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Abstract

In this paper we provide general estimates for the errors between
the distribution of the first, and more generally, the Kth return time
(suitably rescaled) and the Poisson law for measurable dynamical sys-
tems. In the case that the system exhibits strong mixing properties,
these bounds are explicitly expressed in terms of the speed of mixing.
Using these approximations, the Poisson law is finally proved to hold
for a large class of non hyperbolic systems on the interval.

1 Introduction

The investigation of asymptotically rare events is growing up as a new di-
rection in the understanding of statistical properties of dynamical systems.
By “asymptotically rare” events we mean, in a wide sense and following
the terminology in the review paper of [Coe97], those events which have
asymptotically zero probability but which occur with a well determined
asymptotic limit law. In the dynamical setting, where we have a proba-
bility space (X,B, µ) with a measurable µ-preserving mapping T acting on
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2 Statistics of return times

it, the “events” will usually be the visits into a sequence of sets Ωk ∈ B of
positive measure but with their measure going to zero in the limit of large
k. We call the event “rare”, when the expected entrance time in Ωk diverges
with k. A well-known result in ergodic theory shows how abundant are the
“asymptotically rare” events. Let us consider in fact an ergodic measure µ
for an endomorphism T and take a measurable subset Ω: then Kac’s theorem
[CFS82] says that the expectation of the return time to Ω, starting from Ω,
is just µ(Ω)−1.

Kac’s theorem suggests the good normalization to keep in order to study
the asymptotic distribution of the return time to Ω. The natural object will
thus be the distribution:

FΩ(t) = µΩ

(
x ∈ Ω

∣∣ τΩ(x)µ(Ω) > t
)

(1)

where τΩ(x) is the first return time to Ω provided that x ∈ Ω and µΩ is the
normalized restriction of µ to Ω. The question will be whether the limit of
FΩ(t) exists when the measure goes to zero and what kind of distribution is
recovered. The condition that the starting point x in (1) belongs to Ω could
be relaxed by asking that x belongs to the whole space. In this case, FΩ(t)
will give the distribution of the “visiting time” into Ω, but in order to get
its asymptotic distribution, a suitable normalization is needed [GS97]. The
situations sketched above could be considerably refined, producing richer
processes (see the quoted paper [Coe97] for an historical account of these
questions and an exhaustive bibliography). We will however explore some
of them in this paper under a more general perspective and successively by
giving applications to class of systems never investigated before.

Let us first come back to formula (1) and replace Ω with a decreasing se-
quence of neighborhoods of a given point z ∈ X, Ωε(z), such that their mea-
sure goes to zero when ε → 0+. Then for some classes of hyperbolic dynam-
ical systems, notably axiom A diffeomorphisms [Hir93], transitive Markov
chains [Pit91], expanding maps of the interval with a spectral gap [Col96]
and in the more general setting of systems verifying a strong mixing property
(“self-mixing” condition and ϕ-mixing [Hir95]), and recently even in the case
of rational maps with critical points in the Julia set [Hay98a], it is possible
to prove that the distribution FΩε(z)(t) goes to the exponential-one law e−t

and this for µ-almost every z ∈ X. A strong improvement of this kind of
result appears in the paper [GS97], where an upper bound for the difference∣∣∣∣µ (

τA(x) >
t

µ(A)λ(A)

)
− e−t

∣∣∣∣
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was explicitly computed in the case of ϕ-mixing systems and where A is
a cylinder set, and λ(A) a suitable normalizing factor. Recently [Hay98b]
obtained an exponential error estimate for the quantity like (1) in the case
of parabolic rational maps.

To enrich the process, and the statistics, one successively introduce the
Kth return time, τK

Ωε
(x), from Ωε into itself (see the precise definition in the

next section), where Ωε = Ωε(z) is still a neighborhood of some point z ∈ X.
For the dynamical systems quoted above, a Poisson statistics can be

proved, by showing that the distribution of successive return times into Ωε

satisfies, for z µ-a.e.

µΩε

(
x ∈ Ωε

∣∣ τK
Ωε

(x) ≤ t < τK+1
Ωε

(x)
)
−→
ε→0+

tK

K!
e−t (2)

The preceding results deserve further investigations at least in two directions:

1. extend them to non hyperbolic dynamical systems and, more ambi-
tiously, check their robustness when the system looses strong mixing
properties.

2. prove an error estimate even for the distribution of successive return
times (2) and relate this approximation rate, if possible, to the statis-
tical properties of the system like correlations decay or spectral prop-
erties.

We try to give partial answer to these questions in this paper. The
general setting we put in, is the return(s) times to the set Ω starting from
itself, as expressed in formulas (1) and (2) (although in Theorem 2.1 we will
also consider points starting everywhere). The first attempt was to give,
for measure preserving dynamical systems, a general upper bound for the
difference between the distribution of the (rescaled) first return time and
the exponential-one law e−t and then between the distribution of high-order
(rescaled) return times and the Poisson law tK

K!
e−t. We do not make any

hypothesis on the set Ω, nor on the ergodic properties of µ; nevertheless
these bounds are expressed in terms of the self-interactions of the set Ω and
can be explicitly computed when typical rates of mixing are known (uniform
mixing, α-mixing or ϕ-mixing). In this context, our bounds greatly improve
and simplify the hypothesis of self-mixing condition of [Hir95], which was a
powerful tool to get sufficient condition for the Poisson statistics. This first
part of the paper is essentially due to one of us (B.S.) and is part of his Ph.D.
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Thesis [Sau98b]. In the second part we apply the preceding bounds to new
situations. The systems we treat are some non-uniformly hyperbolic maps of
the interval; these maps are characterized by a structure parameter, say α,
which measures the order of tangency at a neutral fixed point and governs
the algebraic decay of correlations (in our example the order is n1−1/α). If
µ denotes the absolutely continuous invariant measure, we prove Poisson
statistics (in the sense precise above), by giving an explicit approximation
of the asymptotic law in terms of the measure of the set Ωn, where in this
case Ωn is a decreasing sequence of cylinder sets chosen around almost all
points in the interval. To be precise the error is of the type: µ(Ωn)β, for
any β < 1− α, and therefore β is explicitly related to α and optimized just
by 1 − α. For the distributions of the Kth return times the bounds simply
become µ(Ωn)β/K .

By inspecting these results, we could argue that the non-hyperbolic char-
acter of the maps reflects in the error term; to be more precise we think
that as soon as the degree of non-uniform hyperbolicity of the map is mon-
itored by a structure parameter α, this parameter will appear explicitly in
the approximation to the Poisson law, which suggests, on the converse, that
we could use Poissonian statistics to test lack of hyperbolicity. Our claim is
motivated by two more observations: first, in getting these bounds we proved
a sort of α-mixing for the map with a rate which was exactly the same as
the algebraic rate for the correlations’ decay. Second, in the forthcoming
paper [Sau98a] the return times is analyzed for a class of piecewise expand-
ing multidimensional maps. Although the mixing properties are much more
difficult to handle with, especially for the presence of singularity lines and
the geometry of their shape, the uniform dilatation will provide bounds on
the form: µ(Ωn)β and µ(Ωn)β/K for all β < 1, which reflects the fact that all
the quantities involved, and the correlations’ decay too, admit exponential
estimates. We will come back to these questions in section 4. As a final
remark, we address two questions:

1. Our analysis is local: the events are chosen around almost all points
which we could call, following a widespread tradition, generic (for our
statistics). What happens if we consider non-generic points (discarding
of course some trivial situation like fixed points) ? Could we see their
(possibly different) statistics by involving some sort of large deviation
argument ?

2. What is the place of Poissonian statistics regarding other ergodic char-
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acterizations of dynamical systems ? For example: what is the largest
class of ergodic dynamical systems enjoying a Poissonian statistics ?
Conversely, does an invariant measure satisfying that behavior implies
strong ergodic properties too ?

2 General bounds on the distribution of re-

turn times

We will consider in this section a probability space (X,B, µ) together with a
measure preserving transformation T acting on X. The basic object will be
the return time into a positive measure set U starting from U defined by

τU(x) = inf
{

k ≥ 1|T kx ∈ U
}
∪ {∞}.

We define as usual the conditional measure µU on U by µU(A) =
µ(A ∩ U)

µ(U)
.

We then recall Kac’s theorem which says that the conditional expectation of
τU given U is finite, and equal to 1/µ(U), when µ is ergodic. As indicated
in the introduction, Kac’s result suggests how to properly rescale the return
time when we are interested in its distribution.

2.1 First return time

We begin to show that the distribution of the first return time into the
set U starting from U is close to an exponential one law if and only if the
two distributions of the first return time starting, respectively from U and
everywhere, are close.

Theorem 2.1. Let us define c(k, U) = µU(τU > k) − µ(τU > k) and set
c(U) = supk |c(k, U)|. The distribution of the (rescaled) first return time into
the set U differs from the exponential-one law by at most d(U) := 4µ(U) +
c(U)(1 + log c(U)−1), namely:

sup
t≥0

∣∣∣∣µ (
τU >

t

µ(U)

)
− e−t

∣∣∣∣ ≤ d(U)

which is still true starting from U :

sup
t≥0

∣∣∣∣µU

(
τU >

t

µ(U)

)
− e−t

∣∣∣∣ ≤ d(U).
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Conversely, the difference between the two distributions (starting inside U
and everywhere) can be bounded in terms of the distance c̃(U) := supt≥0 |µU(τU >
t/µ(U))− e−t|, precisely:

c(U) ≤ 2µ(U) + c̃(U)(2 + log c̃(U)−1).

Remark 2.2. Whenever µ(U) > 0 the return time’s law is discrete and this
allow us to get a lower bound for the rate of convergence. More precisely, we
have the following proposition:

Proposition 2.3. for each k ≥ 0

εk,U :=
∣∣µ (τU > k)− e−kµ(U)

∣∣ +
∣∣µ (τU > k + 1/2)− e−(k+1/2)µ(U)

∣∣ ≥ e−kµ(U)

4
µ(U).

In particular, ε0,U ≥ µ(U)/4.

Proof. [Proposition 2.3] Let k ≥ 0 be an integer. Since τU takes only integer
values, the distribution for t = kµ(U) and t′ = (k + 1/2)µ(U) is the same,
then

εk,U ≥ |exp(−kµ(U))− exp(−(k + 1/2)µ(U))|
≥ exp(−kµ(U))(1− e−µ(U)/2)

≥ e−kµ(U)

4
µ(U).

Proof. [Theorem 2.1] Let us remark that for any k ≥ 1 we have

µ(τU = k) = µ(U ∩ {τU > k − 1}). (3)

Since {τU > k} = T−1(U c ∩ {τU > k− 1}) by the invariance of µ we get that
µ(τU > k) = µ(τU > k − 1)− µ(U ∩ {τU > k − 1}), whence the result. Next,
for all k > 0 we have

µ(τU > k) = µ(τU > k − 1)− µ(U)µU(τU > k − 1)

= µ(τU > k − 1)− µ(U)[µ(τU > k − 1) + c(k, U)]

= µ(τU > k − 1)[1− µ(U)]− µ(U)c(k, U).



Hirata, Saussol and Vaienti 7

Then it follows by an immediate induction that

µ(τU > k) = (1− µ(U))k − µ(U)
k∑

j=1

c(j, U)(1− µ(U))k−j.

Hence for all t ≥ 0, putting kt = [t/µ(U)], we have

∣∣µ(τU > kt)− (1− µ(U))kt
∣∣ ≤ µ(U)

kt∑
j=1

|c(j, U)| ≤ tc(U). (4)

Setting z = − log c(U), and kz = [z/µ(U)], we get

(1− µ(U))kz ≤ e−kzµ(U) ≤ c(U)eµ(U) ≤ c(U) + 2µ(U),

for any t > z,

µ(τU > kt) ≤ µ(τU > kz)

≤ (1− µ(U))kz + zc(U)

≤ 2µ(U) + c(U)(1− log c(U))

which gives
∣∣µ(τU > kt)−(1−µ(U))kt

∣∣ ≤ 2µ(U)+c(U)(1− log c(U)). Instead
for any t ≤ z the same estimate holds by inequality (4). Since, by an easy
computation

|(1− µ(U))kt − e−t| ≤ 2µ(U),

we get for any t ≥ 0∣∣µ(τU > kt)− e−t
∣∣ ≤ 4µ(U) + c(U)(1− log c(U))

which proves the first part of the theorem. Moreover, since∣∣µU(τU > kt)− µ(τU > kt)
∣∣ = |c(kt, U)| ≤ c(U),

we finally have for each t ≥ 0∣∣µU(τU > kt)− e−t
∣∣ ≤ 4µ(U) + c(U)(2− log c(U)).
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The converse part is proven in the same way. For k ≥ 1,

µ(τU > k) = 1− µ(τU ≤ k)

= 1−
k∑

j=1

µ(τU = j)

= 1− µ(U)
k∑

j=1

µU(τU > j − 1),

where we used in the last equality the relation (3). Hence

|µ(τU > k)− e−kµ(U)| ≤

∣∣∣∣∣1− µ(U)
k∑

j=1

e−(j−1)µ(U) − e−kµ(U)

∣∣∣∣∣ + kµ(U)c̃(U)

≤
∣∣∣∣1− µ(U)

1− e−kµ(U)

1− e−µ(U)
− e−kµ(U)

∣∣∣∣ + kµ(U)c̃(U)

≤ (1 + e−kµ(U))

∣∣∣∣1− µ(U)

1− e−µ(U)

∣∣∣∣ + kµ(U)c̃(U)

≤ 2µ(U) + kµ(U)c̃(U).

This gives, whenever k ≤ k0 := log c̃(U)−1/µ(U):

|c(k, U)| ≤ 2µ(U) + c̃(U) log c̃(U)−1.

For k > k0 we simply have

|c(k, U)| ≤ µ(τU > k0)+µU(τU > k0) ≤ 2µ(U)+c̃(U) log c̃(U)−1+e−k0µ(U)+c̃(U).

The last theorem gives a necessary and sufficient condition to obtain
the exponential law, that is d(U) → 0. However, such a quantity is not
very transparent for dynamical systems, that is why we give a criterion to
estimate it. This kind of condition is a generalization of the so called “self-
mixing condition” introduced in [Hir95].

Lemma 2.4. Let U ⊂ X a measurable set. The following estimate holds

c(U) ≤ inf {aN(U) + bN(U) + Nµ(U)|N ∈ N}
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where the quantities are defined by

aN(U) = µU(
N⋃

j=1

T−jU) = µU(τU ≤ N),

bN(U) = sup
V ∈U∞

|µU(T−NV )− µ(V )|

with U = {U,U c}, Un =
∨n−1

k=0 T−kU and U∞ = ∪nσ(Un).

Proof. Let N ∈ N. If k < N , we just bound c(k, U) by

|µU(τU > k)− µ(τU > k)| = |µU(τU ≤ k)− µ(τU ≤ k)|
≤ |µU(τU ≤ k)|+ |µ(τU ≤ k)|
≤ aN(U) + kµ(U) ≤ aN(U) + Nµ(U).

Otherwise, let us remark that
{τU > k} and {τU ◦ TN > k − N} differ only on {τU ≤ N}, and by

hypothesis

|µU(τU > k)− µU(τU ◦ TN > k −N)| ≤ µU(τU ≤ N) = aN(U).

Moreover

|µU(τU ◦ TN > k −N)− µ(τU > k −N)| =

|µU(T−N(τU > k −N))− µ(τU > k −N)| ≤ bN(U).

But {τU > k −N} and {τU > k} differs only on {τU ◦ T k−N ≤ N}, hence

|µ(τU > k −N)− µ(τU > k)| ≤ µ(τU ◦ T k−N ≤ N) = µ(τU ≤ N) ≤ Nµ(U).

We finally get for each k,N ∈ N

|µU(τU > k)− µ(τU > k)| ≤ aN(U) + bN(U) + Nµ(U)

which concludes the proof, since N is arbitrary.

We remark that bN(U) is bounded by α(N) if the partition U = {U,U c}
is α-mixing, and by γ(N) if it is uniformly mixing (see definition 2.1 below).
To simplify, we could say that the exponential law holds when there exists
some N so small that only few points of U come back in U before N steps,
but large enough such that TNU is uniformly spread out.
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Definition 2.1 (Speed of mixing). Let (X,B, T, µ) be a dynamical sys-
tem and ξ a finite or countable measurable partition of X. We set ξk =∨k−1

j=0 T−jξ and σ(ξk) the σ-algebra generated by ξk.

1. Uniform mixing. The partition ξ is uniformly mixing with speed γ(n)
going to zero for n going to infinity if for any n,

γ(n) = sup
k,l

sup
R∈σ(ξk)

S∈T−(n+k)σ(ξl)

|µ(R ∩ S)− µ(R)µ(S)|.

2. α-mixing. The partition ξ is α-mixing with speed α(n) going to zero
for n going to infinity if for any n,

α(n) = sup
k,l

sup
R∈ξk

S∈T−(n+k)σ(ξl)

∣∣∣∣µ(R ∩ S)

µ(R)
− µ(S)

∣∣∣∣ .

3. ϕ-mixing. The partition ξ is ϕ-mixing with speed ϕ(n) going to zero
for n going to infinity if for any n,

ϕ(n) = sup
k,l

sup
R∈σ(ξk)

S∈T−(n+k)ξl

∣∣∣∣ µ(R ∩ S)

µ(R)µ(S)
− 1

∣∣∣∣ .

4. Weak-Bernoulli. The partition ξ is weak-Bernoulli with speed β(n)
going to zero when n goes to infinity, if for any n,

β(n) = sup
k,l

∑
R∈ξk

S∈T−(n+k)ξl

|µ(R ∩ S)− µ(R)µ(S)|.

Remark 2.5. We state some general implications and results verified by the
preceding types of mixing.

1. ϕ-mixing implies α-mixing which implies uniform mixing. For any n,
γ(n) ≤ α(n) ≤ ϕ(n).

2. ϕ-mixing implies weak-Bernoulli which implies uniform mixing. For
any n, γ(n) ≤ β(n) ≤ ϕ(n).
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3. If ξ is a generating partition of an uiformly mixing dynamical system,
then the system is mixing.

4. If ξ is a generating weak-Bernoulli partition then the system is metri-
cally conjugated with a Bernoulli shift.

2.2 Successive return times

We will now investigate the properties of successive return times to the set
U . For this purpose, let us define the kth return time in U by

τ
(k)
U (x) =

{
0 if k = 0,

τU(x) + τ
(k−1)
U (T τU (x)(x)) if k > 1.

Observe that the difference between two consecutive return times follows the
same law than the first, for the simple reason that

τ
(K+1)
U − τ

(K)
U = τU ◦ T τ

(K)
U

and the measure µU is invariant with respect to the induced application on
U .

Theorem 2.6. Let U ⊂ X be a measurable set, and U = {U,U c} the par-
tition associated to it. Given an integer K and a rectangle QK in R

K, the
differences between successives normalized return times in U are independent
and exponentially distributed up to f(K, U) (see (5) below), where f(K, U)
is defined depending on the type of mixing by

(α) When (X, T, µ) is α-mixing for U , with speed α 1, then

f(K, U) = K

(
3d(U) + inf

M∈N

{α(M) + 3Mµ(U)}
)

.

1We just need that mixing property for some special sets, more precisely, we are inter-
ested by

α′(N) = sup
{∣∣∣∣µ(R ∩ S)

µ(R)
− µ(S)

∣∣∣∣ ∣∣∣∣ j, N ∈ N, R ∈ Uj , T
jR ⊂ U, V ∈ T−j−NU∞

}
.
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(γ) When the partition U is uniformly mixed by (X, T, µ) with speed γ,
then

f(K, U) = K

4d(U) + inf
M∈N

γ(M)<µ(U)2

{
γ(M)

µ(U)2

(
2−K log

γ(M)

µ(U)2

)
+ 3Mµ(U)

} .

Indeed the following inequality holds:∣∣∣∣∣µU

(
(τ

(1)
U , τ

(2)
U −τ

(1)
U , . . . , τ

(K)
U −τ

(K−1)
U ) ∈ 1

µ(U)
QK

)
−

∫
QK

K∏
i=1

e−sidsK

∣∣∣∣∣ ≤ f(K, U).

(5)

Remark 2.7. Note that the mixing assumption is made only for the spe-
cial partition U . If the system has a partition Z (not necessarily with two
elements), uniformly mixing with speed γZ , then for any cylinder U ∈ Zn

of order n, the partition U = {U,U c} is still uniformly mixing with speed
γU(M) ≤ γZ(M − n). The proof of the theorem is inspired by [CG93], with
the following differences: 1) U is any measurable set; 2) we take care of the
approximations to get an estimation of the error; 3) we still get an estimation
even if the system is uniformly mixing; however, it is interesting whenever
γ(M) = o(1/M2).

Proof. [Theorem 2.6] Let us remark first that if we denote by F = T τU the
induced application on U , then for each k ∈ N,

τ
(k+1)
U − τ

(k)
U = τU ◦ F k.

We set τk = (τU , τU ◦F, · · · , τU ◦F k−1). We will show that the inequality (5)
holds by induction on K.

For K = 1, we apply Theorem 2.1 which gives, setting Q1 = [u, v],

|µU(τU ∈ [u, v])−
∫ v

u

e−sds| = |µU(τU > v)− µU(τU > u)− (e−u − e−v)| ≤ 2d(U).

Let’s suppose that the inequality (5) is true for K; we want to prove that
it is also true for K + 1. Let [r, s] be the projection of QK+1 onto the last
coordinate, and for k = K, K + 1 denote:

Dk = U ∩ τ−1
k (

1

µ(U)
Qk).
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For any M ∈ N, the set defined by

EK+1(M) = DK ∩
{

x ∈ U | τU ◦ TM ◦ FK(x) ∈ [r, s]/µ(U)−M
}

verifies the inclusions

EK+1(M) ∩ {τU ◦ FK > M} ⊂ DK+1 ⊂ EK+1(M) ∪ {τU ◦ FK ≤ M}.

Theorem 2.1 shows that the two sets which bound DK+1 do not differ too
much, namely,

µU(τU ◦ FK ≤ M) = µU(τU ≤ M) ≤ 1− e−Mµ(U) + d(U) ≤ Mµ(U) + d(U).

Therefore we get the first bound

|µU(DK+1)− µU(EK+1(M))| ≤ Mµ(U) + d(U). (6)

So the problem reduces to prove that µU(EK+1(M)) follows the expected

law. We decompose the sets EK+1(M) over Aj
K = U ∩ {τ (K)

U = j}. We have

EK+1(M) ∩ Aj
K = DK ∩ Aj

K ∩ T−(M+j){τU ∈ [r, s]

µ(U)
−M}.

We can now use the mixing with R = DK∩Aj
K ∈ σ(Uj) and S = T−(M+j){τU ∈

[r, s]/µ(U) − M}. According to the type of mixing, we get two approxima-
tions:

(α) When the partition U is α-mixing:

|µU(EK+1(M) ∩ Aj
K)− µU(DK ∩ Aj

K)µ(τU ∈ [r, s]

µ(U)
−M)| ≤ α(M)µU(DK ∩ Aj

K).

Summing over the possible values of j we get:

|µU(EK+1(M))− µU(DK)µ(τU ∈ [r, s]

µ(U)
−M)| ≤ α(M)µU(DK) ≤ α(M).

(7)

Now Theorem 2.1 gives

|µ(τU ∈ [r, s]

µ(U)
−M)− (e−r − e−s)| ≤ |µ(τU ∈ [r, s]

µ(U)
)− (e−r − e−s)|+ 2Mµ(U)

≤ 2(Mµ(U) + d(U)).
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We briefly recall the approximations done with their respective errors

µU(DK+1) → µU(EK+1(M)) → µU(DK)µ{τU ∈ [r,s]
µ(U)

} → µU(DK)(e−r − e−s)

↓ ↓ ↓
Mµ(U) + d(U) α(M) 2(Mµ(U) + d(U))

This allows us to show that the difference∣∣∣∣∣µU(DK+1)−
∫

QK+1

K+1∏
i=1

e−sidsK+1

∣∣∣∣∣ (8)

is bounded by the quantity f(K, U)+3Mµ(U)+α(M)+3d(U) ≤ f(K+1, U),
which proves the induction and concludes the proof of this first case.

(γ) We now consider the case when U is uniformly mixing:
Let M be such that γ(M) < µ(U)2. As a first step, we can restrict ourselves

to the case when QK ⊂ [0, z]K , with z = − log
γ(M)

µ(U)2
> 0. In fact,

QK \ [0, z]K ⊂
K⋃

k=1

R
k−1
+ ×]z,∞]× R

K−k
+

which implies using Theorem 2.1

µU(µ(U)τK ∈ QK \ [0, z]K) ≤
K∑

k=1

µU(τ
(k+1)
U − τ

(k)
U > z/µ(U))

= KµU(τU > z/µ(U))

≤ K(e−z + d(U)).

Moreover∫
QK\[0,z]K

K∏
i=1

e−sidsK ≤
K∑

k=1

∫
R

k−1
+ ×]z,∞]×R

K−k
+

K∏
i=1

e−sidsK ≤ Ke−z.

Next, by decomposing according to

µU(µ(U)τK ∈ QK) = µU(µ(U)τK ∈ QK ∩ [0, z]K) + µ(µ(U)τK ∈ QK \ [0, z]K),
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we get f(K, U) ≤ K(2e−z +d(U))+f ′(K, U) where f ′(K, U) is the maximum
of the difference (5) for the boxes QK ⊂ [0, z]K . We then estimate f ′(K, U).
First by uniform mixing we get

|µU(EK+1(M) ∩ Aj
K)− µU(DK ∩ Aj

K)µ(τU ∈ [r, s]/µ(U)−M)| ≤ γ(M)

µ(U)

and then we sum over all possible2 values j of τ (K),

|µU(EK+1(M))− µU(DK)µ(τU ∈ [r, s]/µ(U)−M)| ≤ Kzγ(M)

µ(U)2
.

The same computation performed after estimation (7) (where now α(M) is
replaced by Kzγ(M)/µ(U)2 in inequality (7)), gives the bound f ′(K+1, U) ≤

K
zγ(M)

µ(U)2
+ 3(d(U) + Mµ(U)). Then for each M ,

f ′(K, U) ≤ K2 zγ(M)

µ(U)2
+ 3K(d(U) + Mµ(U)).

Since M is arbitrary, our choice of z implies that the inequality (5) is verified
with

f(K, U) = K

4d(U) + inf
M∈N

γ(M)<µ(U)2

{
γ(M)

µ(U)2

(
2−K log

γ(M)

µ(U)2

)
+ 3Mµ(U)

} .

We are now ready to give the most important result of this section,
namely, to prove the Poisson statistics for successive return times. Let N(t)
be the number of visits into U up to the normalized time t/µ(U),

N(t) = sup
{

K > 0| τ (K)
U ≤ t/µ(U)

}
.

It turns out that N(t) is a discrete random variable whose law is close to a
Poissonian one, more precisely we have

2Since QK ⊂ [0, z]K , the Kth return time is less or equal to Kz, hence it takes at most
[Kz] different values.
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Theorem 2.8. The distribution of the number of visits N(t) differs from the
Poissonian law by

∣∣∣∣µU(N(t) = K)− tK

K!
e−t

∣∣∣∣ ≤ g(t,K, U) + g(t,K + 1, U),

where for each k ≥ 0 g(t, k, U) =
(
12tk/k + kk−1

)
k
√

f(k, U).

Proof. It is a consequence of the weak dependence of the differences of suc-
cessives return times established by Theorem 2.6. We first remark that

µU(N(t) = K) = µU

(
{τ (K)

U ≤ t

µ(U)
} ∩ {τ (K+1)

U >
t

µ(U)
}
)

= µU

(
τ (K) ≤ t/µ(U)

)
− µU

(
τ (K+1) ≤ t/µ(U)

)
.

It is then sufficient to compute the measure of points whose kth rescaled
return time is smaller than t, for k = K, K+1. If we put P̃k(t) the distribution
of the sum of the differences of successives return times, we know that when
the latter are i.i.d. random variables with the same exponential law, then
setting Lk(t) =

{
(s1, . . . , sk) ∈ R

k
+

∣∣ s1 + · · ·+ sk ≤ t
}

we get

P̃k(t) = Pk(t) :=

∫
Lk(t)

k∏
i=1

e−sidsi

which gives the classical result PK(t)− PK+1(t) =
tK

K!
e−t.

The difficulty comes now from the fact that we have to translate Theorem
2.6 given for boxes on the simplex Lk(t).

Let’s suppose that f(k, U) < 1, otherwise there is nothing to prove. Hence
the integer defined by N = [k/f(k, U)k+1] is bigger than k. We consider the
uniform partition of [0, t]k by cubes of size t/N . Let ∆k be the union of those
cubes Qk included in the interior of Lk(t), for which for any (s1, . . . , sk) ∈ Qk,∑k

i=1 si < t and Σk those which intersect the boundary, i.e. the union of those

cubes such that there exists (s1, . . . , sk) ∈ Qk with
∑k

i=1 si = t. By using
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Figure 1: Partition of the cube [0, t]k for k = 2. Σk is the union of dotted
squares and ∆k the union of shaded rectangles Rk(Qk).

the notation τk introduced in the proof of Theorem 2.6 we have,

δ :=

∣∣∣∣∣µU(τ
(k)
U ≤ t/µ(U))−

∫
Lk(t)

k∏
i=1

e−sidsk

∣∣∣∣∣
≤

∣∣∣∣∣µU(τk ∈
∆k

µ(U)
)−

∫
∆k

k∏
i=1

e−sidsk

∣∣∣∣∣ + µU(τk ∈
Σk

µ(U)
) +

∫
Σk

k∏
i=1

e−sidsk

≤ δ1 + δ2 + δ3.

To estimate δ1, we put Π for the projection over the k−1 last coordinates;
then the sets Rk(Qk) = {Q′

k ∈ ∆k|Π(Q′
k) = Π(Qk)} are boxes, and their

number is bounded by Nk−1 (see Figure 1). For each of these boxes Theorem
2.6 gives an error smaller than f(k, U), and then we get δ1 ≤ Nk−1f(k, U).

To compute δ2 and δ3, we first remark that a straightforward combinato-
rial calculus gives, for the number Ck

N of cubes inside Σk, Ck
N ≤ 6Nk−1 (see

[Sau98b]). But for each cube Qk ⊂ Σk Theorem 2.6 gives

µU(τk ∈ Qk) ≤
∫

Qk

k∏
i=1

e−sidsk + f(k, U).

Summing over all the cubes contained in Σk one has δ2 ≤ 6Nk−1f(k, U)+ δ3.

Moreover the integral

∫
Qk

k∏
i=1

e−sidsk is bounded by the volume of Qk equal
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to (t/N)k, which gives δ3 ≤ 6Nk−1tk/Nk. We then deduce that

δ ≤ δ1 + δ2 + δ3 ≤ Nk−1f(k, U) + 12tk/N

which implies δ ≤
(
12tk/k + kk

)
f(k, U) by the previous choice of N .

3 Applications

In the preceding chapter we gave general estimates for the error between
the distribution of the number of visits into a set U and the Poissonian law.
We could wonder whether this law is attained in the limit of µ(U) → 0.
Put in this way the question is not very clear. What we need is instead to
localize a sequence of neighborhoods Uε(z) shrinking to zero and ask whether
the Poisson law holds in the limit ε → 0. This approach was successfully
carried out by several authors as reminded in the introduction. Although
their results were applied to dynamical systems, the inspiration and some of
the techniques of the proofs were of probabilistic nature (theory of moments,
Laplace transform). Here we follow a purely dynamical direction, trying to
extract all the statistical informations by the ergodic properties of the system.
In this way we are able, for example, to exhibit the Poissonian statistics for
a large class of non uniformly hyperbolic maps of the interval, widely studied
in the last years especially to determine the rate of decay of correlations and
the central limit theorem.

Some statistical properties of these maps have been studied in the paper
[LSV97] (this paper contains a quite complete bibliography on the subject),
where an absolutely continuous invariant probability measure (acim) is first
constructed, and then it is shown that it enjoys a polynomial decay of cor-
relations.

One feature of these maps is that they are characterized by a structure
parameter (the order of tangency at an indifferent fixed point), which governs
the statistical properties, and that can be viewed as an indicator of the
“weak” hyperbolicity of the map. Actually, it turns out that this parameter
appears even in the approximation to the Poissonian law.

Let’s then consider for 0 < α < 1 the following map of the unit interval:

T (x) =

{
x(1 + 2αxα) ∀x ∈ [0, 1/2)

2x− 1 ∀x ∈ [1/2, 1]
.
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We recall some properties and results which we will need in the following, and
we refer the reader to the quoted paper for more informations and proofs.
This application has a finite Markov partition (with two elements), but for
our purposes it is more convenient to work with the countable one ξ generated
by the left preimages an of 1, ξ = {Am|m ∈ N} with An =]an+1, an]. We will
often use in the following the easy bound an

an+1
≤ 2.

We can associate to each point z ∈ X =]0, 1] an unique infinite sequence
ω = ω1ω2... with the property that Tm−1z ∈ Aωm for all integer m ≥ 1.
We denote by ξm the dynamical partition ξ ∨ T−1ξ · · ·T−m+1ξ and call its
elements m-cylinders. We denote with ξm(z) ∈ ξm the m-cylinder which
contains z. The sequence ω satisfies the admissibility condition: ωmωm+1

appears in ω if and only if ωm = 0 or ωm+1 = ωm − 1. We say that a non
empty cylinder C = [ω1 . . . ωk] ∈ ξk is maximal if it is maps onto X after
exactly k iterations, which is easily seen to be equivalent to ωk = 0.

3.1 Some mixing properties

We begin with a brief surveys of some results proved by two of us (B.S., S.V)
in the joint paper [LSV97] with Carlangelo Liverani. We showed that the
density h of the acim belongs to a certain cone of functions C∗(a), which
will be characterized later (see Lemma 3.2), provided a is big enough, and
satisfies 3:

Lemma A (Lemma 2.2 in [LSV97]) The cone C∗(a) is left invariant by the
Perron-Frobenius operator P , i.e. P (C∗(a)) ⊂ C∗(a).

Lemma B (Lemma 2.3 in [LSV97]) The density h belongs to the cone C∗(a),
and verifies in particular whenever x ≤ y

h(x)

h(y)
≤ (y/x)α+1, (9)

h(x) ≤ ax−α. (10)

3We recall the formal definition of the Perron Frobenius operator P acting on function
f : [0, 1] → R:

Pf(x) =
∑

Ty=x

1
DyT

f(y).

One easily check that µ is an acim iff h = dµ
dx is a fixed point of P on L1(dx).
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Proposition C (Distortion inequality, proof of Proposition 3.3 in [LSV97])
There exists some constant ∆ such that for all k and x, y ∈ C ∈ ξk,

DxT
k

DyT k
≤ ∆ < ∞. (11)

We will suppose without loss of generality that a ≥ 4∆.

Theorem D (Theorem 4.1 in [LSV97]) In the proof of this theorem we in
particular got that for f ∈ C∗(a),

∥∥∥P n
(
f − λ(f)

)∥∥∥
L1(λ)

≤ Φ(n)‖f‖L1(λ) (12)

with Φ(n) = Cn−
1
α

+1(log n)
1
α = OL(n−

1
α

+1), where we define byOL(ε) =
O(ε(log ε−1)r) in the limit ε → 0, for any constant r.

We then need a few more results on the speed of mixing which turn
out to be useful for the statistics of return times and also to establish the
weak-bernoullicity of the map.

Lemma 3.1. For any z ∈ X, and for any m such that ξm(z) is maximal,
the partition U = {ξm(z), ξm(z)c} satisfies a property close to the α-mixing,
namely

α′(N) = sup
j∈N

sup
R∈Uj

T jR⊂U

sup
S∈U∞

∣∣∣∣µ(R ∩ T−N−jS)

µ(R)
− µ(S)

∣∣∣∣ = OL((N −m)1− 1
α ).

Proof. Let z be a point of X and m be an integer such that ξm(z) is maxi-
mal. Let U be the partition given by ξm(z) and its complement, and Uj the
refinement of U . For R ∈ Uj such that T jR ⊂ U , we have R ∈ σ(ξm+j) and
R is a union of maximal cylinders V k

m+j ∈ ξm+j; choose V ∈ ξm+j one of

these maximal cylinders. For any S ∈ T−(N+j)B there exists a set W ∈ B
such that R = T−(N+j)W . We then have

(∗) := µ(V ∩ S)− µ(V )µ(S)

=

∫
1IV 1IW ◦ TN+jhdλ−

∫
µ(V )h1IW dλ

=

∫
PN+j[h(1IV − µ(V ))]1IW dλ

≤ ‖PN+j[h(1IV − µ(V ))]‖L1(λ).



Hirata, Saussol and Vaienti 21

By exploiting the fact that V is maximal we continue the preceding bound
as

(∗) ≤
∥∥PN−m[P j+m(h1IV )− µ(V )]

∥∥
L1(λ)

+
∥∥PN−m[µ(V )h− µ(V )]

∥∥
L1(λ)

≤ 4aΦ(N −m)µ(V ),

with Φ given by inequality (12), provided Pm+j(h1IV ) ∈ C∗(a), which is the
case by the Lemma 3.2 below. We conclude the proof by summing over all
the maximal cylinders of R.

Lemma 3.2. For any maximal cylinder V ∈ ξp,

P p(h1IV ) ∈ C∗(a).

Proof. We first set f := P p(h1IV ) and T p
V : V → X the restriction of T p to

V . Since T p is injective over V we can rewrite f as

f(x) = h ◦ T−p
V (x)DxT

−p
V

which in particular shows that f is continuous. To prove that f belongs to the
cone of smooth functions C∗(a) we must verify the following four properties
which just define the cone.

1. f is continuous and positive, that is clear in our case.

2. f is decreasing. Since h ∈ C∗(a), h decreases. In addition, T−p
V is

decreasing and concave, therefore h ◦ T−p
V and DT−p

V decrease.

3. x 7→ xα+1f(x) increases. Since T−p
V : X → V is increasing, an equiva-

lent statement is that

(T pu)α+1h(u)
1

DuT p

is increasing with u ∈ V . Observing that(
T pu

u

)α+1
1

DuT p

increases over V ∈ ξp (which is true for p = 1 and the general case
is proved by recurrence), and u 7→ uα+1h(u) increases, we obtain the
result.
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4. f(x) ≤ ax−α
∫

f . Since f is continuous, there exists v ∈ V such that∫
f = f(T pv) = h(v)

1

DvT p
.

The distortion estimate (11) for u ∈ V ∈ ξp gives

DvT
p

DuT p
≤ ∆.

Moreover since h decreases, inequality (9) yields

h(u)

h(v)
≤ h(aω1+1)

h(aω1)
≤

(
aω1

aω1+1

)α+1

≤ 4.

As a consequence, we get for u = T−p
V x

f(x) = h(u)
1

DuT p
≤ 4h(v)

∆

DvT p
≤ ax−α

∫
f,

because x ≤ 1 and 4∆ ≤ a.

We finally prove that the countable partition ξ, and therefore the two-
elements one, is weakly Bernoulli.

Theorem 3.3. The partition ξ is weakly Bernoulli for (X,T, µ) with speed
β(n) = OL(n1−1/α).

Proof. We begin to recall the following result by Hofbauer and Keller [HK82]
which permits to bound β(n) as

β(n) ≤ sup
m∈N

∑
R∈ξm

‖P n+m((1IR − µ(R))h)‖L1
λ
. (13)

Then it will be enough to bound

‖Pm+n((1IR − µ(R))h)‖

with R ∈ ξm. Let pR ≥ m be the integer for which R ∈ ξpR
is maximal.

We decompose the sum over all the cylinders R ∈ ξm into two blocks. Let
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M(m, n) be the set of maximal cylinders for pR < m + n/2. When R ∈
M(m, n), the same computation performed in Lemma 3.1 gives

‖Pm+n((1IR − µ(R))h)‖L1
λ
≤ µ(R)OL((m + n− pR)1−1/α) = µ(R)OL(n1−1/α).

Then the set of cylinders which do not belong to M(m, n) is exactly T−m+1[0, an/2],
whose measure is equal to

µ(T−m+1[0, an/2]) = µ([0, an/2]) =

∫ an/2

0

h(x)dx = O(n1−1/α).

This proves the theorem.

3.2 Statistics of return times

We now come back to the study of return times and the first step will be the
estimation of the quantities involved in the error term given by Lemma 2.4.

Lemma 3.4. There exists a constant B such that for any k and C ∈ ξk with
T−kC ∩ C 6= ∅,

sup P k1IC ≤ Bk−1−1/α. (14)

Proof. Let k0 be such that Dak0
T ≤ 2, and put r = Dak0

T > 1. Let C =

[ω1...ωk] be a k-cylinder such that T−kC ∩ C 6= ∅. This implies that ωkω1 is
admissible. We want to estimate sup P k1IC = 1/ infC DT k. If ωj ≤ k0 for all
j = 1..k, then DT k ≥ rk. Else, take j such that ωj = max1≤i≤k ωi. Either
j = 1, and consequently ωk = 0 or ωj−1 = 0. In the last case we have

inf
C

DT k ≥ inf
[ω1...ωj−1]

DT j−1 inf
[ωj ...ωk]

DT k+1−j ≥ ∆−1 inf
[ωj ...ωkω1...ωj−1]

DT k.

By this argument we are led to consider the worst case which is given by a
cylinder of type C = [(k − 1)(k − 2)...0]. For T kC = [0, 1], the distortion
formula (11) and the estimation ak ≤ ck−1/α given by Lemma 3.2 in [LSV97]
we get Dak

T k = c′k1+1/α for some constant c′, from which the lemma follows
by taking B ≥ ∆/c′ such that Bk1−1/α ≥ rk for all k > 0.

We now introduce the first return time of a cylinder U which plays a
crucial role in [Hir95]. We define it as τ(U) = inf {τU(x)|x ∈ U}.
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Lemma 3.5. The quantity aN(U) defined in Lemma 2.4 for U = ξm(z) is
bounded by,

aN(U) =
4∆

inf h

Nµ(U)

λ(T τ(U)U)
.

Proof. We suppose N > τ(U) otherwise aN(U) = 0. Set τ = τ(U); for each
z in X we have

aN(U) ≤
N∑

j=1

1

µ(U)
µ(T−jU ∩ U)

=
N∑

j=τ

1

µ(U)

∫
P j(1IUh)1IUdλ

≤ N sup
j=τ..N

sup
U

P j(1IUh)

h
.

Now the distortion (11) and the regularity of the density (9) give

P τ (1IUh) = h ◦ T−τ
U DT−τ

U 1IT τ U

≤ 4∆
1

λ(T τU)

∫
T τ U

h ◦ T−τ
U DT−τ

U 1IT τ Udλ

≤ 4∆
µ(U)

λ(T τU)
.

Finally, Ph = h and since P is a positive operator one has

P j(1IUh)

h
≤ P j−τ1I

h
sup P τ (1IUh) ≤

P j−τ h
inf h

h
sup P τ (1IUh) ≤ 4∆

inf h

µ(U)

λ(T τU)
.

The next step will be to show that τ(U) is almost everywhere big enough
to give a good upper bound in the previous lemma for aN(U).

We first define in full generality the local rate of return for cylinders. As
a matter of fact, we would like to point out that the first return time of
a set into itself allows to define and compute an interesting dimension-like
characteristic which we called the Afraimovich-Pesin dimension in [PSV98].
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Definition 3.1. Let ζ a partition of X. Denote with ζn(x) the element of
ζ ∨ T−1ζ ∨ · · · ∨ T−n+1ζ which contains x ∈ X. We then define the local
(lower and upper) rate of return for cylinders as

Rζ(x) = lim
n→∞

τ(ζn(x))

n
.

Proposition 3.6. (i) Both Rζ and Rζ are sub-invariant, namely Rζ◦T ≤ Rζ

and Rζ ◦ T ≤ Rζ.
(ii) Assume that ζ is a measurable partition of the measurable space X,

and µ is an invariant probability, then Rζ and Rζ are µ-a.e. invariant.

(iii) Moreover, whenever µ is ergodic Rζ and Rζ are µ-a.e. constant

Proof. (i) Let x ∈ X. For each integer n > 0, we have:

ζn(x) ∩ T kζn(x) 6= ∅ =⇒ ζn−1(Tx) ∩ T kζn−1(Tx) 6= ∅.

which implies that τ(ζn−1(Tx)) ≤ τ(ζn(x)).
(ii) is a standard property of sub-invariant functions on finite measure

spaces and then (iii) follows immediately.

We state the following result which can be improved for some subshifts4.

Proposition 3.7. For µ-almost every z ∈ X, the lower rate of return for
cylinders is equal to 1.

Rξ(z) = 1.

Proof. Let 1/2 < δ < 1. Consider the set (we denote Nm(z) = τ(ξm(z))),

Lm := {z ∈ A0|Nm(z) ≤ δm}.

If

∞∑
m=1

µ(Lm) < ∞, (15)

4We have in fact the following:
Theorem. Suppose that µ is a Gibbs state for the Hölder potential ϕ on some irreducible
and aperiodic subshift of finite type with finite alphabet ζ, then µ-almost everywhere,
Rζ = Rζ = 1.
Proof. An easiest version of the Proposition 3.7 gives the lower bound, while the uniform
upper bound τ(Cn) ≤ n+n0 holds, where Cn is a cylinder of order n, and n0 is the lowest
power for which the transition matrix becomes strictly positive.
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then the Borel-Cantelli Lemma ensures that for almost every z ∈ A0, we
have Nm > δm, up to finitely many m. By sending δ to 1 we show that
Rξ(z) ≥ 1 almost everywhere on A0. Then for the preceding proposition
(iii) and the ergodicity of the measure µ, we get the same bound almost
everywhere. The equality finally follows since each time that Tm−1z ∈ A0,
we have Tmξm(z) = X hence Nm(z) ≤ m.

In order to prove (15) it is sufficient to consider Lebesgue measure instead
of µ (since the density h is bounded from below). We have

λ(Lm) =

[m/2]∑
k=1

λ(Nm = k) +
δm∑

k=[m/2]+1

λ(Nm = k).

(1) + (2)

We now perform a detailed analysis of the sets appearing in the preceding
formula.

(1): In this case, the cylinder ξm(z) with Nm = k must be of the form

ξm(z) = [(ω1.. .ωk)(ω1...ωk)...(ω1.︸ ︷︷ ︸
[m/k]

..ωk)...].

Therefore when k ≤ [m/2], the cylinder is completely determined by its first
k symbols. Put C = [ω1...ωk]; we say that a cylinder of length k is admissible
(admis) when it is the beginning of a cylinder of Lm with Nm = k. Then we
can bound (1) by

(1) ≤
[m/2]∑
k=1

∑
C admis

λ(C ∩ T−kC ∩ · · · ∩ T−[m/k−1]kC)

≤
[m/2]∑
k=1

∑
C admis

(
sup

C
P k1IC

)[m/k]−1

λ(C)

≤
[m/2]∑
k=1

sup
C admis

(
sup

C
P k1IC

)[m/k]−1

.

We first remark that T k being injective over C ∈ ξk, we have

P k1IC ≤ 1/ inf
A0

DT k ≤ 1/2.
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We split the last sum in three pieces by fixing k0 as the biggest integer for

which k
1+ 1

α
0 ≥ eB where B is the constant in Lemma 3.4. We then have by

using Lemma 3.4

(1) ≤
k0∑

k=1

(1/2)[m/k]−1 +

m/3∑
k=k0

(Bk−1−1/α)m/k−2 +

[m/2]∑
m/3

Bk−1−1/α.

The first and the last sum are easily shown to be summable with respect
to m. For the second term, we observe that the terms (Bk−1−1/α)m/k−2 are
increasing in k when k is bigger than k0. A direct estimation of the sum is
B31/αm−1/α which is summable with respect to m.

(2): In this case, the cylinder ξm(z) has the form

ξm(z) = [ω1...ωm−k︸ ︷︷ ︸
m−k

ωm−k+1...ωk︸ ︷︷ ︸
2k−m

ω1...ωm−k︸ ︷︷ ︸
m−k

].

As before, we set C = [ω1...ωm−k], and we say that C is admissible (admis)
when it is the beginning of a cylinder of Lm with Nm = k.

(2) ≤
δm∑

k=[m/2]+1

∑
C admis

λ(C ∩ T−kC)

≤
δm∑

k=[m/2]+1

sup
C admis

sup
C

P k1IC .

Let first p = p(C) ≥ m− k be such that C ∈ ξp is maximal (i.e. p(C) is the
smallest p for which C ∈ ξp). When p < k, since 1 ∈ C∗(a) the inequality
(12) and Lemma 3.4 give

sup
C

P k1IC ≤ sup P p1IC sup
C

P k−p1 ≤ a2αBp−1−1/α ≤ a2αB(m− k)−1−1/α.

When p ≥ k, C ∈ ξk and T−kC ∩ C 6= ∅ we have

P k1IC ≤ Bk−1−1/α.

But k ≥ m − k ≥ (1 − δ)m, and then the sum (15) is summable for any
δ < 1.

We are now ready to state and prove the main theorems of this section
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Theorem 3.8. For µ-almost every z ∈ X and β < β̄(α),

sup
t≥0

∣∣∣∣µξm(z)

(
τξm(z) >

t

µ(ξm(z))

)
− exp(−t)

∣∣∣∣ = O(µ(ξm(z))β).

where the critical exponent β̄(α) = 1− α.

Proof. Let ε be a positive number. Let z be a typical point for Proposition 3.7
and for the Shannon-McMillan-Breiman theorem. We want to apply Lemma
2.4; Let m(ε) such that for any m > m(ε) we have (1 − ε)m ≤ τ(ξm(z)),
µ(ξm(z)) ≤ exp(−m2hµ/3) and also µ(ξεm(T [(1−ε)m]z)) ≥ exp(−(2[εm])hµ).

For the sake of simplicity, we put for any m, Um = ξm(z). For any
m > m(ε) such that Um is maximal, we have (1− ε)m ≤ τ(Um) ≤ m, and all
the iterates T jUm for 1 ≤ j < m are at a distance bigger than am from the
neutral fixed point (because Um is maximal). If τ(Um) < m then the density
stays bounded on the orbit T jUm by ba−α

m so we have

λ(T τ(Um)Um) ≥ aα
m

b
µ(T τ(Um)Um) ≥ aα

m

b
exp(−2εmhµ).

On the other hand, when τ(Um) = m we still get

λ(T τ(Um)Um) = 1 ≥ aα
m

b
exp(−2εmhµ).

Lemma 3.5 gives us the following estimation with N = µ(Um)−α+ε,

aN(Um) = O(µ(Um)1−α−3ε).

Lemma 3.1 with R = Um gives us

bN(Um) = OL((µ(Um)−α+ε −m)1− 1
α ) = OL(µ(Um)(−α+ε)(1− 1

α
)).

We can then apply Lemma 2.4, which gives

c(Um) =≤ aN(Um) + bN(Um) = O(µ(Um)β)

for β ≤ 1− α− 3ε and β ≤ 1− α− 2ε(1/α− 1). We finally end up with

d(Um) = O(µ(Um)β) (16)

for any β < 1 − α, since ε is arbitrary small, which conclude the proof by
applying Theorem 2.1.
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Remark 3.9. The preceding theorem shows that the critical exponent β̄(α)
is smaller than 1.We point out that, by using Proposition 2.3 the power β̄
cannot exceed 1.

Theorem 3.10. For µ-almost every z ∈ X, we have for any t ≥ 0 and
K ≥ 0 and β < β̄(α)∣∣∣∣µξm(z)

(
Nξm(z)(t) = K

)
− tK

K!
exp(−t)

∣∣∣∣ = O(µ(ξm(z))β/(K+1)).

with the critical exponent β̄(α) = 1− α.

Proof. Let z be a typical point satisfying the preceding theorem and m such
that Um = ξm(z) is maximal.

By invoking the footnote of Theorem 2.6, it will be sufficient to use the
weakened α-mixing condition

α′(M) = OL((M −m)α− 1
α )

given by Lemma 3.1 to apply Theorem 2.6. Take M = µ(Um)−α; we thus
find for β < 1− α, and by the estimation (16) and Theorem 2.6 an error of
the order

f(K, Um) = const[d(Um) + α′(M) + Mµ(U)] = O(µ(Um)β).

By applying Theorem 2.8, the error for the probability to have K successives
visits is of the order µ(Um)β/(K+1) for all β < 1− α.

4 Concluding remarks

We conclude with few observations. First, the proofs for the exponential-
one law and the Poisson law given in section 3 for a class of non uniform
hyperbolic maps, can be easily adapted, and they are even easier, to all
the cases quoted in the introduction, namely: Axiom A diffeomorphisms,
transitive Markov chains, expanding maps of the interval with a spectral gap
and in general to all ϕ-mixing dynamical systems.

For such systems, an estimation for the error can also be done: following
the arguments of Theorems 3.8 and 3.10, one can easily see that the critical
exponent β̄ is equal to 1. This supports our believes that: (i) the error terms
of type µ(U)β could be optimal and (ii) the non uniform hyperbolicity of
the map reflects in the critical exponent: in that case, in fact, it should be
strictly smaller than one.
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