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POINCARÉ RECURRENCE FOR OBSERVATIONS

JÉRÔME ROUSSEAU AND BENOÎT SAUSSOL

Abstract. A high dimensional dynamical system is often studied by experimentalists through
the measurement of a relatively low number of different quantities, called an observation. Fol-

lowing this idea and in the continuity of Boshernitzan’s work, for a measure preserving system,

we study Poincaré recurrence for the observation. The link between the return time for the
observation and the Hausdorff dimension of the image of the invariant measure is considered.

We prove that when the decay of correlations is super polynomial, the recurrence rates for the

observations and the pointwise dimensions relatively to the push-forward are equal.

1. Introduction

The famous Zermelo paradox reveals that the classical Poincaré recurrence theorem has some
implications out of physical sense. Indeed, if we start with all the particles in one side of a
box, nobody will ever see all the particles coming back in one side of our box at the same time.
Nevertheless, if we focus on a few number of these particles, this event will appear after a reasonable
time. In the same way, when we study a high dimensional dynamical system we might not know
all the aspects of the evolution but only a part or certain quantities of the system. This might
be due to the difficulty to study a high dimensional system, but also to the lack of interest of an
over-detailed description.

Recently, Ott and York tried to elaborate some Platonic formalism of dynamical systems [11].
The reality, the dynamical system (X,T, µ), is only known through a measurement or observation,
that is a function defined on X taking values in (typically) a lower dimensional space. The following
result by Boshernitzan [4] about Poincaré recurrence falls in this frame. If we have a measure
preserving dynamical system (X,T, µ) and an observable f from X to a metric space (Y, d) then
whenever the α-dimensional Hausdorff measure is σ-finite on Y we have

(1) lim inf
n→∞

n1/αd (f(x), f(Tnx)) <∞ for µ-almost every x.

The main aim of this paper is to prove a refinement of (1) and a generalization of [2, 12] for
recurrence rates for observations.

In Section 2, we give the precise definition of the recurrence rates for the observations and state
an upper bound in term of dimension (Theorem 2 which is proved in Section 3), then under an
additional assumption we state our main result (Theorem 5 which is proved in Section 4), and
finally, we analyze in the case of the Lebesgue measure the existence of the pointwise dimension
for its smooth image (Theorem 9 which is proved in Section 5).

2. Statement of the results

2.1. Definitions and general inequality. Let (X,A, µ, T ) be a measure preserving system
(m.p.s.) i.e. A is a σ-algebra, µ is a measure on (X,A) with µ(X) = 1 and µ is invariant by
T (i.e µ(T−1A) = µ(A) for all A ∈ A) where T : X → X.
Let f : X → Y be a function, called observable (we will specify the space X and Y later). We
introduce the return time for the observation and its associated recurrence rates.
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Definition 1. Let f : X → Y be a measurable function, we define for x ∈ X the return time for
the observation:

τfr (x) := inf
{
k ∈ N∗ : f(T kx) ∈ B (f(x), r)

}
where B(x, r) is the ball centered in x with radius r. We then define the lower and upper recurrence
rate for the observation:

Rfi (x) := lim inf
r→0

log τfr (x)
− log r

R
f

i (x) := lim sup
r→0

log τfr (x)
− log r

.

We also define for p ∈ N the p-non-instantaneous return time for the observation:

τfr,p(x) := inf
{
k > p : f(T kx) ∈ B (f(x), r)

}
.

Then we define the non-instantaneous lower and upper recurrence rates for the observation:

Rf (x) := lim
p→∞

lim inf
r→0

log τfr,p(x)
− log r

R
f
(x) := lim

p→∞
lim sup
r→0

log τfr,p(x)
− log r

.

Whenever Rf (x) = R
f
(x) we denote by Rf (x) the value of the limit.

The lower and upper pointwise or local dimension of a Borel probability measure ν on Y at a
point y ∈ Y are defined by

dν(y) = lim
r→0

log ν (B (y, r))
log r

and dν(y) = lim
r→0

log ν (B (y, r))
log r

.

The pushforward measure f∗µ(.) := µ(f−1(.)) is a probability measure on Y and we define the
lower and upper pointwise dimension for the observations with respect to µ at a point x ∈ X by

dfµ(x) = df∗µ(f(x)) and d
f

µ(x) = df∗µ(f(x)).

If they are equal, we denote by dfµ(x) the common value.

Theorem 2. Let (X,A, µ, T ) be a m.p.s. Consider a measurable observable f : X → Y = RN .
Then

Rf (x) ≤ dfµ(x) and R
f
(x) ≤ dfµ(x)

for µ-almost every x ∈ X.

This result is satisfactory in the sense that it holds for any dynamical system and observation.
Moreover, under natural assumptions we will show that the equality is true. Still, these inequalities
may be strict, the caricatural example is when T is the identity map.

Example 3. Let (Ω,F ,P) be a probability space together with a P-preserving map θ and Y ⊂ RN
a Borel set. The family (Fω)ω∈Ω is called a random transformation, where for each ω, Fω is
a map from Y to Y such that the map (w, y) → Fω(y) is F × B(RN )-measurable. The map
T : X = Ω × Y → X defined by T (ω, y) = (θω, Fω(y)) is called a skew product transformation.
Let MP(X,T ) be the set of T -invariant probability measure having the marginal P on Ω. For any
µ ∈ MP(X,T ), Theorem 2 applies with f the projection on Y , and gives an upper bound for the
time needed by a typical random orbit Fθkω ◦ ...◦Fθω ◦Fω(y) to come back close to its starting point
y.

2.2. Poincaré recurrence for observations. From now on let us assume that X is a metric
space and A is its Borel σ-algebra. We then can introduce the decay of correlations:

Definition 4. (X,T, µ) has a super-polynomial decay of correlations if, for all φ, ψ Lipschitz
functions from X to R and for all n ∈ N∗, we have:∣∣∣∣∫

X

φ ◦ Tn ψdµ−
∫
X

φdµ

∫
X

ψdµ

∣∣∣∣ ≤ ‖φ‖‖ψ‖θn
with limn→∞ θnn

p = 0 for all p > 0 and where ‖.‖ is the Lipschitz norm.

The main result of our paper is:
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Theorem 5. Let (X,A, µ, T ) be a m.p.s with a super-polynomial decay of correlations. Consider
a Lipschitz observable f : X → Y = RN . Then, we have

Rf (x) = dfµ(x) and R
f
(x) = d

f

µ(x)

for µ-almost every x such that dfµ(x) > 0.

Taking the identity function for f , we recover the result of [2] and [12] under weaker assumptions.
The main assumption of the theorem about decay of correlations is satisfied in a variety of systems
with some hyperbolic behavior and studied in an abundant literature (e.g. [13, 5, 1]).

Definition 6. We say that a probability measure ν is exact dimensional if there exists a constant
dν ∈ R such that

dν(·) = dν(·) = dν almost everywhere.

It is well known that in this case many notion of dimension coincide (see Section 5.1 for details).
In particular the Hausdorff dimension dimH ν satisfies

Proposition 7. If ν is exact dimensional, then

dν(·) = dimH ν almost everywhere.

Corollary 8. Let (X,A, µ, T ) be a m.p.s with a super-polynomial decay of correlations. Consider
a Lipschitz observable f : X → Y = RN . Then, if f∗µ is exact dimensional, we have

Rf (x) = R
f
(x) = dimH f∗µ for µ-almost every x ∈ X.

Remark. We have the equivalence

f∗µ is exact dimensional ⇐⇒ ∃d, dfµ(x) = d
f

µ(x) = d for µ-almost every x ∈ X.

Proof of Corollary 8. If dimH f∗µ = 0, then the conclusion follows from Theorem 2 and Proposi-
tion 7. In the general case, it is just a combination of Theorem 5 and Proposition 7. �

Theorem 5 does not apply to those points where dfµ(x) = 0. When d
f

µ(x) = 0 also, this is not

a restriction because Theorem 2 applies and gives R
f
(x) = Rf (x) = 0. However, the question

remains when d
f

µ(x) 6= dfµ(x) = 0 on a positive measure set. Indeed, the assumptions of Theorem 5
are not strong enough to ensure the almost everywhere existence of the pointwise dimension for
the observations. The following result guaranties the existence for a large class of systems.

Theorem 9. Let f : RM → RN be a C∞ function, let µ be any absolutely continuous measure on
RM . Then, dfµ exists and belongs to {0, 1, ...,min{M,N}} µ-almost everywhere. More precisely,
dfµ(x) = rank dxf for µ-almost every x ∈ RM .

This is a non trivial result because the image measure f∗µ may be quite complicated and
rather counter intuitive. Already in the one dimensional case, there exists f ∈ C∞(R,R) such
that f({f ′ = 0}) is an uncountable set of dimension 0 and f∗(Leb|{f ′=0}) is a non null and non
atomic measure. We emphasize that Theorem 9 applies to any C∞ function, and not only for
generic functions. This is essential in applications, where we are mostly interested in particular
observables.

Corollary 10. Let T : X ⊂ RM → X preserves an absolutely continuous invariant probabil-
ity measure with super-polynomial decay of correlations. Let f : RM → RN be a Lipschitz C∞

observable. Then Rf exists and belongs to {0, 1, ...,min{M,N}} almost everywhere.

Proof of Corollary 10. We apply Theorem 5 and Theorem 9 when dfµ > 0. When dfµ = 0, we use
Theorem 2. � �
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2.3. On the necessity of the non-instantaneous recurrence rate. In this part, we give a
simple example which illustrates the utility of non-instantaneous return times.

Let Ω := {0, 1}N and σ be the shift on Ω. Fix some 1-approximable α ∈ R (e.g. [6] for a nice
perspective) i.e. δ(α) = 1 where

δ(α) = sup
{
δ ≥ 1 : |α− p

q
| < 1

q1+δ
for infinitely many

p

q
∈ Q

}
.

Let ν be an invariant ergodic probability measure on Ω. Fix some measurable A ⊂ Ω such that
1 > ν(A) > 0 and set ϕ:

(2) ϕ(ω) =
{

0 if ω /∈ A
α if ω ∈ A.

Let T1 denote the 1-dimensional torus and define on X := Ω× T1 the map

T : X −→ X

(ω, y) −→ (σω, y + ϕ(ω)).

Let Leb be the Lebesgue measure on T1. The probability measure µ := ν ⊗ Leb is T -invariant.
We examine below the recurrence rate of the system (X,T, µ) for the observable f given by the
projection on the second variable i.e.

f : X → T1

(ω, y) → y.

First, we need the following obvious result on the pushforward measure: since f∗µ = Leb and the
local dimension of the Lebesgue measure is one, the measure f∗µ is exact dimensional and satisfies

(3) ∀x ∈ X, dfµ(x) = 1.

Proposition 11. We have Rfi 6= dfµ on a set of positive measure. More precisely

∀x = (ω, y) ∈ Ω\A× T1, Rfi (x) = 0.

Proof. Let ω ∈ Ω\A and y ∈ T1, we have

f (T (ω, y)) = f (σω, y) because ω /∈ A
= y

= f (ω, y) .

So, for all r > 0, τfr (x) = 1 and then Rfi (x) = 0. �

We therefore need to introduce the non-instantaneous return time to avoid this kind of problem.

Proposition 12. We have Rf = dfµ on a set of full measure.

Proof. For k ∈ N and ω ∈ Ω, let qk(ω) :=
∑k−1
i=0 1A(σiω). Let ε > 0 fixed. For x = (ω, y) and

n ∈ N, we have

τf 1
n1+ε ,p

(x) = inf
{
k > p : f(T kx) ∈ B

(
f(x),

1
n1+ε

)}
= inf

{
k > p : y + αqk(ω) ∈ B

(
y,

1
n1+ε

)}
= inf

{
k > p : ‖αqk(ω)‖ ≤ 1

n1+ε

}
(4)

where for q ∈ Z
‖qα‖ := min {|qα− p| : p ∈ Z} .

Thanks to the choice of α, there exists k0 ∈ N such that for all k ≥ k0, we get ‖kα‖ ≥ 1
k1+ε . Taking

n ≥ k0 we have

(5) mn,ε := inf
{
q > k0 : ‖qα‖ ≤ 1

n1+ε

}
≥ n.
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Since ν is ergodic, the Poincaré Recurrence Theorem gives, for ν-almost every ω ∈ Ω

(6) qk(ω) −→
k→∞

+∞.

So, for ν-almost every ω ∈ Ω, we can choose p sufficiently large such that p ≥ k0 and qp(ω) ≥ k0. If
k ∈ N satisfies p ≤ k < mn,ε, then k0 ≤ qp(ω) ≤ qk(ω) ≤ k < mn,ε and so ‖αqk(ω)‖ > 1

n1+ε . Since
this is true for every k ∈ [p, ...,mn,ε] we end up with τf 1

n1+ε ,p
(x) ≥ mn,ε ≥ n. Finally, if p ≥ mn,ε,

we obviously have τf 1
n1+ε ,p

(x) ≥ mn,ε ≥ n. Thus for µ-almost every x = (ω, y) ∈ X, we have

Rf (x) = lim
p→∞

lim inf
n→+∞

log τf 1
n1+ε ,p

(x)

− log 1
n1+ε

≥ lim inf
n→+∞

logmn,ε

− log 1
n1+ε

≥ lim
n→∞

log n
log n1+ε

=
1

1 + ε
.

This is true for all ε > 0, thus
Rf (x) ≥ 1.

The conclusion follows from Theorem 2 and equation (3). �

Remark. We point out that indeed our example fulfills the conditions of Corollary 8 when, for
example, ν is a Gibbs measure [7].

3. Upper bound for the recurrence rate in measure preserving systems

The basic strategy of the proof of Theorem 2 follows [2]. We recall the definition of weakly
diametrically regular measure:

Definition 13. A measure µ is weakly diametrically regular (wdr) on the set Z ⊂ X if for any
η > 1, for µ-almost every x ∈ Z and every ε > 0, there exists δ > 0 such that if r < δ then
µ (B (x, ηr)) ≤ µ (B (x, r)) r−ε.

Proof of Theorem 2. Since any probability measure is weakly diametrically regular on RN [2], the
measure f∗µ is weakly diametrically regular. We can remark that the function δ(f(·), ε, η) in the
previous definition can be made measurable for every fixed ε and η. Let us fix ε > 0 and η = 4.
We choose δ > 0 sufficiently small to have µ(G) > µ(X)− ε = 1− ε where

G := {x ∈ X : δ(f(x), ε, η) > δ} .
For all r > 0, λ > 0, p ∈ N and x ∈ X we define the set

Ar,x :=
{
y ∈ X : f(y) ∈ B (f(x), 4r) , τf4r,p(y, x) ≥ λ−1f∗µ (B (f(x), 4r))−1

}
where τf4r,p(y, x) := inf

{
k > p : d

(
f(T ky), f(x)

)
< 4r

}
for y ∈ f−1B(f(x), 4r). Markov’s inequal-

ity gives:

(7) µ(Ar,x) ≤ λf∗µ (B (f(x), 4r))
∫
f−1B(f(x),4r)

τf4r,p(y, x) dµ(y).

Since τf4r,p(y, x) is bounded by the pth return time of y in the set f−1B(f(x), 4r), by Kac’s lemma
we have:

(8)
∫
f−1B(f(x),4r)

τf4r,p(y, x) dµ(y) ≤ p.

Using (7) and (8), we have:

(9) µ(Ar,x) ≤ pλf∗µ (B (f(x), 4r)) .

If d(f(x), f(y)) < 2r then

(10) τf4r,p(y, x)f∗µ (B (f(x), 4r)) ≥ τf6r,p(y)f∗µ (B (f(y), 2r)) .
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Definition 14. Given r > 0, a countable set E ⊂ F is a maximal r-separated set for F if
(1) B(x, r2 ) ∩B(y, r2 ) = ∅ for any two distinct x, y ∈ E.
(2) µ(F \

⋃
x∈E

B(x, r)) = 0.

Let C ⊂ G such that (f(x))x∈C is a maximal 2r-separated set for f(G).

Dε(r) := µ
({
y ∈ G : τf6r,p(y)f∗µ (B (f(y), 2r)) ≥ r−2ε

})
≤

∑
x∈C

µ
({
y ∈ f−1B (f(x), 2r) : τf6r,p(y)f∗µ (B (f(y), 2r)) ≥ r−2ε

})
≤

∑
x∈C

µ(Ar,x) by (10)

≤ p r2ε
∑
x∈C

f∗µ (B(f(x), 4r)) with λ = r2ε in (9)

≤ p rε
∑
x∈C

f∗µ (B(f(x), r)) since f∗µ is wdr and with η = 4

≤ p rε according to the definition of C.

Finally: ∑
n,e−n<δ

Dε(e−n) =
∑

n>− log δ

Dε(e−n) ≤ p
∑
n

e−εn <∞.

Then, thanks to the Borel-Cantelli lemma, for µ-almost every x ∈ G

τf6e−n,p(x)f∗µ
(
B
(
f(x), 2e−n

))
≤ e2εn

for any n sufficiently large. Then

(11)
log τf6e−n,p(x)

n
≤ 2ε+

log f∗µ(B(f(x), 2e−n))
−n

.

Observing that for all a > 0 we have:

dfµ(x) = lim
n→∞

log f∗µ (B (f(x), ae−n))
−n

and d
f

µ(x) = lim
n→∞

log f∗µ (B (f(x), ae−n))
−n

Rf (x) = lim
p→∞

lim inf
n→∞

log τfae−n,p(x)

n
and R

f
(x) = lim

p→∞
lim sup
n→∞

log τfae−n,p(x)

n

and since ε can be chosen arbitrarily small , we have the result if we take the limit inferior or the
limit superior and then the limit over p in (11). �

4. Recurrence rate and dimension in rapidly mixing systems

Despite some similarities with [12], we emphasize that the proof of Theorem 5 is relatively
different. In particular we make no assumption on the entropy of the system.

Let a > 0, b > 0, c > 0 and ρ > 0. Let Xa := {x ∈ X , dfµ(x) > a}. Set

G1 =
{
x ∈ Xa : ∀r ≤ ρ, f∗µ

(
B
(
f(x),

r

2

))
≤ ra

}
G2 =

{
x ∈ Xa : ∀r ≤ ρ, f∗µ

(
B
(
f(x),

r

2

))
≥ rN+b

}
G3 =

{
x ∈ Xa : ∀r ≤ ρ, f∗µ

(
B
(
f(x),

r

2

))
≥ f∗µ (B (f(x), 4r)) rc

}
.

We observe that G(a, b, c, ρ) := G1 ∩G2 ∩G3 satisfies

(12) µ(G(a, b, c, ρ)) −→
ρ→0

µ(Xa).

Indeed, by definition of dfµ, we have µ(G1) → µ(Xa). Moreover, since d
f

µ ≤ N µ−almost every-
where, µ(G2)→ µ(Xa), and since the measure f∗µ is weakly diametrically regular, µ(G3)→ µ(Xa).
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Lemma 15. Under the assumptions of Theorem 5, for any x ∈ G(a, b, c, ρ), for any n ∈ N∗ and
for any r ≤ ρ we have

µ
(
f−1B(f(x), r) ∩ T−nf−1B(f(x), 2r)

)
≤ L2

r2
θn + r−2cf∗µ(B(f(x),

r

2
))2.

Proof. Let ηr : [0,+∞) → R be the 1
r -Lipschitz function such that 1[0,r] ≤ ηr ≤ 1[0,2r]. Set

ψx,r(y) = ηr (d(f(x), f(y))). Since f is L-Lipschitz, ψx,r is clearly L
r -Lipschitz. Using the assump-

tion on the decay of correlations of (X,T, µ), we obtain

µ
(
f−1B(f(x), r) ∩ T−nf−1B(f(x), 2r)

)
≤
∫
X

ψx,r(y)ψx,2r(Tny)dµ(y)

≤ ‖ψx,r‖‖ψx,2r‖θn +
∫
X

ψx,r(y)dµ(y)
∫
X

ψx,2r(y)dµ(y)

≤ L2

r2
θn + f∗µ(B(f(x), 2r))f∗µ(B(f(x), 4r))

≤ L2

r2
θn + r−2cf∗µ(B(f(x),

r

2
))2.

�

Lemma 16. Under the assumptions of Theorem 5,

Rf (x) > 0 for µ-almost every x such that dfµ(x) > 0.

Proof. Let X+ := {dfµ > 0}. Let 1 > ε > 0 and let a > 0 such that µ(X+) ≥ µ(Xa) > µ(X+)− ε.
We fix b > 0, c = a

4 and for ρ > 0 we consider the set G = G(a, b, c, ρ) defined above.
Let n0 ∈ N such that ∀n ≥ n0, we have εn = 1

n4/a < ρ. For n ≥ n0 we define

An := {x ∈ X : f(Tnx) ∈ B (f(x), εn)} .

For any x ∈ G we have

f−1B (f(x), εn) ∩An ⊂ f−1B (f(x), εn) ∩ T−nf−1B (f(x), 2εn) .

By Lemma 15 and the definition of G we have

µ
(
f−1B (f(x), εn) ∩An

)
≤ L2

ε2
n

θn + ε−2c
n f∗µ(B(f(x),

εn
2

))2

≤ f∗µ
(
B
(
f(x),

εn
2

)) [
L2(εn)−2−N−bθn + εa/2n

]
.

Let B ⊂ G such that (f(x))x∈B is a maximal εn-separated set for f(G). Since the collection(
f−1B (f(x), εn)

)
x∈B covers G, we have:

µ (G ∩An) ≤
∑
x∈B

µ
(
f−1B (f(x), εn) ∩An

)
≤

∑
x∈B

f∗µ
(
B
(
f(x),

εn
2

)) [
L2(εn)−2−N−bθn + εa/2n

]
≤ L2(εn)−2−N−bθn + εa/2n .

Since
∑
n∈N∗ ε

a/2
n =

∑
n∈N∗

1
n2 < ∞ and since the decay of correlations is super-polynomial, we

obtain:

(13)
∑
n∈N∗

µ (G ∩An) < +∞.

By Borel-Cantelli lemma and using (12), we have that for µ-almost every x ∈ Xa, there exists
n1(x) such that for every n ≥ n1(x), f(Tnx) /∈ B

(
f(x), 1

n4/a

)
. So, for µ-almost every x ∈ Xa, for

p ≥ n1(x) and n ≥ n1(x),

(14) τf 1
n4/a ,p

(x) > n
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which gives us

Rf (x) = lim
p→∞

lim inf
r→0

log τfr,p(x)
− log r

= lim
p→∞

lim inf
n→+∞

log τf 1
n4/a ,p

(x)

− log 1
n4/a

≥ lim
n→+∞

log n
log n4/a

=
a

4
> 0.

Since we can choose ε arbitrarily small, the lemma is proved. �

Lemma 17. Let a > 0, δ > 0 and 1 > ε > 0. For µ-almost every x ∈ Xa, there exists r(x) > 0
such that for every r ∈]0, r(x)[ and for every integer n ∈ [r−δ, f∗µ (B(f(x), r))−1+ε], we have
d (f(Tnx), f(x)) ≥ r.

Proof. Let 1 > ε > 0. We fix b > 0, c = aε
4 and for ρ > 0 we consider the set G = G(a, b, c, ρ). Let

δ > 0 and r ≤ ρ, we define:

Aε(r) :=
{
y ∈ X : ∃n ∈ [r−δ, f∗µ (B(f(y), 3r))−1+ε] such that d (f(Tny), f(y)) < r

}
.

For any x ∈ G we have:

f−1B(f(x), r) ∩Aε(r)

=
{
y : f(y) ∈ B(f(x), r),∃n ∈ [r−δ, f∗µ (B(f(y), 3r))−1+ε], d(f(Tny), f(y)) < r

}
⊂

{
y : f(y) ∈ B(f(x), r),∃n ∈ [r−δ, f∗µ (B(f(x), 2r))−1+ε], d(f(Tny), f(x)) < 2r

}
=

⋃
r−δ≤n≤f∗µ(B(f(x),2r))−1+ε

f−1B(f(x), r) ∩ T−nf−1B(f(x), 2r).

Let k > 1 be such that δ(k−1)−2 ≥ N+2b and ρ > 0 such that n ≥ ρ−δ implies (k−1)(n+1)−k ≥ θn
(which is possible by definition of θn). Setting Ir = [r−δ, f∗µ (B(f(x), 2r))−1+ε] ∩ N, we have by
Lemma 15

µ
(
f−1B(f(x), r) ∩Aε(r)

)
≤

∑
n∈Ir

[
L2

r2
θn + r−2cf∗µ(B(f(x),

r

2
))2

]
≤ L2rδ(k−1)−2 + r−2cf∗µ(B(f(x),

r

2
))1+ε

≤ L2rN+2b + r
aε
2 f∗µ(B(f(x),

r

2
)) by definition of G

≤ f∗µ(B(f(x),
r

2
))
(
L2rb + r

aε
2
)
.

Let B ⊂ G such that (f(x))x∈B is a maximal r-separated set for f(G). Since the collection(
f−1B (f(x), r)

)
x∈B covers G, we have:

µ (G ∩Aε(r)) ≤
∑
x∈B

µ
(
f−1B (f(x), r) ∩Aε(r)

)
≤

∑
x∈B

f∗µ
(
B
(
f(x),

r

2

)) (
L2rb + r

aε
2
)

≤ L2rb + raε/2.

Then ∑
k∈N

µ
(
G ∩Aε(e−k)

)
< +∞

thus, by Borel-Cantelli lemma, we have for µ-almost every y ∈ G, there exists n1(y) such that
for every k ≥ n1(y), y /∈ Aε(e−k). So, for r sufficiently small there exists k ∈ N such that
e−k−1 < r ≤ e−k ≤ e−n1(y). In addition, since eδk ≤ r−δ and 3e−m < 3er, there does not exist
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any integer n ∈ [r−δ, f∗µ (B(f(y), 3r))−1+ε] such that d(f(Tny), f(y)) < r. Since f∗µ is weakly
diametrically regular the factor 3e is irrelevant and the lemma is proved. �

Proof of Theorem 5. Let ζ > 0. Since Rf (x) > 0 for µ-almost every x ∈ X+ = {dfµ > 0} by
Lemma 16, there exists a > 0 such that µ(X+) ≥ µ({Rf > a}) > µ(X+)−ζ. For any x ∈ {Rf > a}
, for p sufficiently large and r sufficiently small, we have

τfr,p(x) ≥ r−a.

Thanks to Lemma 17 with δ = a and ε > 0, for µ-almost every x ∈ {Rf > a}, if r is sufficiently
small and p sufficiently large, then τfr,p(x) ≥ f∗µ (B(f(x), r))−1+ε. Thus, Rf ≥ (1 − ε)dfµ and

R
f ≥ (1 − ε)d

f

µ µ-almost everywhere on {Rf > a}. The theorem is proved choosing ε > 0
arbitrarily small and then ζ > 0 arbitrarily small. �

5. Dimensions of the smooth image of Lebesgue measure

5.1. Hausdorff and packing dimensions. In this section, we recall the notion of Hausdorff
dimension, packing dimension and pointwise dimension and the link between each other (see [9]
for more details).

Let (X, d) be a metric space. Let U be a non-empty set, its diameter is

diam U := sup {d(x, y) : x, y ∈ U} .

Given δ > 0, a collection {Ui}i∈I is called a countable δ-cover of a set E if I is countable,
E ⊂ ∪i∈IUi and for all i ∈ I, 0 < diam Ui ≤ δ.

Let E be a subset of X and s ≥ 0, for δ > 0, we define:

(15) Hsδ(E) = inf

{∑
i∈I

(diam Ui)s : {Ui}i∈I is a countable δ-cover of E

}
.

We then define the Hausdorff s-dimensional outer measure of E as

(16) Hs(E) = lim
δ→0
Hsδ(E).

There exists a unique t such that Hs(E) = ∞ if s < t and Hs(E) = 0 if s > t which is called the
Hausdorff dimension of E i.e.

(17) dimH E = inf {s : Hs(E) <∞} = sup {s : Hs(E) > 0} .

If µ is a probability measure on X, we define the Hausdorff dimension of µ

(18) dimH µ = inf {dimH Y : µ(Y c) = 0} .

Remark. We warn the reader that this definition of the Hausdorff dimension of a measure differs
from the one given by Falconer [9] but it is the most used in Ergodic Theory.

Given ε > 0, the collection {B(xi, ri)}i∈I is called a ε-packing of E if I is a finite or countable
set, for all i ∈ I we have xi ∈ E, ri ≤ ε and the balls are disjoints. For s ≥ 0, we write

Psε (E) = sup

{∑
i∈I

(ri)s : {B(xi, ri)}i∈I is a ε-packing of E

}
and

Ps0(E) = lim
ε→0
Psε (E).

We then introduce the s-dimensional packing outer measure

(19) Ps(E) = inf

{ ∞∑
i=1

Ps0(Ei) : E ⊂
∞⋃
i=1

Ei

}
and the packing dimension of E is defined like the Hausdorff dimension

(20) dimP E = inf {s : Ps(E) <∞} = sup {s : Ps(E) > 0} .
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For a probability measure µ, we also have a packing dimension of µ

(21) dimP µ = inf {dimP Y : µ(Y c) = 0} .

There is a link between Hausdorff dimension, packing dimension and pointwise dimension:

Proposition 18. Assume that X ⊂ RN for some N ,

(22) dimH µ = ess-sup dµ

and

(23) dimP µ = ess-sup dµ.

5.2. Existence of the pointwise dimension. Bates and Moreira proved a generalization of the
classical Morse-Sard Theorem for Hausdorff measures. Unfortunately, in view of (22), this is not
enough to get an upper bound for the upper pointwise dimension. A key ingredient of their proof
is the following generalized Morse decomposition. Given a differentiable f from RM to RN , for
κ ∈ {0, 1, ...,min{M,N}}, we define Cκ := {x ∈ RM : rank(dxf) = κ}.

Lemma 19 ([3]). Let f ∈ Ck(RM ,RN ) with k ≥ 2. Let κ ≤M be an integer. Let η > 0. There is
a decomposition {Ai}i∈N of Cκ such that for each i ∈ N there exist two subspaces E′i and E′′i which
satisfy RM = E′i ⊕ E′′i , dimE′i ≤ κ and if S ⊂ RM :

(24) diam (f(S ∩Ai)) ≤ (‖f |Ai‖C1 + η) diam(πE′iS) + η(diamS)k.

This decomposition will be instrumental to prove an analogue result but for the packing dimen-
sion.

Lemma 20. If f ∈ C∞(RM ,RN ) then the packing dimension of the critical set satisfies

dimP f(Cκ) ≤ κ.

Proof. Let k ≥ 2, since f is of class C∞, f is of class Ck. Let {Ai}i∈N be the decomposition of Cκ
given by Lemma 19 with η = 1. Let K ⊂ RM be a compact set. Let i ∈ N. Let di be the distance
in RM such that for x ∈ RM and y ∈ RM , di(x, y) = d(πE′ix, πE′iy) + d(πE′′i x, πE′′i y). Let ε > 0
and {B(f(xj), rj)}j∈J a ε-packing of f(Ai ∩K). Let j ∈ J and l ∈ J . Taking S := {xj , xl} in (24)
gives

rj + rl ≤ di(f(xj), f(xl)) = diam(f(S ∩Ai))

≤ Cd(πE′ixj , πE′ixl) +
(
d(πE′ixj , πE′ixl) + d(πE′′i xj , πE′′i xl)

)k
where C := ‖f‖C1 + 1. This implies that

• either Cd(πE′ixj , πE′ixl) ≥
1
2 (rj + rl)

• or Cd(πE′ixj , πE′ixl) ≤
1
2 (rj + rl) and then(

d(πE′ixj , πE′ixl) + d(πE′′i xj , πE′′i xl)
)k ≥ 1

2
(rj + rl).

Taking ε so small that ε
C ≤ (1− 2−1/k)ε1/k we get

1
2C

(rj + rl) ≤
(

1− 2−1/k
)(1

2
(rj + rl)

)1/k

thus

d(πE′′i xj , πE′′i xl) ≥
(

1
2

)1/k (1
2

(rj + rl)
)1/k

.

For j ∈ J , let Sj = BE′i(πE′ixj ,
1

4C rj) × BE′′i (πE′′i xj ,
1
2

(
1
4rj
)1/k) ⊂ E′i × E′′i . If l 6= j, we have

Sj ∩ Sl = ∅ since

• either d(πE′ixj , πE′ixl) ≥
1

2C (rj + rl) > 1
4C rj + 1

4C rl

• or d(πE′′i xj , πE′′i xl) ≥
(

1
4 (rj + rl)

)1/k
> 1

2

(
1
4rj
)1/k + 1

2

(
1
4rl
)1/k.
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There exists a constant δi such that

diamSj ≤ δiε1/k.

The rectangles Sj are disjoints and have non empty intersection with K, thus

(25)
∑
j∈J

Vol(Sj) ≤ Vol(K +B(0, δiε1/k)).

Let p = dimE′i ≤ κ. There exists a constant γi such that the volume of each Sj is

Vol(Sj) = γi

(
1

4C
rj

)p
×

[
1
2

(
1
4
rj

)1/k
]M−p

.

This implies together with (25)∑
j∈J

(rj)p+(M−p)/k ≤ c(i, k,K) <∞

where c(i, k,K) is a finite constant depending on i,k and K.
Now, by definition of the s-dimensional packing measure (19), computed with the particular metric
di, we obtain:

PM/k+p(1−1/k)(f(Ai ∩K)) ≤ c(i, k,K) <∞.
This inequality holds (possibly with another constant) for the packing measure computed with the
euclidean metric d since d and di are equivalent. Therefore

dimP f(Ai ∩K) ≤ M

k
+ p(1− 1

k
) ≤ M

k
+ κ.

Finally, taking a sequence of compacts Kn such that RM = ∪n∈NKn, we obtain:

dimP f(Cκ) = dimP f(
⋃
i,n∈N

Ai ∩Kn)

= dimP

⋃
i,n

f(Ai ∩Kn)

= sup
i,n

dimP f(Ai ∩Kn) see [9]

≤ M

k
+ κ.

Since k is arbitrarily large we get

(26) dimP f(Cκ) ≤ κ.

�

Without loss of generality, we prove Theorem 9 on RM with µ equal to the Lebesgue measure
λ. The general case can be deduced from it easily.

Proof of Theorem 9. Let κ ∈ {0, ...,min{M,N}}.
1. If A ⊂ Cκ and λ(A) > 0 then dimH f∗(λ|A) ≥ κ:
Indeed, let B ⊂ Cκ with λ(B) > 0, there exist V open with λ(B ∩ V ) > 0 and π : RN → Rκ a
linear map such that dxπ ◦ f is of maximal rank κ for every x ∈ V and so fκ := π ◦ f satisfies
Jfκ 6= 0 for every x ∈ V (where J is the Jacobian i.e. Jfκ =

√
det(dxfκ)(dxfκ)t). Since π is

Lipschitz, it is known [9] that:

(27) dimH π(f(B)) ≤ dimH f(B).

Using the coarea formula (e.g. [8], in fact we could have worked directly with f using [10]):

(28)
∫
B

Jfκdλ =
∫
fκ(B)

HM−κ (B ∩ f−1
κ ({y})

)
dλκ(y)
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where λκ is the Lebesgue measure on Rκ. Since λ(B∩V ) > 0 and Jfκ(x) 6= 0 for every x ∈ B∩V ,
the left-hand side of (28) does not vanish and therefore, neither does the right-hand side. Then
λκ(fκ(B)) > 0 and so dimH fκ(B) ≥ κ which gives, using (27):

(29) κ ≤ dimH f(B).

Let A ⊂ Cκ with λ(A) > 0. We recall

(30) dimH f∗(λ|A) := inf{dimH Y : (f∗(λ|A))(Y c) = 0}.

Let Y be such that (f∗(λ|A))(Y c) = 0. Since f
(
A ∩ f−1(Y )

)
⊂ Y we have

dimH Y ≥ dimH f
(
A ∩ f−1(Y )

)
.

Moreover, since λ(f−1(Y )∩A) = λ(A) > 0 and f−1(Y )∩A ⊂ Cκ, we can choose B = f−1(Y )∩A
in the previous consideration and (29) gives:

dimH Y ≥ dimH f
(
A ∩ f−1(Y )

)
≥ κ

and then

(31) dimH f∗(λ|A) ≥ κ.

We define ν := f∗λ and νκ := f∗(λ|Cκ).
2. Let us prove that dν = κ νκ-almost everywhere:
• Firstly, since νκ is supported by f(Cκ), by Lemma 20 we have

dimP νκ ≤ dimP f(Cκ) ≤ κ.

Since the packing dimension satisfies the relation (23) we get

dνκ(x) ≤ κ for νκ-almost every x ∈ RN .

Since, for every x ∈ RN and every ε > 0, ν (B(x, ε)) ≥ νκ (B(x, ε)), we have

dν(x) ≤ dνκ(x)

and then

(32) dν(x) ≤ κ for νκ-almost every x ∈ RN .

• Let K ⊂ RN be a compact subset. Let ρ < κ. Let Z := {dν ≤ ρ} ∩ K. If νκ(Z) > 0
then λ(Cκ ∩ f−1(Z)) > 0, thus by (31) we obtain dimH f∗(λ|Cκ∩f−1(Z)) ≥ κ. By (30) and since
f∗(λ|Cκ∩f−1(Z))(Zc) = 0, we obtain dimH Z ≥ κ.

On the other hand, by definition of dν , ∀x ∈ Z, ∃Jx ⊂ R+ with 0 ∈ Jx, such that ∀r ∈ Jx,
ν (B(x, r)) ≥ rρ. Let δ > 0. We notice that {B(x, r) , x ∈ Z , r ∈ Jx ∩ [0, δ]} cover Z so, by
Besicovitch covering Theorem, there exists a subcovering {B(xi, ri)}i∈I with I countable and m0 a
constant depending only on N such that Z ⊂ ∪i∈IB(xi, ri) and the multiplicicty of the subcovering
is bounded by m0. By the definition (15)

Hρδ(Z) ≤
∑
i∈I

rρi ≤
∑
i∈I

ν (B(xi, ri)) ≤ m0ν(K).

This implies dimH Z ≤ ρ. But this is in contradiction with the fact that dimH Z ≥ κ. Then, for
all ρ < κ and for all compact K, νκ({dν ≤ ρ} ∩K) = 0. Thus

(33) dν(x) ≥ κ for νκ-almost every x ∈ RN .

3. Conclusion: Using (32) together with (33) implies that dν = κ νκ-almost everywhere. The
theorem follows from RM = C0 ∪ C1 ∪ ... ∪ Cmin{M,N}. �
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219 (2001), pp. 443–463.

[3] S. M. Bates and C. G. Moreira, De nouvelles perspectives sur le théorème de Morse-Sard, C. R. Acad. Sci.
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