Ri) ⊂ W s

ε (fx)∩Rj and W u
ε (fx)∩Rj ⊂ f(W u

ε (x)∩Ri). (20)

For each R ∈ R, we denote by R∗ the set of points in R which return
infinitely many times to R. By the Poincaré recurrence theorem we have
µ(R∗) = µ(R). For each x ∈ R∗ we set

TR(x)
def
= inf{k ∈ N : fkx ∈ R} < ∞.

We define the induced map (or first return map) fR : R∗ → R∗ on R∗ by

fRx = fTR(x)x. (21)

Given z ∈ int R we define the unstable map fz,u on W u
R∗

(z)
def
= W u

ε (z) ∩ R∗

(see Figure 2) by

fz,u : W u
R∗

(z) → W u
R∗

(z)

x 7→ [fRx, x].

Observe that fz,ux = [fRx, z].
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We denote by τu
r (x,R) the return time into the ball Bu(x, r) with respect

to the map fz,u, i.e.

τu
r (x,R) = inf{k ∈ N : fz,u

kx ∈ Bu(x, r)}, (22)

and define the corresponding lower and upper recurrence rates by

Ru(x,R) = lim
r→0

log τu
r (x,R)

− log r
and R

u
(x,R) = lim

r→0

log τu
r (x,R)

− log r
.

Let also du
µ be as in Section 3.2. The following theorem relates the recurrence

rate of the unstable map to the unstable dimension of the measure µ, and
is crucial to the proof of Theorem 9.

Theorem 10. Let Λ be a compact locally maximal hyperbolic set of a topo-
logically mixing C1+α diffeomorphism, and µ an equilibrium measure of a
Hölder continuous function. Given a Markov partition R of Λ, and R ∈ R,
for µ-almost every z ∈ R and µu

z -almost every x ∈ W u
R(z) we have

Ru(x,R) = R
u
(x,R) = dimH µu

z = dimBµu
z = dimBµu

z = du
µ.

Proof. Define inductively the return times of the f -orbit of x to the set R
by T 0

R(x) = 0 and

T n
R(x) = T n−1

R (fRx) + TR(x) (23)

for each n ∈ N. For each p ∈ N we define a new partition of Λ by Rp =
∨p−1

k=0 f−kR. We also define a partition Z of the set W u
R∗

(z) by

{Z ∩ W u
R∗

(z) : Z ⊂ R and exists p ≥ 1 such that Z ∈ Rp and TR|Z = p}.
(24)

For each n ∈ N we consider the new partition Zn
def
=

∨n−1
k=0 fz,u

−kZ. It follows
immediately from the construction that TR(y) = TR(x) whenever y ∈ Z(x).
Therefore, for each n ∈ N we also have T n

R(y) = T n
R(x) whenever y ∈ Zn(x).

The following lemma provides crucial information about the geometric
structure of the unstable map.

Lemma 1. The following properties hold:

1. Z is a countable Markov partition of W u
R∗

(z), with respect to the map
fz,u : W u

R∗

(z) → W u
R∗

(z), such that fz,u|Z is onto for each Z ∈ Z;
2. there exists λ > 0 such that for each sufficiently large n ∈ N we have

sup
Z∈Zn

diamdu Z < e−λn;

3. there exist θ > 0 and α ∈ (0, 1] such that if n ∈ N, Z ∈ Zn, and
x, y ∈ Z then

du(fz,u
nx, fz,u

ny) ≤ exp(θT n
R(x))du(x, y)α.

Proof of Lemma 1. The first statement follows easily from the definitions.
For the second statement observe first that each element Z of Zn is contained
in some element of the partition RT n

R
(x) where x ∈ Zn. Choose λ > 0 such

that

lim
n→∞

1

n
log du(f−nx, f−ny) < −2λ
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for all sufficiently close x and y on the same unstable manifold. Since T n
R ≥ n

we obtain

sup
Z∈Zn

diamdu Z < sup
Z∈Zn

e−λT n
R

(x) ≤ e−λn

whenever Z ∈ Zn and x ∈ Z, for all sufficiently large n. It follows immedi-
ately from the construction that fz,u|Z is onto for each Z ∈ Z.

We now establish the third statement in the lemma. The Markov property
of the partition R implies (through the first inclusion in (20)) that

fz,u
nx = [fR[fR · · · [fRx, x], . . . , x], x

︸ ︷︷ ︸

n times

] = [fR
nx, x] = [fT n

R(x)x, x]. (25)

Choose κ > 0 such that eκ is a Lipschitz constant for f . Let Z ∈ Zn and
x, y ∈ Z. Since T n

R(x) = T n
R(y) we obtain

d(fR
nx, fR

ny) = d(fT n
R

(x)x, fT n
R

(x)y) ≤ exp(κT n
R(x))d(x, y).

Since the product structure [·, ·] is Hölder continuous, there exist constants
c > 1 and α ∈ (0, 1] such that

du(fz,u
nx, fz,u

ny) = du([fR
nx, z], [fR

ny, z])

≤ cd(fR
nx, fR

ny)α

≤ c(exp(κT n
R(x)))αd(x, y)α

≤ c exp(καT n
R(x))du(x, y)α.

Taking θ = κα + log c we obtain the third statement. This completes the
proof of the lemma. �

Notice that the second property in Lemma 1 corresponds to hypothesis 2
in Theorem 5.

For each n ∈ N we define still a new partition Rn =
∨n

p=0 fpR. The
partition

R∞ = lim
n→∞

Rn = {W u
R(z) : z ∈ R ∈ R}

is composed of local unstable manifolds, and gives rise to a family of con-
ditional measures µu

z for µ-almost every z ∈ Λ. The measure µu
z has the

explicit representation

µu
z (A) = lim

p→∞

µ(A ∩Rp(z))

µ(Rp(z))
, (26)

for µ-almost every z ∈ Λ and every measurable set A ⊂ M .
Each measure µu

z can be seen as a measure on W u
R(z) = R∞(z). However,

this measure may not be invariant under the unstable map fz,u on W u
R∗

(z).
We shall construct another measure mu

z equivalent to µz,u which is fz,u-
invariant.

Given a set A ⊂ W u
R(z) we write

[A,R]
def
= {[a, y] : a ∈ A, y ∈ R}.

We define a new measure mu
z on W u

R(z) by

mu
z (A)

def
=

µ([A,R])

µ(R)
, (27)
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for each measurable set A ⊂ W u
R(z). Since µ(∂R) = 0 for any equilibrium

measure µ (see Appendix A), the new measure mu
z is a well-defined proba-

bility measure on W u
R(z) such that mu

z (∂Z) = 0 for µ-almost every z ∈ Λ.
Here the boundary ∂Z is computed with respect to the induced topology
on W u

R(z).

Lemma 2. There exists a constant Γ > 0 such that for µ-almost every
z ∈ R the following properties hold:

1. mu
z is an ergodic fz,u-invariant measure on W u

R(z);
2. the measures mu

z and µu
z are equivalent, and

Γ−1 <
dµu

z

dmu
z

< Γ.

Proof of Lemma 2. Let z ∈ int R. Since

[fz,u
−1A,R] = fR

−1[A,R],

the invariance of mu
z follows immediately from the fR-invariance of the mea-

sure µ|R. The ergodicity of mu
z follows from the ergodicity of µ|R.

We now establish the second property. Since the Markov partition is
a generating partition, it is enough to verify the equivalence of measures
on cylinders, i.e. on elements of the partitions Rm ∨ Rn for each n and m.
Observe that for each x ∈ W u

R(z) we have Rp(x) = Rp(z) for any p ∈ N. Let
m and n be positive integers, and consider the cylinder Z = Rm(x)∩Rn(x).
By the Gibbs property of µ there exists a constant a > 0 (independent of
m, n, and x) such that

a−1µ(Rm(x))µ(Rn(x)) ≤ µ(Z) ≤ aµ(Rm(x))µ(Rn(x)).

Dividing by µ(Rm(x)) and letting m → ∞, it follows from (26) that

a−1µ(Rn(x)) ≤ µu
z (Z) ≤ aµ(Rn(x))

for every n ∈ N. Since [Z,R] = Rn(x), it follows from (27) that mu
z (Z) =

µ(Rn(x))/µ(R), and hence

a−1µ(R) ≤
µu

z (Z)

mu
z (Z)

≤ aµ(R)

Setting Γ = aµ(R)−1 we obtain the desired statement. �

We now establish hypothesis 3 in Theorem 5.

Lemma 3. For µ-almost every z ∈ Λ and mu
z -almost every x ∈ W u

R(z) there
exists γ > 0 such that if n ∈ N is sufficiently large then

B(x, e−γn) ⊂ Zn(x). (28)

Proof of Lemma 3. Set µR = µ|R/µ(R). By Kac’s lemma the induced dy-
namical system (fR, µR) is ergodic and

∫

R
TR(x) dµR(x) =

1

µ(R)
. (29)

Observe that

T n
R(x) =

n−1∑

k=0

TR(fR
kx) (30)
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for each n ∈ N and x ∈ R. By Birkhoff’s ergodic theorem we obtain

µ

({

x ∈ R : lim
n→∞

1

n
T n

R(x) =
1

µ(R)

})

= µ(R),

and thus (see (26))

µu
z

({

x ∈ W u
R(z) : lim

n→∞

1

n
T n

R(x) =
1

µ(R)

})

= 1

for µ-almost every z ∈ Λ. By Lemma 2 we conclude that

mu
z

({

x ∈ W u
R(z) : lim

n→∞

1

n
T n

R(x) =
1

µ(R)

})

= 1

for µ-almost every z. Hence, for mu
z -almost every x ∈ W u

R(z) there exists
δx > 1/µ(R) such that T n

R(x) < δxn for all n ∈ N. Furthermore δx can be
chosen in such a way that x 7→ δx is measurable.

Let ε > 0, δ > 0, and

Y0
def
= {x ∈ W u

R(z) : δx < δ}.

We have mu
z (Y0) > 1 − ε for all sufficiently large δ. Denote by Pn ⊂ Z the

collection of elements Z ∈ Z such that TR|[Z,R] ≤ n. If x ∈ Y0 then

Z(fz,u
n−1x) ∈ Pδn (31)

for any n ∈ N (since TR(fz,u
n−1x) ≤ T n

R(x) < δxn < δn), where Z(x)
denotes the element of Z containing x. Furthermore, by the construction of
Z in (24) we have

[Pn, R] ⊂ R1 ∪ · · · ∪ Rn.

We now want to show that the orbit of a typical point in Y0 stays far
away from ∂Z. Using the Markov property of the partition R, we conclude
that

[∂Pm, R] ⊂ ∂Rm

for any integer m ∈ N. The Hölder regularity of the product structure
implies that there exists α > 0 such that

[{x ∈ W u
R(z) : du(x, ∂Pm) < r}, R] ⊂ {y ∈ R : d(y, ∂Rm) < rα}. (32)

Let

β0 = (1 + log max{‖dxf‖ : x ∈ Λ})δ/α,

and define

Bn =
{

x ∈ Y0 : du(fz,u
n−1x, ∂Z(fz,u

n−1x)) ≤ e−β0n
}

.

Using (31) we get

mu
z (Bn) ≤ mu

z

({

x ∈ Y0 : du(fz,u
n−1x, ∂Pδn) ≤ e−β0n

})

,

and by the fz,u-invariance of mu
z we obtain

mu
z (Bn) ≤ mu

z

({

x ∈ W u
R(z) : du(x, ∂Pδn) ≤ e−β0n

})

.
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By (27), (32), and Proposition 16 in Appendix A, there exist constants c > 0
and ν > 0 such that

mu
z (Bn) ≤

1

µ(R)
µ

({

x ∈ R : d(x, ∂Rδn) ≤ e−αβ0n
})

≤ ce−nαβ0ν/δ ≤ ce−νn

for every n ∈ N. This implies that
∑

m∈N
mu

z (Bm) < ∞. By the Borel–
Cantelli lemma, for mu

z -almost every x ∈ Y0 we have that x 6∈ Bm for all
sufficiently large m, that is,

du(fz,u
m−1x, ∂Z(fz,u

m−1x)) > e−β0m

for all sufficiently large m. Consequently, for some β > β0 there exists a set
Y ⊂ Y0 of measure mu

z (Y ) > 1 − 2ε such that

du(fz,u
m−1x, ∂Z(fz,u

m−1x)) > e−βm (33)

for all m ∈ N and each x ∈ Y (recall that the boundary ∂Z has zero measure;
see Appendix A).

Fix γ > (β + θδ)/α, with θ as in Lemma 1. Let x ∈ Y , n ≥ 2, and
y ∈ B(x, e−γn). It is easy to verify that

ekθδe−αγn ≤ e−βn (34)

for every k ≤ n. By (33) and (34) with m = 1 and k = 0, we have

du(x, ∂Z(x)) > e−β > e−αγn > du(x, y).

Thus y ∈ Z(x). By Lemma 1 we obtain

du(fz,ux, fz,uy) ≤ eθδd(x, y)α ≤ eθδe−αγn ≤ e−βn,

using (34) with k = 1. By (33) with m = 2 we have

du(fz,ux, ∂Z(fz,ux)) > e−2β ≥ du(fz,ux, fz,uy),

and hence fz,uy ∈ Z(fz,ux). Thus y ∈ Z2(x). Again by Lemma 1 we obtain

du(fz,u
2x, fz,u

2y) ≤ e2θδe−αγn ≤ e−βn,

using (34) with k = 2. We can repeat successively the above argument to
conclude that for every m ≤ n we have

du(fz,u
m−1x, ∂Z(fz,u

m−1x)) > e−mβ ≥ du(fz,u
mx, fz,u

my),

and hence fz,u
m−1x ∈ Z(fz,u

m−1x). Thus y ∈ Zm(x). This shows that (28)
holds for any x ∈ Y and n ≥ 2. Since mu

z (Y ) > 1 − 2ε, the arbitrariness of
ε > 0 implies the desired statement. �

We continue with the proof of the theorem. By Lemma 2, the measure
mu

z is an fz,u-invariant ergodic measure. Observe that [Z, R] is a partition
of R. Recall that for each Z ∈ Z there exists p > 0 such that [Z,R] ∈ Rp

and TR|[Z,R] = p. The Gibbs property of the measure µ implies that there
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exists a constant b > 0 such that µ([Z,R]) > e−bp, and hence mu
z (Z) > e−bp

for every Z ∈ Z. By (27), this implies that

−
∑

Z∈Z

mu
z (Z) log mu

z (Z) =
∑

p>0

∑

Z∈Z:TR|[Z,R]=p

mu
z (Z)(− log mu

z (Z))

≤
∑

p>0

bp

µ(R)

∑

Z∈Z:TR|[Z,R]=p

µ([Z,R])

=
b

µ(R)

∑

p>0

pµ




⋃

Z∈Z:TR|[Z,R]=p

[Z,R]





=
b

µ(R)

∫

R
TR dµ.

It follows from Kac’s lemma (see (29)) that Hmu
z
(Z) ≤ b/µ(R) < ∞.

We now verify that the system (fz,u,mu
z ) satisfies the remaining hypothe-

ses of Theorem 5:

1. Observe that

[Zn+m(x), R] = [Zn(x), R] ∩ f−p[Zm(y), R],

with [Zn(x), R] ∈ Rp and y = fz,u
nx = fpx. It follows from (27)

and the Gibbs property of µ that there there exists a constant κ > 0
(independent of m, n, and x) such that

mu
z (Zn+m(x)) ≤ κmu

z (Zn(x))mu
z (Zm(fz,u

nx)).

This shows that the hypothesis 1 in Theorem 5 holds.
2. Hypothesis 2 is the statement 2 of Lemma 1.
3. Hypothesis 3 is the content of Lemma 3.

We can now apply Theorem 5 to conclude that the identities in (12) hold,
i.e.

Ru(x,R) = dmu
z
(x) and R

u
(x,R) = dmu

z
(x) (35)

for µ-almost every z ∈ R and mu
z -almost every x ∈ W u

R(z).
In [6], Ledrappier and Young showed that there exists a constant du

µ (see
also Section 3.2) such that

dµu
x
(x) = dµu

x
(x) = du

µ (36)

for µ-almost every x ∈ Λ. Recall that for each x ∈ W u
R(z) we have Rp(x) =

Rp(z) for any p ∈ N. Hence, it follows from (26) and (36) that for µ-almost
every z ∈ Λ and µu

z -almost every x ∈ W u
R(z), we have

dµu
z
(x) = dµu

z
(x) = du

µ. (37)

It follows now immediately from a criterion of Young in [10] that

dimH µu
z = dimBµu

z = dimBµu
z = du

µ.

By Lemma 2 the measures mu
z and µu

z are equivalent for µ-almost every
z ∈ R, and hence

dmu
z
(x) = dµu

z
(x) and dmu

z
(x) = dµu

z
(x) (38)
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for every x ∈ W u
R(z). Combining (35), (38), and (37) we conclude that

Ru(x,R) = R
u
(x,R) = dmu

z
(x) = dmu

z
(x) = du

µ

for µ-almost every z ∈ R and µu
z -almost every x ∈ W u

R(z). This completes
the proof of the theorem. �

Theorem 10 is a version of Theorem 4 for the induced dynamics on each
rectangle of the Markov partition. With slight changes one can also establish
a version of Theorem 10 for a certain “stable map” (which coincides with
the unstable map with respect to f−1).

5. Proofs of the results in Sections 1–3

5.1. Proofs of the results in Section 3.

Proof of Theorem 9. We shall use the successive return times of the f -orbit
of x to the set R defined by T 0

R(x) = 0 and by (23) for each n ∈ N. Let R
be a Markov partition for (Λ, f). Given R ∈ R and x ∈ R we consider the
integer τu

r (x,R) defined by (22). It follows readily from (25) that

τu
r (x,R) = inf{k ∈ N : du([fR

kx, x], x) < r},

with fR as in (21). Therefore

T
τu
r (x,R)

R (x) = inf{n ∈ N : fnx ∈ R and du([fnx, x], x) < r}. (39)

Furthermore, since µ is ergodic it follows from Kac’s Lemma (see (29)) and
(30) that

lim
n→∞

1

n
T n
R(x)(x) =

1

µ(R(x))

for µ-almost every x ∈ Λ, where R(x) denotes the element of R containing
the point x. Therefore

lim
n→∞

log T n
R(x)(x)

log n
= 1 (40)

for µ-almost every x ∈ Λ.
Fix ρ > 0 and consider now two Markov partitions R+ and R− for (Λ, f).

We assume that R− has diameter at most ρ (it is well known that there
exist Markov partitions of arbitrarily small diameter), and define

Λρ(R+) = {x ∈ Λ: d(x, ∂R+) > ρ}.

Observe that if x ∈ Λρ(R+) then

R−(x) ⊂ B(x, ρ) ∩ Λ ⊂ R+(x), (41)

where R−(x) and R+(x) denote respectively the elements of R− and R+

containing x. Since Λ is an invariant set, the orbit of every point x ∈ Λ is
fully contained in Λ, and thus (even though the set B(x, ρ)∩Λ in (41) cannot
in general be replaced by B(x, ρ)) one can use (41) and (39) to obtain

T
τu
r (x,R+)

R+(x) (x) ≤ τu
r (x, ρ) ≤ T

τu
r (x,R−)

R−(x) (x)

for µ-almost every x ∈ Λρ(R+). It follows from (40) that

Ru(x,R+) ≤ Ru(x, ρ) ≤ Ru(x,R−) (42)
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and

R
u
(x,R+) ≤ R

u
(x, ρ) ≤ R

u
(x,R−) (43)

for µ-almost every x ∈ Λρ(R+). By Theorem 10 we have

Ru(x,R−) = R
u
(x,R−) = du

µ and Ru(x,R+) = R
u
(x,R+) = du

µ

for µ-almost every x ∈ Λ. We conclude from (42) and (43) that

Ru(x, ρ) = R
u
(x, ρ) = du

µ (44)

for µ-almost every x ∈ Λρ(R+) and all sufficiently small ρ > 0. Since
∂R+ has zero measure (see Appendix A), the set

⋃

ρ>0 Λρ(R+) has full µ-

measure, and hence the identities in (44) hold for µ-almost every x ∈ Λ and
all sufficiently small ρ > 0 (possibly depending on x).

One can obtain a version of Theorem 10 for the stable direction (by replac-
ing f by f−1, and the index u by s everywhere). Using similar arguments
to those above, this can be used to show that

Rs(x, ρ) = R
s
(x, ρ) = ds

µ (45)

for µ-almost every x ∈ Λ and all sufficiently small ρ > 0 (possibly depending
on x) . It follows from (44) and (45) that the limits in (16) and (17) are not
necessary provided that ρ is taken sufficiently small. Therefore, we have

Rs(x) = Rs(x, ρ) = R
s
(x, ρ) = ds

µ

and

Ru(x) = Ru(x, ρ) = R
u
(x, ρ) = du

µ

for µ-almost every x ∈ Λ and all sufficiently small ρ > 0 (possibly depending
on x). This completes the proof of the theorem. �

Proof of Theorem 7. It was established by Barreira, Pesin, and Schmeling
in [1] that

dµ(x) = dµ(x) = du
µ + ds

µ

for µ-almost every x ∈ Λ. In [2], Barreira and Saussol showed that

R(x) = dµ(x) and R(x) = dµ(x)

for µ-almost every x ∈ Λ. This implies that R(x) is well-defined for µ-almost
every x ∈ Λ. Finally, it follows from Theorem 9 that

R(x) = Rs(x) + Ru(x)

for µ-almost every x ∈ Λ. This establishes the first statement in the theorem.
The second statement is an immediate consequence of the first one. �

5.2. Proofs of the results in Section 2. Let T be a Borel-measurable
transformation on the metric space X, and µ a T -invariant probability mea-
sure on X. The return time of the point y ∈ B(x, r) into B(x, r) is defined
by

τr(y, x)
def
= inf{k > 0 : d(T ky, x) < r}.

For each x ∈ X and each r, ε > 0, we consider the set

Aε(x, r) = {y ∈ B(x, r) : τr(y, x) ≤ µ(B(x, r))−1+ε}. (46)
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We say that the measure µ has long return time (with respect to T ) if

lim
r→0

log µ(Aε(x, r))

log µ(B(x, r))
> 1

for µ-almost every x ∈ X and every sufficiently small ε > 0. The class of
measures with long return time includes for example equilibrium measures
supported on locally maximal hyperbolic sets (see [2] for a detailed discussion
and for other examples of measures with long return time). We have the
following criterion.

Proposition 11 ([2]). Let T be a Borel-measurable transformation on a set
X ⊂ R

d for some d ∈ N, and µ a T -invariant probability measure on X. If
µ has long return time, and dµ(x) > 0 for µ-almost every x ∈ X, then the
identities in (12) hold for µ-almost every x ∈ X.

We say that a measure µ is weakly diametrically regular on a set Z ⊂ X
if there is a constant η > 1 such that for µ-almost every x ∈ Z and every
ε > 0, there exists δ > 0 such that if r < δ then

µ(B(x, ηr)) ≤ µ(B(x, r))r−ε. (47)

One can easily verify that if µ is a weakly diametrically regular measure on
a set Z, then for every fixed constant η > 1, there exists δ = δ(x, ε, η) > 0
for µ-almost every x ∈ Z and every ε > 0, such that (47) holds for every
r < δ. The following is a criterion for weak diametric regularity.

Proposition 12 ([2]). Let µ be a probability measure on a measurable set
Z ⊂ R

d for some d ∈ N. Then µ is weakly diametrically regular on Z.

We define the return time of a set A into itself by

τ(A) = inf{n ∈ N : T nA ∩ A 6= ∅}.

Saussol, Troubetzkoy, and Vaienti show in [8] that the return time of an

element of the partition Zn =
∨n−1

k=0 T−kZ into itself is “typically large”, in
the following sense.

Proposition 13 ([8]). Let T : W → W be a measurable transformation
preserving an ergodic probability measure µ. If Z is a finite or countable
measurable partition with entropy hµ(T,Z) > 0 then

lim
n→∞

τ(Zn(x))

n
≥ 1

for µ-almost every x ∈ W .

We shall use these statements in the proof of Theorem 5.

Proof of Theorem 5. We first show that the entropy hµ(g) is finite and non-
zero. Set σn = sup{µ(Z) : Z ∈ Zn}. It follows from (11) and the non-
atomicity of the measure µ that σn → 0 as n → ∞. Otherwise there would
exist x ∈ W and ε > 0 such that µ(Zn(x)) → ε as n → ∞. But using (11)
we have

⋂

n∈N
Zn(x) = {x} and thus µ({x}) = ε > 0, which contradicts the

non-atomicity of the measure µ. In particular, there exists p ∈ N such that
σp < 1/κ. Using (10) we find that

µ(Zpn(x)) ≤ (κσp)
n,
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for every x ∈ W and every n ∈ N. The Shannon–McMillan–Breiman theo-
rem implies that

hµ(g) ≥ lim
n→∞

log µ(Zpn(x))

−pn
≥ −

1

p
log(κσp) > 0.

Furthermore, it follows from (11) that Z is a generating partition and hence
hµ(g) = hµ(g,Z) ≤ Hµ(Z) < ∞.

Our assumptions insure that for µ-almost every point x ∈ W there exists
γ > 0 such that

B(x, e−γn) ⊂ Zn(x) ⊂ B(x, e−λn)

for all sufficiently large n. The Shannon–McMillan–Breiman theorem im-
plies that

γdµ(x) ≥ hµ(g) ≥ λdµ(x)

for µ-almost every x ∈ W . Since 0 < hµ(g) < ∞ we conclude that 0 <

dµ(x) ≤ dµ(x) < ∞ for µ-almost every x ∈ W .
Since hµ(g,Z) > 0 we can apply Proposition 13. By hypothesis 3 in the

theorem we conclude that for µ-almost every x ∈ W there exists γ > 0 such
that

lim
r→0

τ(B(x, r))

− log r
= lim

n→∞

τ(B(x, e−γn))

γn
≥ lim

n→∞

τ(Zn(x))

γn
≥

1

γ
. (48)

The first identity follows easily from the fact that given r > 0 there exists
n = n(r) ∈ N such that e−γ(n+1) < r ≤ e−γn and thus

τ(B(x, e−γ(n+1)))

γn
>

τ(B(x, r))

− log r
>

τ(B(x, e−γn))

γ(n + 1)
.

It follows from (48) that

B(x, r) ∩ g−kB(x, r) = ∅

whenever k is a positive integer such that k < − 1
2γ log r and r is sufficiently

small.
Set Bk =

⋃

y∈B(x,r) Zk(y) and write Bk as a disjoint union
⋃N

j=1 Zk(yj).

Choose also sets Z1, Z2, . . . ∈
⋃

n∈N
Zn such that Zi ∩ Zj = ∅ (mod 0) for

every i 6= j, and

B(x, r) =
⋃

`∈N

Z` (mod 0).

The inequality (10) implies that

µ(Bk ∩ g−kB(x, r)) =

N∑

j=1

∑

`∈N

µ(Zk(yj) ∩ g−kZ`)

≤
N∑

j=1

∑

`∈N

κµ(Zk(yj))µ(Z`)

= κµ(Bk)µ(B(x, r)).

By hypothesis 2 we have Bk ⊂ B(x, r +e−λk) for all sufficiently small r > 0,
and hence

µ(B(x, r) ∩ g−kB(x, r))

µ(B(x, r))
≤ κµ(B(x, r + e−λk)). (49)
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By Proposition 12, if k ≥ − 1
λ log r then

µ(B(x, r + e−λk)) ≤ µ(B(x, 2r)) ≤ µ(B(x, r))r−ε(r),

where ε(r) → 0 as r → 0. Note that ε(r) may depend on x. By rechoosing
ε(r) if necessary we can assume that if k ≥ − 1

2γ log r then (since λ/γ ≤ 1)

µ(B(x, r + e−λk)) ≤ µ(B(x, r
λ
3γ )) ≤ r

λdµ(x)

3γ r−ε(r).

Combining these estimates with (49), and possibly rechoosing ε(r), we ob-
tain (see (46))

µ(Aε(x, r))

µ(B(x, r))
≤

− 1
λ

log r
∑

k=− 1
2γ

log r

r
λdµ(x)

3γ r−ε(r) +

µ(B(x,r))−1+ε

∑

k=− 1
λ

log r

µ(B(x, r))r−ε(r)

≤

(

−
1

λ
+

1

2γ

)

log r

(

µ(B(x, r))
1

dµ(x)+ε

)λdµ(x)

3γ

r−ε(r)

+

(

µ(B(x, r))−1+ε +
1

λ
log r

)

µ(B(x, r))r−ε(r)

≤

[

µ(B(x, r))
λdµ(x)

3γ(dµ(x)+ε) + µ(B(x, r))ε

]

r−2ε(r)

for all sufficiently small r > 0. Since dµ(x) > 0 for µ-almost every x ∈ W ,
this readily implies that

lim
r→0

log µ(Aε(x, r))

log µ(B(x, r))
≥ 1 + min

{
λdµ(x)

3γ(dµ(x) + ε)
, ε

}

> 1

for µ-almost every x ∈ W , and thus the measure µ has long return time.
The desired statement follows now immediately from Proposition 11. �

Proof of Theorem 4. Let Z be a (finite) Markov partition of X (with respect
to the map T ). Clearly Hµ(Z) < ∞.

We want to verify the remaining hypotheses in Theorem 5. Under the
assumptions in the theorem, each equilibrium measure of a Hölder continu-
ous function possesses the Gibbs property, and thus there exists a constant
κ > 0 such that

κ−1µ(Zn(x))µ(Zm(T nx)) ≤ µ(Zn+m(x)) ≤ κµ(Zn(x))µ(Zm(T nx))

for every n, m ∈ N and x ∈ X. In particular hypothesis 1 in Theorem 5
holds with

λ < − sup
x∈X

lim
n→∞

1

n
log‖(dxT )−1‖.

Since T is expanding the diameter of Zn converges exponentially fast to
zero, and hypothesis 2 holds. Hypothesis 3 follows from Proposition 16 in
Appendix A and the discussion thereafter. The desired result follows now
immediately from Theorem 5. �
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5.3. Proofs of the results in Section 1.

Proof of Theorem 1. Each toral endomorphism preserves the Lebesgue mea-
sure λ in T

d, and dµ(x) = dµ(x) = d for every x ∈ T
d. The statement is

thus an immediate consequence of Theorem 4. �

Proof of Theorem 2. We want to apply Theorem 5. Consider the T -invariant
ergodic probability measure µ defined in (13). Let Z be the partition into
intervals In = ( 1

n+1 , 1
n) for each n ∈ N. One can easily verify that Hµ(Z) <

∞ and that supZ∈Zn
diamZ tends exponentially fast to zero as n → ∞.

It is well known that there exists ∆ > 0 such that

∆−1|(T n)′(y)| ≤ |(T n)′(x)| ≤ ∆|(T n)′(y)|

for every x ∈ (0, 1), n ∈ N, and y ∈ Zn(x). Furthermore, we have T nZn(x) =
(0, 1) for each x ∈ (0, 1) and each n ∈ N. Using this information it is
straightforward to show that there exists a constant Γ > 0 such that

Γ−1 ≤ µ(Zn(x))|(T n)′(x)| ≤ Γ

for every x ∈ (0, 1) and n ∈ N. This guarantees that the inequality (10)
holds with κ = Γ3.

It remains to verify hypothesis 3 in Theorem 5. Using the invariance of
µ we obtain

∑

n>0

µ({x ∈ (0, 1) : d(T nx, {0, 1}) < e−n}) =

=
∑

n>0

µ([0, e−n] ∪ [1 − e−n, 1]) < ∞.

By the Borel–Cantelli lemma we conclude that for µ-almost every x ∈ (0, 1)
we have d(T nx, ∂T nZn(x)) ≥ e−n for all sufficiently large n ∈ N. Therefore
for µ-almost every x ∈ (0, 1) we have

d(x, ∂Zn(x)) ≥ e−n(∆|(T n)′(x)|)−1 (50)

for all sufficiently large n ∈ N. By Birkhoff’s ergodic theorem we have

λ
def
=

∫ 1

0
log|T ′| dµ = lim

n→∞

1

n
log |(T n)′(x)| < ∞

for µ-almost every x ∈ (0, 1). Choose γ > 1 + λ. By (50) we obtain
B(x, e−γn) ⊂ Zn(x) for µ-almost every x ∈ (0, 1) and all sufficiently large
n ∈ N. We have thus verified all the hypothesis in Theorem 5.

Since the measure µ is equivalent to Lebesgue, we have dµ(x) = dµ(x) =
1 for every x ∈ (0, 1). The desired result follows now immediately from
Theorem 5. �

Proof of Theorem 3. The desired statement is contained in Theorem 9. �

Appendix A. Neighborhood of Markov partitions

In this appendix we study the boundaries of Markov partitions for hy-
perbolic sets. Let R be such a partition. It is well known that ∂R has
zero measure with respect to any equilibrium measure. This is a simple
consequence of the fact that ∂R is a closed nowhere dense set.
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On the other hand, in Section 5 above we require an estimate on the
measure of the ε-neighborhood of ∂R (see the proofs of Theorem 10 and
Lemma 3). More precisely, in Section 4 we started with a hyperbolic set
and constructed with an induction procedure a system having countably
many components. It is essential for us to estimate the measure of the
neighborhoods of the singularities, which in fact is related to the measure
of the boundary of the original Markov partition for the hyperbolic set.

While such an estimate may be easier to obtain when each element of R
has a piecewise smooth boundary (such as in the case of hyperbolic toral
automorphisms of the 2-torus), it is well known that Markov partitions may
have a very complicated boundary. In particular, it was first discovered
by Bowen in [4] that ∂R need not be piecewise smooth (Bowen considered
hyperbolic toral automorphisms of the 3-torus).

Nevertheless, we are able to prove below that the measure of the ε-
neighborhood of the boundary of a Markov partition (for repellers or lo-
cally maximal hyperbolic sets, and arbitrary Gibbs measures) is at most
polynomial in ε. We also consider expansive homeomorphisms with the
specification property. The proofs rely entirely on the thermodynamic for-
malism.

Let f : X → X be a homeomorphism of the compact metric space (X, d).
For each n ∈ N we define a new distance dn on X by

dn(x, y) = max{d(f kx, fky) : k = 0, . . . , n − 1}.

We denote by Bn(x, δ) the ball centered at x of radius δ with respect to
the distance dn. Given a function ϕ : X → R and n ∈ N we define the new
function

ϕn(x) = ϕ(x) + · · · + ϕ(fn−1x).

Let V (X) be the family of continuous functions with bounded variation, i.e.
the continuous functions ϕ : X → R such that there exist ε > 0 and δ > 0
such that for each n ∈ N we have

|ϕn(x) − ϕn(y)| ≤ ε whenever dn(x, y) ≤ δ.

When f is an expansive homeomorphism with the specification property,
each function ϕ ∈ V (X) has a unique equilibrium measure that we shall
denote by µϕ. We denote by η(f) the supremum of the expansivity constants
for f . We shall denote the topological pressure of a function ϕ with respect
to the dynamical system f |X by PX(ϕ). Since we only need to consider
compact f -invariant sets we shall use Ruelle’s classical definition.

Theorem 14. Let f : X → X be an expansive homeomorphism with the
specification property of the compact metric space X. For each η < 8η(f),
each ϕ ∈ V (X), and each compact f -invariant set K ⊂ X with K 6= X
there exist c > 0 and ν > 0 such that if n ∈ N then

µϕ({x ∈ X : dn(x,K) < η}) ≤ ce−νn. (51)

Proof. We first show that PK(ϕ) < PX(ϕ). Since K is a compact f -invariant
set, f |K is expansive, and ϕ|K ∈ V (K), there exists an equilibrium measure
µK of the function ϕ|K with respect to the dynamical system f |K . Clearly
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suppµK ⊂ K. By the specification property, we have suppµϕ = X, and
hence µK 6= µϕ. By the uniqueness of the equilibrium measure µϕ we obtain

PK(ϕ) = hµK
(f) +

∫

X
ϕdµK < PX(ϕ).

Let En ⊂ K be any set such that

K ⊂
⋃

y∈En

Bn(y, η). (52)

Set Kn = {x ∈ X : dn(x,K) < η}. It is clear that

Kn ⊂
⋃

y∈En

Bn(y, 2η).

It is well known (see for example [5, Lemma 20.3.4]) that

µ(Bn(y, 2η)) ≤ ζ exp[−nPX(ϕ) + ϕn(y)]

for some constant ζ > 0 independent of n ∈ N and y ∈ X, and thus

µ(Kn) ≤
∑

y∈En

µ(Bn(y, 2η)) ≤ ζ
∑

y∈En

e−nPX(ϕ)+ϕn(y).

Since f |K is expansive we have

PK(ϕ) = lim
n→∞

1

n
log inf

En

∑

y∈En

eϕn(y),

where the infimum is taken over all sets En for which (52) holds. Therefore

lim
n→∞

1

n
log µ(Kn) ≤ PK(ϕ) − PX(ϕ) < 0.

This completes the proof of the theorem. �

It follows from the proof of the theorem that it is possible to take any
constant ν > 0 in (51) such that ν < PX(ϕ) − PK(ϕ).

Let Λ be a hyperbolic set of a diffeomorphism f , and consider a Markov
partition R = {R1, . . . , Rp} of Λ. The boundary of R is the union of the
stable boundary

∂sR =

p
⋃

i=1

{x ∈ ∂Ri : W u
ε (x) ∩ int Ri 6= ∅},

and the unstable boundary

∂uR =

p
⋃

i=1

{x ∈ ∂Ri : W s
ε (x) ∩ int Ri 6= ∅}.

Moreover,

f(∂sR) ⊂ ∂sR and f−1(∂uR) ⊂ ∂uR.

The sets ∂sR, ∂uR, and ∂R = ∂sR ∪ ∂uR are nowhere dense, and hence
they have zero measure with respect to any ergodic invariant measure with
full support.

The following statement shows that the ε-neighborhood of ∂R is at most
polynomial in ε.
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Theorem 15. Let Λ be a compact locally maximal hyperbolic set of a topo-
logically mixing C1+α diffeomorphism f , and µ an equilibrium measure of
a Hölder continuous function. For any Markov partition R of Λ there exist
constants c > 0 and ν > 0 such that if ε > 0 then

µ({x ∈ Λ: d(x, ∂R) < ε}) ≤ cεν . (53)

Proof. Observe that

dn(x, y) ≤ max{‖dxf‖ : x ∈ Λ}nd(x, y) (54)

for every x, y ∈ Λ. Since ϕ is Hölder continuous, we have ϕ ∈ V (X). For any
compact set K ⊂ Λ such that f(K) ⊂ K 6= Λ, it follows from Theorem 14
and (54) that there exist constants c = c(f,K) > 0 and ν = ν(f,K) > 0
such that

µ({x ∈ Λ: d(x,K) < ε}) ≤ c(f,K)εν(f,K). (55)

Using (55) with K = ∂sR we obtain

µ({x ∈ Λ: d(x, ∂sR) < ε}) ≤ c(f, ∂sR)εν(f,∂sR).

Similarly, using (55) with K = ∂uR with respect to f−1 (note that equilib-
rium measures of a function ϕ with respect to f and to f−1 coincide) we
obtain

µ({x ∈ Λ: d(x, ∂uR) < ε}) ≤ c(f−1, ∂uR)εν(f−1 ,∂uR).

Furthermore, we have

{x ∈ Λ: d(x, ∂R) < ε} ⊂ {x ∈ Λ: d(x, ∂sR) < ε} ∪ {x ∈ Λ: d(x, ∂uR) < ε}.

The desired statement follows immediately from this inclusion. �

Set L = max{‖dxf‖ : x ∈ Λ}. It follows from the proof of Theorem 15
that it is possible to take any constant ν > 0 in (53) such that

ν <
PΛ(ϕ) − PI(∂R)(ϕ)

log L
(56)

for some potential ϕ of µ, where

I(∂R) =
⋃

n∈Z

fn(∂R)

is the invariant hull of ∂R. When µ is the measure of maximal entropy one
can set ϕ = 0, and thus the inequality in (56) becomes

ν <
h(f |Λ) − h(f |I(∂R))

log L
=

h(f |Λ) − h(f |∂R)

log L
.

Since ∂R is not an invariant set, the entropy h(f |∂R) must be computed
using Pesin’s definition of topological entropy as a Carathéodory dimension
characteristic. Since ∂R is nowhere dense it always avoids some cylinder,
and thus h(f |∂R) < h(f |Λ).

We now consider the neighborhood of the iterated Markov partition Rn =
∨n−1

k=0 f−kR.

Proposition 16. Under the assumptions of Theorem 15, if σ > L then

µ({x ∈ Λ: d(x, ∂Rn) < 1/σn}) ≤ c(L/σ)νn.
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Proof. Since L is a Lipschitz constant for f , if d(x, ∂Rn) < 1/σn then

d(fkx, ∂R) < Lk/σn

for some k < n. By Theorem 15 we conclude that

µ({x ∈ Λ: d(x, ∂Rn) < 1/σn}) ≤
∑

k<n

µ({x ∈ Λ: d(fkx, ∂R) < Lk/σn})

≤
∑

k<n

c(Lk/σn)ν

≤ (L/σ)νn.

This completes the proof. �

With a little more care we could have shown (and this is optimal) that if
λ denotes the largest Lyapunov exponent (with respect to the measure µ),
then σ can be taken arbitrarily close to eλ.

With straightforward modifications one can also establish the statements
in Theorem 15 and Proposition 16 (as well as those described below) in the
case of repellers.

A direct application of Proposition 16 gives

∑

n>0

µ({x ∈ Λ: d(x, ∂Rn) < 1/σn}) ≤
c(L/σ)ν

1 − (L/σ)ν
< ∞,

and the Borel–Cantelli lemma shows that for µ-almost every x ∈ Λ, we have
B(x, σ−n) ∩ Λ ⊂ Rn(x) for all sufficiently large n ∈ N. Here Rn(x) is the
element of Rn containing x. This shows that hypothesis 3 in Theorem 5 is
always satisfied when Z = R is a Markov partition of a hyperbolic set.

Proposition 16 allows us to construct explicit open neighborhoods of
I(∂R) with arbitrarily small measure. For example, if R is a Markov parti-
tion of a repeller then the open set

⋃

n∈N

{x ∈ Λ: d(x, ∂Rn) < 1/σn}

contains I(∂R) and has µ-measure at most c(L/σ)ν/[1 − (L/σ)ν ].

References

1. L. Barreira, Ya. Pesin and J. Schmeling, Dimension and product structure of hyperbolic

measures, Ann. of Math. (2) 149 (1999), 755–783.
2. L. Barreira and B. Saussol, Hausdorff dimension of measures via Poincaré recurrence,
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