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1 Introduction

The study of recurrence is at the hearth of ergodic theory. The first rigor-
ous result in this field is probably the famous Poincaré’s recurrence theorem,
which states that given the dynamical system (X,T, µ) where T is a mea-
surable map on X and µ a T−invariant probability measure, then µ−almost
every point in each measurable subset A ⊂ X comes back to A an infinite
number of times.

Poincaré’s result deals with a measurable recurrence propriety in the sense
that the measure plays a fundamental role. But there are more genuine
topological recurrence proprieties, like , for example, the density of all the
orbits for irrational rotations. In this paper we present and discuss two
problems which are related to these two aspects of recurrence, the measurable
and the topological ones. We will get some precise statistics of the return
time of typical orbits in a given neighborhood, while in the second case we
will

get some global informations on the asymptotic distribution of orbits
through the definition of a “dimension”. The construction of this dimension
uses explicitly the shortest return time in a given set and is a reminiscent of
the way of constructing Haussdorf’s dimension : this explains the attribute
fractal in the title of our note, but probably there are deeper reasons. We
hope that this dimension could be used as a statistical indicator of chaos and
complexity.

We now define the fundamental quantities investigated in this paper.
Take U a subset of X and define for each x ∈ U the first return time into U
as :

τU(x) = inf
{

k > 0
∣∣∣ T kx ∈ U

}
.

The Poincaré recurrence of a point τU(x) as defined above leads to the first
return time of a set : it is the infimum over all return tim es of the points of
the set, and we denote it

τ(U) = inf
x∈U

τU(x).

2 Poisson statistics for the return time

We will consider as above a dynamical system (X, T, µ) where X is a (not
necessarily compact) metric space, T a measurable application on X and µ a
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probability T−invariant Borel measure. A refinement of Poincaré’s theorem
can be found if we assume that µ is T−ergodic. Under this hypothesis, take
U a measurable subset of X. Then the function τU : U → N is measurable.
If we introduc e the induced probability measure µU defined by µU =

µ|U
µ(U)

,

then the Kac Lemma [20] states that∫
U

τU(x)dµU =
1

µ(U)
,

whenever µ(U) > 0. Suppose now that Uε(z) is a neighborhood of z ∈ X
with diameter ε. Define the random variable µ(Uε)τUε(z) (we will call it
the normalized return time). Next results assert that, under very general
conditions, the normalized return time converges in law, with respect to the
measure µε ≡ µUε(z), to a mean one exponential random variable, and that
for µ−almost every z ∈ X, precisely :

µε

{
x ∈ Uε

∣∣∣ µ(Uε)τUε(x) > t
}
−−→
ε→0

e−t. (1)

This kind of result was first proved for Axiom-A systems in a series of inde-
pendent papers by Pitskel [22], Hirata [13], Collet [7]. Actually, these authors
proved a stronger result : in fact they consider the sequence of successive nor-
malized return times in τUε and proved that this sequence converges to the
Poisson point process in finite-dimensional distribution when ε → 0.

We want here to give the sketch of a proof which shows how naturally
the exponential law for the statistic of the first return time arises.

Sketch of proof. Let t > 0 be fixed, U ⊂ X, τ = τ(U) and n = n(U) > 0
which will be fi xed later. We want to estimate the quantity

µU

{
x ∈ U

∣∣∣ n(U)τU(x) > t
}

. (2)

This can be rewritten as

µU(T−1U c ∩ · · · ∩ T−t/nU c) = µU(T−τU c ∩ · · · ∩ T−t/nU c).

Now we suppose (H1) that τ is big enough, and that (H2) the events T−τU c, ...,
T−t/cU c are nearly independent, which yields

(2) ≈ µ(T−τU c ∩ · · · ∩ T−t/nU c) ≈ (1− µ(U))(t/n)−τ .
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we assume now (H3) that t/n(U) − τ(U) tends to infinity as µ(U) goes to
zero,

(2) ≈ exp

(
−µ(U)

n(U)
t + µ(U)τ(U)

)
.

The exponential law appears now if we take the normalization n(U) = µ(U),
and (H3) now reads µ(U)τ(U) → 0 as µ(U) vanishes.

Besides the statistics of return times one could equivalently study the process
of the successive entrance times into a region Ω and prove under some condi-
tions that, when times are correctly rescaled, the process converges in law to
a Poisson point process [8]. In some cases it is even possible to estimate the
rate of this convergence [12], and it is a promising field for further researches.

The Poisson statistics for the first return times was successively extended
by Hirata [14] to a large class of systems verifying what he called the “self-
mixing” conditions. Unfortunately these conditions do not hold for non-
uniformly hyperbolic dynamical systems. Nevertheless the techniques intro-
duced in [14] can be adapted to this kind of dynamical system. In particular
we will consider the well known one parameter family of one-dimensional
intermittent maps :

T (x) =

{
x(1 + 2αxα); ∀x ∈ [0, 1/2[,

2x− 1; ∀x ∈ [1/2, 1].

When the parameter α > 1, T has a σ−finite absolutely continuous invari-
ant measure : in these cases it is possible to prove that the sequence of
successive (suitably normalized) entrance times in a small neighborhood of
the neutral fixed point converges to a Poisson point process provided the
system is equipped with an absolutely continuous distribution with density
of bounded variations.

We instead consider the case 0 < α < 1, for which we construct in the
paper [17] an absolute continuous invariant probability measure by using a
new technique based on a stochastic perturbation of the Perron-Froebenius
operator.

We also proved polynomial decay of correlations for Hölder continuous
observab les. The case 0 < α < 1 is quite different if compared with the case
of the σ−finite measure, especially for the techniques used to control the
disto rtion of the application. Moreover, strictly speaking, our analysis will
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be local arou nd almost any point and not only restricted to a neighborhood
of the neutral fixed point.

Let us now consider the infinite Markov partition ξ generated by the left
preimages of 1 and consider the dynamical partitions ξn ≡

∨n−1
i=0 T−1ξ. If we

now fix a point z ∈ [0, 1] and denote by Un the member of ξn containing z
and by µn ≡ µUn

µ(Un)
, we could ask if the propriety 1 follows. This is just the

content of the next theorem.

Theorem 2.1. For µ−almost every z ∈ [0, 1] and ∀t > 0 we have :

µn

{
x ∈ Un

∣∣∣ µ(Un)τUn > t
}
−−−→
n→∞

e−t.

The proof of this theorem heavily relies on the techniques developed in
[17] for decay of correlations. (Laplace transform technique are used in the
rigorous proof).

3 Dimensional characteristic for Poincaré re-

currence

In this section, we present a new approach originally introduced by Afraimovich
[1] for minimal sets, in order to characterize topological recurrence. We will
present a series of preliminary results, some of which apply to general dynam-
ical systems, others to specific class of hyperbolic systems : the main result is
the possibility to define a “dimension” (in the fractal language) which turns
out to be an invariant for topological conjugation.

This dimension reveals to be a good indicator to distinguish systems
of zero topological entropy. On the contrary, in the case of some positive
entropy systems, it coincides with topological entropy (for subshifts of finite
type and β−shifts for example). It is a matter of investigation whether the
identification with topological entropy persists for more complicated chaotic
systems. We will present some numerical evidence in this direction at the
end of this chapter.

3.1 Construction of the dimension

We are using the well known Caratheodory’s construction, for which Hauss-
dorf’s measures are special cases. We will work on a compact metric space
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(X, d) together with a continuous transformation T , which form a dynamical
system (X, T ).

For any A ⊂ X, we define RA(A, ε) the collection of all countable covers
of A by subsets of X with diameters less than ε (the superscript A above
R stands for arbitrary type of set that form the cover ). In the same way,
we denote by RO and RF the restriction of the precedent collection to cover
with respectively open and closed sets.

Then we define a pre-measure (or gauge function) Φ(U) : 2X → R
+ with

the propriety that Φ(∅) = 0.
Now we define 1

MΦ
α (A, ε) = inf

R∈R(A,ε)

∑
U∈R

Φα(U). (3)

(we do not precise here if we use covers by arbitrary sets, open sets or closed
sets.) It is easy to show that MΦ

α is a family of outer measure with the
parameter α.

The idea of Afraimovich was to apply this construction in the case where
Φ(U) is a decreasing function of τ(U), i.e. Φ(U) = g ◦ τ(U) where g : N → R

is decreasing and converge to zero. We will also call this function a gauge
function. Typically, we will set Φ(U) = e−τ(U) or Φ(U) = 1

τ(U)
, the choice

being determined by the type of growth rate of Poincaré recurrence with
respect to the diameter in our system. From now on, we will implicitly use
one of these pre-measure.

Theorem 3.1 ([21]). The outer measure for Poincaré recurrence MA,Φ
α con-

structed with arbitrary covers is concentrated on periodic points. The outer
measures for Poincaré recurrence MO,Φ

α and MF,Φ
α constructed respectively

with open and closed covers, coincide on closed sets.

Remark. We recall that in the case of Haussdorf ’s measures (obtained when
we set Φ(U) = |U |), the three constructions (arbitrary, open and closed cov-
ers) coincide on any borelian sets [23].

The first part of this theorem results from a very simple construction, in
which we construct covers of the space minus its periodic points with sets

1a slightly more general definition would be to, instead of put Φα in the sum, rather
use a one parameter family of pre-measure Φα.
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that all have infinite Poincaré recurrence 2 ! (but usually these sets cannot be
borelian . . . ) The second part is due to a nice propriety of the pre-measure
Φ and comes from a more general theorem that we prove in [21].

This indicate that the choice of open or closed covers is natural, since
otherwise we would obtain trivial results.

We now take the limit ε → 0 :

mΦ
α(A) = lim

ε→0
MΦ

α (A, ε). (4)

The set function mΦ
α(A) is a family of Borelian measure (as shown in [10]).

If Φ(U) goes uniformly to zero when |U | goes to zero 3 then we meet all
the conditions of the classical Carathéodory’s construction. It is well known,
then, that there exists a unique transition exponent αΦ

c (A) such that

mΦ
α(A) =

{
∞ if α < αΦ

c (A)

0 if α > αΦ
c (A)

It is true with Haussdorf’s measures, and Afraimovich has proved the same
result with Poincaré recurrence if the system is minimal4 [1].

However, we will consider cases where the transition point is not so net,
and still we can define a critical exponent without any ambiguity (see Figure
1). This is possible because the set function mΦ

α(A) is non-increasing with
α. So, we define the critical exponent of a set A ⊂ X as

αΦ
c (A) = sup

{
α > 0

∣∣∣ mΦ
α(A) = ∞

}
. (5)

It is always well defined and positive if we adopt the convention that sup ∅ =
0. We will call this dimension-like characteristic either dimension for Poincaré
recurrence, either Afraimovich-Pesin (AP)’s dimension.

2To give an idea : suppose that the transformation T is invertible, then we can construct
a set U by taking one point (and no more) of each non-periodic orbit of the system (remark
that we need to use the Axiom of Choice to do that). One can check that τ(U) = ∞, but
even more : ∀k, τ(T kU) = ∞ . Thus, the countable family of set Uk ≡ T kU is a cover of
the space minus the periodic points, whose members have all infinite Poincaré recurrence.
Because of Poincaré’s recurrence theorem, these sets cannot have positive measure for any
invariant measure, and thus for any invariant non-atomic probability measure they cannot
be all measurable .

3more preci sely if ∀ε > 0, ∃δ such that |U | < δ ⇒ Φ(U) < ε.
4a dynamical system is minimal if each orbit is dense in the space.
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Figure 1. On the left, the transition is net, on the right it is not,
however we are able to define a unique critical exponent αc in both
cases.

3.2 Some proprieties of Afraimovich-Pesin’s dimension

Theorem 3.2. The borelian measure mΦ
α and the dimension αΦ

c , constructed
with open or closed covers, are invariant under topological conjugation, i.e.
if (X, d, T ) and (X ′, d′, T ′) are two continuous dynamical system on metric
spaces and if there exists a homeomorphism h : X → X ′ such that T =
h−1 ◦ T ′ ◦ h, then for any A ⊂ X, mΦ

α(A) = m
′Φ
α (h(A)).

We would like to remark that this result is important since it allows us
to say that AP’s dimension is a topological propriety, i.e. two dynamical
systems that are similar from a certain (topological) point of view will have
the same AP’s dimension.

Topological entropy is a tool that allows us to classify systems that are
similar. The problem is that it cannot be used to distinguish systems with
zero topological entropy although they may have very different behavior,
which show the need to find other tools. AP’s dimension with a non-
exponential gauge function (e.g. Φ(U) = 1

τ(U)
) is such a tool.

It is interesting to note that for some classes of minimal sets with zero
topological entropy, some topological invariant numbers have been recently
proposed : for example the symbolic (or topological) complexity i̧teferenczi,
and the covering number [6]. It would be interesting to compare them to
AP’s dimension.

Proof of Theorem 3.2. We recall that we supposed from the beginning that
X is compact, so that h is uniformly continuous. We write the uniform
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continuity

∀δ > 0,∃ε(δ) such that ∀x, y ∈ X, if d(x, y) < ε(δ)
then d′(h(x), h(y)) < δ.

Let A ⊂ X and A′ = h(A) ⊂ X ′. Let R′(A′, δ) be the set of all covers
R′ of A′ with sets of diameter less than δ. Let h(R(A, ε(δ))) be the set of
all transformed covers h(R) ≡ {h(U), U ∈ R} of A with sets of diameter
less than ε(δ). Then R′(A′, δ) contains h(R(A, ε(δ))). Moreover, topological
conjugation implies obviously that τ(U) = τ ′(h(U)) for any set U ⊂ X, thus
we have Φ(U) = Φ′(h(U)). This shows that

MΦ
α (A, ε(δ)) = inf

R∈R(A,ε(δ))

∑
U∈R

Φ(U)α ≥ inf
R′∈R′(A′,δ)

∑
U ′∈R′

Φ′(U ′)α = M
′Φ′

α (A′, δ).

Then, taking the limit δ → 0 (hence ε → 0), we obtain mΦ
α(A) ≥ m

′Φ′
α (A′).

Now, by reversing A and A′’s rules, one can apply the same idea to obtain
the opposite inequality, which yields

mΦ
α(A) = m

′Φ
α (A′).

It is then obvious that αΦ
c (A) = α

′Φ′
c (A′).

The next theorem establishes other proprieties of AP’s dimension, the
most important being the one that says that AP’s dimension over X coincide
with AP’s dimension restricted to the set of non-wandering points5, that is
exactly what happens for the topological entropy.

Theorem 3.3. Dimension for Poincaré recurrence has the following propri-
eties :

1. if we use the pre-measure Φ(U) = e−τ(U), then for any k > 0, we have
αΦ

c (T k, X) ≤ kαΦ
c (T, X),

2. if we use the pre-measure Φ(U) = 1
τ(U)

, then for any k > 0, we have

αΦ
c (T k, X) ≤ αΦ

c (T,X),

3. if T is invertible, then mΦ
α is an invariant measure.

4. αΦ
c (T,X) = αΦ

c (T,NW ) = αΦ
c (T|NW , NW ), where NW denotes the set

of non-wandering points.

5a point x is non-wandering if any open ne ighborhood V has a finite Poincaré recur-
rence, i.e. τ(V ) < ∞.
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5. if we use the pre-measure Φ(U) = e−τ(U), there is the lower-bound

αΦ
c (X) ≥ limk→∞

1

k
log #Per(k),

where #Per(k) denotes the number of periodic points with smallest pe-
riod k.

Remark. We point out that these results are true with open and closed cov-
ers. We proved it in [21]. There are examples of diffeomorphisms of the unit
disk where strict inequality holds in the two first points of this theorem. How-
ever, these constructions depend heavily on the combinatorics of the periodic
points, and these maps are somewhat unnatural. That is why we conjecture
that fo r a large class of dynamical systems the equality holds. We recall that
for topological entropy, the following equality holds :

htop(T
k) = khtop(T ).

The last point gives a lower-bound to AP’s dimension with the periodic
points. We recall that there exist a similar lower-bound for topological entropy
with expansive map ([24], p178) :

htop ≥ limk→∞
1

k
log #Fix(k),

where #Fix(k) denotes the number of fixed point of T k.

3.3 Application of AP’s dimension to classical dynam-
ical systems

3.3.1 Systems with positive topological entropy

We now state some results about AP’s dimension in simple cases, as subshifts
of finite type and β−shift. For these systems, AP’s dimension with exponen-
tial gauge function (Φ(U) = e−τ(U)) and topological entropy are equal.

These systems are symbolic systems. We will work on the space Ω =
{0, . . . , p− 1}N of all semi-infinite sequences ω = ω1ω2 . . . , with the product
topology. We consider the shift to the left σ such that σω1ω2ω3 . . . = ω2ω3 . . . .
Subshifts of finite type and β−shift are restrictions of the shift on some in-
variant subsets of Ω. See [18, 19] for a complete description of these systems.
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Many dynamical systems are topologically conjugate to subshifts of finite
type, whereas the β−transformation Tβ(x) = βx mod 1 is conjugate to the
β−shift [18].

We now state our results.

Theorem 3.4. For subshifts of finite type and β−shifts, AP’s dimension as
defined above, with the pre-measure Φ(U) = e−τ(U), is equal to topological
entropy.

However, one can produce simple examples where there is not equality,
the most trivial one being the identity transformation, for which topological
entropy is zero whereas AP’s dimension is infinite (because of the presence
of an infinite number of fixed point), whichever gauge function one choose.
Other examples are the one for which strict inequality holds in the first point
of Theorem 3.3. We believe that topological entropy is a lower bound for AP’s
dimension (with exponential gauge function) and furthermore that equality
holds for systems with strong chaotic proprieties.

3.3.2 Systems with zero topological entropy

AP’s dimension for these systems is even more interesting to study, since
it might let us to distinguish between them, whereas topological entropy
cannot. We choose then a hyperbolic gauge function Φ(U) = 1

τ(U)
.

The examples studied by Afraimovich are irrational rotations on the circle
and Denjoy example [1]. In these cases, he obtained a dimension following
the diophantine characteristic of the rotation number. (However, we have
to point out that for the moment these results are proved only if we restrict
the covers to one by open intervals. Fortunately, in one dimension, the
propriety “the set U is an open interval” is topologically invariant, so that
AP’s dimension defined with covers by intervals is still a topological invariant
number. ) This result is very interesting because Auslander and Katznelson
[4] have proved that any transitive circle map without periodic points is
topologically conjugate to an irrational rotation, and hence they will have
the same AP’s dimension.

3.4 Numerical results with the logistic map

The aim of this section is to show that it is possible and actually quite easy
to perform numerical computation of AP’s dimension. We computed the
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Figure 2. On the left, AP’s dimension and topological entropy for
logistic map Tµ(x) = µx(1−x). On the right, distribution of first return
times for the same transformation with µ = 3.9 : it shows log Nε(k)
versus k for ε = 2−n, n = 1, 2, . . . , 20. We can see that Nε(k) tends to
some limit distribution N(k) from below.

dimension on map of the interval that is not conjugated to some subshifts of
finite type so that the result is not trivial, but for which we have many reasons
to believe that we have equality between AP’s dimension and topological
entropy.

We have chosen the well known logistic map : it is the transformation
Tµ : R → R :

Tµ(x) = µx(1− x).

For any µ ≥ 4, it is topologically conjugated to the shift transformation on
the space {0, 1}N, therefore we can affirm that AP’s dimension in this case
is αc = htop = log 2.

Thus we chose to consider some value µ < 4. We point out that the
logistic map is a continuous map of the interval with negative Schwartzian
derivative, so it follows from a Theorem ([ALM], p.219-220) that

htop(Tµ) = limk→∞
1

k
log #Fix(k) = limk→∞

1

k
log #Per(k).

We now explain the technique that has been used to perform the calcula-
tion : Let’s consider Rε a cover of the space X with sets of diameter ε. We
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denote by Nε(k) the number of element U of this cover for which τ(U) = k.
It allows us to bound the sum (3) with

Mα(X, ε) ≤
∞∑

k=1

Nε(k)e−αk.

If we note N(k) = supε>0 Nε(k), then it is possible to prove that the critical
exponent αc is bounded by

limk→∞
1

k
log #Per(k) ≤ αc ≤ limk→∞

1

k
log N(k).

The first inequality is actually always verified (provided T is continuous).
Thus the numerical experimentation shows that for the logistic map N(k) ∝
#Per(k) and therefore that AP’s dimension and topological entropy coincide.
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