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Abstract. We study the Hausdorff dimension of a large class of sets
in the real line defined in terms of the distribution of frequencies of
digits for the representation in some integer base. In particular, our
results unify and extend classical work of Borel, Besicovitch, Eggleston,
and Billingsley in several directions. Our methods are based on recent
results concerning the multifractal analysis of dynamical systems and
often allow us to obtain explicit expressions for the Hausdorff dimen-
sion. This work is still another illustration of the role that the theory of
dynamical systems can play in number theory.

1. Introduction

Instead of formulating general statements at this point, we want to discuss
explicit examples (although already nontrivial), which illustrate well the
nature of our work.

Given an integer m > 1, for each number x ∈ [0, 1] we shall denote by
0.x1x2 · · · a base-m representation of x. It is easy to see that this rep-
resentation is unique except for countably many points. We remark that
since countable sets have zero Hausdorff dimension, the nonuniqueness of
the representation does not interfere with our study.

For each k ∈ {0, . . . ,m− 1}, x ∈ [0, 1], and n ∈ N set

τk(x, n) = card{i ∈ {1, . . . , n} : xi = k}.

Whenever there exists the limit

τk(x) = lim
n→∞

τk(x, n)
n

(1)

it is called the frequency of the number k in the base-m representation of x.
When we write the symbol τk(x) we are already assuming the existence of
the limit in (1).

A classical result of Borel [6] says that for Lebesgue-almost every x ∈ [0, 1]
we have τk(x) = 1/m for every k. Furthermore, for m = 2, Hardy and
Littlewood [10] showed that for Lebesgue-almost every x ∈ [0, 1], k = 0, 1,
and all sufficiently large n,∣∣∣∣τk(x, n)− 1

2

∣∣∣∣ <
√

log n
n

.
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In particular, Lebesgue-almost all numbers are normal in every integer base.
This remarkable result (even though it is today straightforward to prove in
a variety of ways) does not mean that all numbers are normal. In fact we
shall see that quite the opposite happens.

Consider now the set

Fm(α0, . . . , αm−1) = {x ∈ [0, 1] : τk(x) = αk for k = 0, . . . , m− 1} , (2)

whenever α0 + · · · + αm−1 = 1 with αi ∈ [0, 1] for each i. It is composed
of the numbers in [0, 1] having a ratio αk of digits equal to k in its base-m
representation for each k. A precursor result concerning the size of these
sets from the point of view of dimension theory is due to Besicovitch [4].
For m = 2, he showed that if α ∈ (0, 1

2) then

dimH

{
x ∈ [0, 1] : lim sup

n→∞

τ1(x, n)
n

≤ α
}

= −α logα+ (1− α) log(1− α)
log 2

,

where dimH Z denotes the Hausdorff dimension of the set Z. More detailed
information was later obtained by Eggleston [8], who showed that

dimH Fm(α0, . . . , αm−1) = −
∑m−1

k=0 αk logαk
logm

. (3)

An immediate consequence is that if αi ∈ (0, 1) for some i, then the set
Fm(α0, . . . , αm−1) is nonempty (and thus dense in [0, 1]), with uncountable
many points and even positive Hausdorff dimension. The work of Eggle-
ston was further generalized by Billingsley (see his book [5] for details and
references; see also Section 5.4).

We now consider sets of points for which the limit in (1) does not exist.
For each k ∈ {0, . . . ,m− 1} we define the set

Mk =
{
x ∈ [0, 1] : lim inf

n→∞

τk(x, n)
n

< lim sup
n→∞

τk(x, n)
n

}
. (4)

Notice that Mk has zero Lebesgue measure, due to the above-mentioned
result of Borel. Clearly,

[0, 1] =
⋃

(α0,... ,αm−1)∈Lm

Fm(α0, . . . , αm−1) ∪
m−1⋃
k=0

Mk, (5)

where

Lm = {(α0, . . . , αm−1) ∈ [0, 1]m : α0 + · · ·+ αm−1 = 1} . (6)

In this paper we provide further nontrivial information about the decompo-
sition in (5). In particular we prove the following statement.

Theorem 1. For each k ∈ {0, . . . ,m− 1} the set Mk contains a dense Gδ
set in [0, 1], and

dimH

m−1⋂
k=0

Mk = 1. (7)

Theorem 1 implies that
⋃m−1
k=0 Mk has Hausdorff dimension equal to 1,

and thus, from the point of view of dimension theory, it is as large as the
interval [0, 1]. On the other hand, the union

⋃m−1
k=0 Mk has not only zero
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Lebesgue measure but also zero measure with respect to any measure which
is invariant under the map x 7→ mx (mod 1) (see Section 2 for details), and
thus the set

⋃m−1
k=0 Mk is rather small from the point of view of measure

theory.
We can also consider sets more complicated than those in (2), and in par-

ticular sets defined by linear or even nonlinear relations among the numbers
τk(x). These generalizations are described in the remaining sections. Here
we shall give a simple but nontrivial example. Let m = 4, and define the set

F = {x ∈ [0, 1] : τ1(x) = 5τ0(x)}.
This is the set of numbers in [0, 1] such that its base-4 representation has a
ratio of ones which is five times the ratio of zeros. The ratios of twos and
threes is arbitrary. Again, the nonuniqueness of the representation is not an
issue in the study of Hausdorff dimension. It is easy to see that

F ⊃
⋃

α∈[0,1/6]

⋃
β∈[0,1−6α]

F4(α, 5α, β, 1− 6α− β). (8)

We emphasize that the inclusion is proper since F contains points for which
τ2(x) and τ3(x) are not well-defined (this fact substantially complicates the
problem of computing dimH F since a priori this dimension may not be
entirely carried by the union in (8)). We shall prove that

dimH F =
log(2 + 6/55/6)

log 3
≈ 0.91779 · · · (in base 10). (9)

We first remark that it is easy to show that this last number is a lower bound
for dimH F . Namely, it follows from (3) and (8) that

dimH F ≥ max
α∈[0,1/6]

max
β∈[0,1−6α]

dimH F4(α, 5α, β, 1− 6α− β)

= max
α∈[0,1/6]

−
α logα+ 5α log(5α) + (1− 6α) log 1−6α

2

log 4

(10)

The maximum is attained at α = 1/(2 · 55/6 + 6) and it is a straightforward
computation to show that it is equal to the constant in (9). This establishes
the lower bound.

The corresponding upper bound is more delicate, since the union in (8)
is composed of an uncountable number of nonempty pairwise disjoint sets.
Moreover the inclusion in (8) is proper. This is where the theory of multifrac-
tal analysis comes into the play. Namely, using what is called a conditional
variational principle we can show that although the inclusion is proper, the
Hausdorff dimension of F is carried by exactly one set in the union in (8).
We now formulate a particular case of the conditional variational principle
that is sufficient for the purpose of the present example.

Theorem 2. For each k 6= ` and β ≥ 0 we have
dimH{x ∈ [0, 1] : τk(x) = βτ`(x)}

= max

{
−
∑m−1

j=0 αj logαj
logm

: (α0, . . . , αm−1) ∈ Lm and αk = βα`

}
=

log(m− 2 + (β + 1)/ββ/(β+1))
logm

.
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An easy consequence of Theorem 2 and (3) is that for each k 6= ` and
β ≥ 0, there exists (α0, . . . , αm−1) ∈ Lm such that

Fm(α0, . . . , αm−1) ⊂ {x ∈ [0, 1] : τk(x) = βτ`(x)}

and

dimH Fm(α0, . . . , αm−1) = dimH{x ∈ [0, 1] : τk(x) = βτ`(x)}.

In particular, setting m = 4, k = 1, ` = 0, and β = 5, this observation
implies that the inequality in (10) is in fact an identity, thus establishing
the claim in (9).

The main advantage of our approach is that the classes of problems that
we consider (which a priori could seem of very different nature) can be
treated in a unified manner, as an application of the theory of multifractal
analysis. Another advantage of this approach is that the value of the Haus-
dorff dimension does not need to be guessed a priori. In some works this a
priori guess is crucial in order to construct auxiliary measures sitting on the
set. These measures are then used to establish, rigorously, the value of the
Hausdorff dimension.

The statements formulated above are consequences of more general state-
ments established in this paper. As mentioned before, our results are based
on recent work concerning the multifractal analysis of dynamical systems.
On the other hand, we emphasize that the paper is self-contained. In par-
ticular, we assume no former knowledge of multifractal analysis.

The description of the state-of-the-art of multifractal analysis in 1997 can
be found in the book by Pesin [12]. For some later developments (and in
particular those concerning the results that we use here) the reader should
look at the papers in the bibliography. In particular our approach requires
a multidimensional version of the classical multifractal analysis. Such a
version was first introduced by the authors in [2].

The structure of the paper is as follows. The necessary notions from er-
godic theory are briefly recalled in Section 2. In Section 3 we establish Theo-
rem 1 and several related results. In particular, we show that the set Mk can
be further decomposed in a natural way into an uncountable union of pair-
wise disjoint sets with positive Hausdorff dimension. The above-mentioned
conditional variational principle (of which Theorem 2 is a particular case) is
described in Section 4. Further applications to number-theoretical problems
are given in Section 5.

Acknowledgment. We would like to thank the referee for a number of good
suggestions that helped us improve the exposition. We also would like to
thank Christian Wolf for his comments.

2. Basic notions

Fix a positive integer m and consider the map gm : [0, 1] → [0, 1] defined
by gmx = mx (mod 1). Observe that if 0.x1x2 · · · is a base-m representation
of x ∈ [0, 1], then gmx = 0.x2x3 · · · .

Let µ be a gm-invariant probability measure on [0, 1], i.e., a probability
measure such that µ(gm−1A) = µ(A) for every measurable set A ⊂ [0, 1].
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The entropy of gm with respect to µ is defined by

hµ(gm) = inf
n≥1
− 1
n

∑
i1···in

µ(Ii1···in) logµ(Ii1···in), (11)

where

Ii1···in = [0.i1 · · · in, 0.i1 · · · in +m−n). (12)

We need the following basic result of ergodic theory (see for example [11,
Chapters 1 and 2] for details).

Proposition 3. We have

hµ(gm) = inf
n≥1
−
∑
i1···in

µ(Ii1···in) log
µ(Ii1···in)
µ(Ii2···in)

=
∫ 1

0
lim
n→∞

logµ(Ix1···xn)
−n

dµ(x),

where the limit exists for µ-almost every x = 0.x1x2 · · · ∈ [0, 1].

It follows from (11) that

hµ(gm) ≤ −
m−1∑
k=0

µ(Ik) logµ(Ik). (13)

Given (α0, . . . , αm−1) ∈ Lm (see (6)), consider the gm-invariant probability
measure µ = µα0,... ,αm−1 such that µ(Ii1···in) = αi1 · · ·αin for each Ii1···in .
It is called a Bernoulli measure. It follows easily from the first formula for
hµ(gm) in Proposition 3 that

hµα0,... ,αm−1
(gm) = −

m−1∑
k=0

αk logαk. (14)

Let now M be the family of gm-invariant probability measures on [0, 1]. By
(13) and (14) we obtain

max{hµ(gm) : µ ∈M and µ(Ik) = αk for each k} = hµα0,... ,αm−1
(gm). (15)

Recall that a probability measure µ is ergodic if any gm-invariant set has
either zero or full µ-measure (a set A is gm-invariant if gm−1A = A). For
example, Bernoulli measures are ergodic. We define the Hausdorff dimension
dimH µ of the measure µ by

dimH µ = inf{dimH Z : µ(Z) = 1}.
We now consider the relation between entropy and Hausdorff dimension.

Proposition 4. For any measure µ ∈M we have

dimH µ ≥ hµ(gm)/logm, (16)

with equality when µ is ergodic.

Proof. Assume first that µ is ergodic. In this case (see for example [12]) it
is known that

dimH µ = lim
n→∞

logµ(Ix1···xn)
−n logm
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for µ-almost every x = 0.x1x2 · · · ∈ [0, 1]. It follows from the second formula
for hµ(gm) in Proposition 3 that dimH µ = hµ(gm)/ logm.

Consider now an arbitrary measure µ ∈M and an ergodic decomposition
(µα)α∈S of µ (it always exists; see for example [14, Section 6.2]). This means
that for each α ∈ S the measure µα is ergodic and there exists a measure
ν on S such that µ(Z) =

∫
S µα(Z) dν(α) for every measurable set Z. If

µ(Z) = 1 then µα(Z) = 1 for ν-almost every α ∈ S. Hence,

dimH Z ≥ dimH µα = hµα(gm)/ logm.

Integrating over α we obtain (see for example [14, Theorem 8.4])

dimH Z ≥
∫
S
hµα(gm) dν(α)/ logm = hµ(gm)/ logm.

Taking the infimum over all the sets Z with µ(Z) = 1 we obtain (16).

We note that the inequality in (16) is in general strict in the case of
nonergodic measures. Explicit examples can be readily obtained for instance
from the following properties: if µ1 and µ2 are ergodic measures and µ =
c1µ1 + c2µ2 with c1 + c2 = 1 and c1, c2 > 0 then

dimH µ = max{dimH µ1,dimH µ2}
and hµ(gm) = c1hµ1(gm) + c2hµ2(gm).

3. Irregular sets

In this section we establish Theorem 1 on the “size” of the sets Mk

(see (4)) from the points of view of topology and dimension theory. It
is in fact a particular case of stronger statements proved in this section.

For each α < α we consider the set

M
α,α
k =

{
x ∈ [0, 1] : lim inf

n→∞

τk(x, n)
n

= α and lim sup
n→∞

τk(x, n)
n

= α

}
.

Notice that Mα,α
k has zero measure with respect to any gm-invariant prob-

ability measure. We have

Mk =
⋃

0≤α<α≤1

M
α,α
k , (17)

and hence, the interval [0, 1] can be decomposed into the disjoint union

[0, 1] =
⋃

(α0,... ,αm−1)∈Lm

Fm(α0, . . . , αm−1) ∪
m−1⋃
k=0

⋃
0≤α<α≤1

M
α,α
k .

This type of decomposition is often called a multifractal decomposition. The
theory of multifractal analysis has mainly been concerned with sets such as
Fm(α0, . . . , αm−1) that consist of points for which certain limit or limits
exist (see (1) and (2)). On the other hand, it was recently observed that
the “irregular parts” of certain multifractal decompositions (of the type of
those in (17)) may be (and often are, in a very precise sense) rather large
from the points of view of topology and dimension theory. This allows us to
have a much more detailed information about multifractal decompositions.

We are also interested in the irregular sets Mα,α
k . We shall prove that even

though they are rather small from the point of view of measure theory they
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have positive Hausdorff dimension. Furthermore, one of them is residual
(i.e., it contains a dense Gδ set).

Proposition 5. For each k ∈ {0, . . . ,m− 1} the set M0,1
k is residual.

Proof. Choose ` ∈ {0, . . . ,m−1} different from k. Let x = 0.x1x2 · · · ∈ [0, 1]
and fix an integer n ∈ N. We consider the set Un(x) of points y = 0.y1y2 · · · ∈
[0, 1] such that

yi =


xi if 1 ≤ i ≤ n
k if n < i ≤ n2

` if n2 < i ≤ n3

.

Observe that if y ∈ Un(x) then

τk(y, n2)
n2

≥ 1− 1
n

and
τk(y, n3)

n3
≤ 1
n
. (18)

Note that only the first n3 digits of y are specified. The open set

Vm =
⋃
n>m

⋃
x∈[0,1]

intUn(x)

is dense in [0, 1]. It follows from (18) that the dense Gδ set
⋂∞
m=1 Vm is

contained in M0,1
k . This completes the proof.

One can easily verify that the Gδ set
⋂∞
m=1 Vm constructed in the proof

of Proposition 5 (and that is dense in M0,1
k ) has zero Hausdorff dimension.

On the other hand we shall see below (see Theorem 7) that dimHM
α,α
k > 0

whenever 0 < α < α < 1 (and for each 0 ≤ α < α ≤ 1 whenever m > 2).
In view of (17), Proposition 5 implies that the set Mk is residual. Thus,

in order to establish Theorem 1 it remains to prove the identity (7). This
will be obtained as a consequence of a more general statement.

Given functions ϕ, ψ : [0, 1]→ R such that ψ > 0 we consider the set

Kα(ϕ,ψ) =
{
x ∈ [0, 1] : lim

n→∞

∑n
i=0 ϕ(gmix)∑n
i=0 ψ(gmix)

= α

}
, (19)

where gm is defined by gmx = mx (mod 1). For example, if

ϕk = χ[k/m,(k+1)/m) and ψk = 1 for k = 0, . . . , m− 1 (20)

then
m−1⋂
k=0

Kαk(ϕk, ψk) = Fm(α0, . . . , αm−1).

We shall also consider some discontinuous functions. We call a function
ϕ : [0, 1]→ R m-Hölder continuous if it is piecewise Hölder continuous with
finitely many discontinuities and at most at negative powers of m.

Theorem 6. Let ϕ1, . . . , ϕd, ψ1, . . . , ψd be m-Hölder continuous functions
with ψi > 0 for each i. We have

dimH

(
[0, 1] \

d⋃
i=1

⋃
α∈R

Kα(ϕi, ψi)

)
= 1

provided that Kα(ϕi, ψi) = [0, 1] for no i and no α.
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Proof. We use the approach developed in [3] based on the notion of distin-
guishing family of measures. We recall that a family of invariant probability
measures µ1, . . . , µ` is a distinguishing family for the sequences of functions
(f1n)n, . . . , (fdn)n provided that for i = 1, . . . , d there exist measures νi1
and νi2 in {µ1, . . . , µ`} and constants ai1 6= ai2 such that for each j = 1, 2
and νij-almost every x,

lim
n→∞

fin(x) = aij .

Set

Λ =
{
x ∈ [0, 1] : lim inf

n→∞
fin(x) < lim sup

n→∞
fin(x) for i = 1, . . . , d

}
. (21)

The following statement is a particular case of Theorem 7.6 in [3].

Lemma 1. If the ergodic gm-invariant probability measures µ1, . . . , µ` form
a distinguishing family for the sequences of m-Hölder continuous functions
(f1n)n, . . . , (fdn)n then

dimH Λ ≥ min{dimH µ1, . . . , dimH µ`}.

Consider the sequences

fin(x) =

∑n
j=0 ϕi(gm

jx)∑n
j=0 ψi(gmjx)

for i = 1, . . . , d. It is easy to verify that

Λ = [0, 1] \
d⋃
i=1

⋃
α∈R

Kα(ϕi, ψi).

By Theorem 7.3 in [3], for each i = 1, . . . , d and ε > 0 there exist ergodic
gm-invariant probability measures νi1 and νi2 satisfying

min{dimH νi1,dimH νi2} > 1− ε
for each i, such that the family {νi1, νi2 : i = 1, . . . , d} is a distinguishing
family of measures for the sequences of functions (f1n)n, . . . , (fdn)n. More
precisely, for j = 1, 2 and νij-almost every x ∈ [0, 1] we have

lim
n→∞

fin(x) =

∫ 1
0 ϕi dνij∫ 1
0 ψi dνij

.

Furthermore ∫ 1
0 ϕi dνi1∫ 1
0 ψi dνi1

6=
∫ 1

0 ϕi dνi2∫ 1
0 ψi dνi2

for each i, and Birkhoff’s ergodic theorem (see for example [11, Chapter 1])
shows that {νi1, νi2 : i = 1, . . . , d} is a distinguishing family of measures for
the sequences of functions (f1n)n, . . . , (fdn)n.

This allows us to apply Lemma 1 and conclude that

dimH Λ ≥ min{dimH νi1,dimH νi2 : i = 1, . . . , d} > 1− ε.
The arbitrariness of ε yields the desired result.

One can show that in the case of m-Hölder continuous functions ϕ and ψ
the following conditions are equivalent (see [1] and [3] for details):
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1. Kα(ϕ,ψ) = [0, 1] for no α;
2. Kα(ϕ,ψ) is a nonempty proper subset of [0, 1] for some α;
3. Kα(ϕ,ψ) is a nonempty proper dense subset of [0, 1] for every α in

some interval;
4. there exists no constant c ∈ R such that ϕ− cψ = a− a ◦ gm for some

bounded function a : [0, 1]→ R.

We can now establish Theorem 1.

Proof of Theorem 1. The first statement follows from Proposition 5. Setting
ϕk and ψk as in (20), one can easily verify that Kα(ϕk, ψk) = [0, 1] for no k
and no α (note that one can explicitly determine a point in Kα(ϕk, ψk) for
each α ∈ [0, 1]). Furthermore, since

m−1⋂
k=0

Mk = [0, 1] \
m−1⋃
k=0

⋃
α∈R

Kα(ϕi, ψi),

the second statement follows from Theorem 6.

We now study the Hausdorff dimension of the sets Mα,α
k and more gen-

erally of intersections of these sets. Given a rectangle

R = [α0, α0]× · · · × [αm−1, αm−1] ⊂ [0, 1]m,

we consider the decomposition of ∂R into the m pairs Rk, Rk of closed faces
of R, where Rk corresponds to αk and Rk corresponds to αk. For each k we
define the numbers

dk = max{dimH Fm(z) : z ∈ Rk ∩ Lm}

and

dk = max{dimH Fm(z) : z ∈ Rk ∩ Lm}.

We also define the set

MR =
m−1⋂
k=0

M
αk,αk
k .

The following statement establishes an explicit formula for the Hausdorff
dimension of the irregular set MR in terms of the numbers dk and dk. In
particular, although the set MR is totally unrelated to the “regular” part
of the multifractal decomposition, this formula indicates that the Hausdorff
dimension of MR is entirely carried by a single “regular” set Fm(z), where
z is some vector in one of the faces of the rectangle R.

Theorem 7. If intR 6= ∅ and R ∩ Lm 6= ∅ then

dimHMR = min{dk, dk : k = 0, . . . ,m− 1}.

Proof. Set ϕk and ψk as in (20). Let zk ∈ Rk ∩ Lm and zk ∈ Rk ∩ Lm be
vectors such that

dimH Fm(zk) = dk and dimH Fm(zk) = dk.
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Since zk ∈ Rk ⊂ R and zk ∈ Rk ⊂ R, the (ergodic) Bernoulli measures µzk
and µzk satisfy ∫ 1

0
ϕk dµzk = αk,

∫ 1

0
ϕk dµzk = αk, (22)

and ∫ 1

0
ϕ` dµzk ∈ [α`, α`],

∫ 1

0
ϕ` dµzk ∈ [α`, α`] (23)

for every k and `. Furthermore, by Eggleston’s result, Proposition 4, and
(14) we have

dimH µzk = dk and dimH µzk = dk. (24)

It follows from Birkhoff’s ergodic theorem and (22) that the measures µzk ,
µzk for k = 0, . . . , m − 1 form a distinguishing family (see the proof of
Theorem 6 for the definition) for the sequences

fkn =
n∑
j=0

ϕk ◦ gmj (25)

for k = 0, . . . , m− 1.
We now require a version of Lemma 1 for the set ΓR defined by{
x ∈ [0, 1] : lim inf

n→∞
fin(x) = αi and lim sup

n→∞
fin(x) = αi for i = 1, . . . , d

}
.

(26)

Notice that if intR 6= ∅ then ΓR ⊂ Λ (see (21)). The following statement
is obtained from a straightforward modification of the proof of Theorem 7.6
in [3] (see also the observations at the end of this section).

Lemma 2. Let µ1, . . . , µ` be a distinguishing family of ergodic gm-invariant
probability measures for the sequences (f1n)n, . . . , (fdn)n. Assume that for
each i, j = 1, . . . , d there exist measures νi1 and νi2 in {µ1, . . . , µ`} and
constants aij and bij such that for each i and j:

1. aii = αi, bii = αi, and aij, bij ∈ [αi, αi];
2.

lim
n→∞

fin(x) = aij for νj1-almost every x,

lim
n→∞

fin(x) = bij for νj2-almost every x.

If intR 6= ∅ and R ∩ Lm 6= ∅ then

dimH ΓR ≥ min{dimH µ1, . . . , dimH µ`}.

Using (22) and (23), we can apply Lemma 2 to the sequences in (25) to
conclude that

dimHMR ≥ κ
def= min{dk, dk : k = 0, . . . ,m− 1}.

We now obtain an upper bound for dimHMR. Given x ∈ [0, 1] we denote
by V (x) the set of accumulation points (in the weak-∗ topology) of the
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sequence of measures

1
n

n−1∑
j=0

δgmjx, (27)

where δy denotes the probability measure with δy({y}) = 1. We shall use
the following statement.

Lemma 3. If

Xt = {x ∈ [0, 1] : dimH µ ≤ t for some µ ∈ V (x)}

then dimH Xt ≤ t.

Proof of the lemma. The lemma is a version of a statement of Bowen in [7]
saying that (in our setup) if

Yt = {x ∈ [0, 1] : hµ(gm) ≤ t for some µ ∈ V (x)}

then dimH Yt ≤ t/ logm. It should be noted that the number logm ·
dimH Z coincides with the topological entropy of gm on the set Yt (and
since this set may in general be noncompact we are referring to the notion
of topological entropy for noncompact sets introduced by Bowen in [7]). We
shall deduce the lemma from Bowen’s result. By Proposition 4, we have
hµ(gm)/ logm ≤ dimH µ. Therefore, Xt ⊂ Yt logm and hence, using Bowen’s
result, dimH Xt ≤ t.

When x ∈ MR, for each k = 0, . . . , m − 1 the sequence of measures in
(27) has accumulation points µwk and µwk for some wk ∈ Rk and wk ∈ Rk.
It follows from (24) that

min{dimH µwk ,dimH µwk : k = 0, . . . ,m− 1} ≤ κ.

Therefore MR ⊂ Xκ and Lemma 3 implies that dimHMR ≤ κ. This com-
pletes the proof.

The following is now an immediate consequence of Theorem 7.

Corollary 8. For each k ∈ {0, . . . ,m−1} and α, α ∈ [0, 1] such that α < α,
the set Mα,α

k has positive Hausdorff dimension.

As we observed, Lemma 2 is obtained from a straightforward modification
of the proof of Theorem 7.6 in [3]. Nevertheless, the proof itself (as is
already the case in [3]) involves considerable technical difficulties, related
to the study of the pointwise dimension of noninvariant measures (sitting
on sets that have zero measure with respect to any invariant measure). On
the other hand, it is easy to describe why the assumptions in Lemma 2
are crucial when compared to those in Lemma 1 and we shall do it now.
Notice first that although the sets Λ and ΓR (see (21) and (26)) satisfy
ΓR ⊂ Λ this inclusion is in general proper. The proof of Lemma 2 (that
simply follows the proof of Theorem 7.6 in [3]) starts with the juxtaposition
of cylinder sets at the level of symbolic dynamics which are successively
typical with respect to νi1 and νi2 for i = 1, . . . , d, in this order. We recall
that, for a point x ∈ [0, 1], the cylinder sets corresponding to the intervals
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Cn(x) = (x −m−n, x + m−n) ∩ [0, 1] are said to be typical with respect to
the measure µ if

lim
n→∞

− logµ(Cn(x))
n logm

= dimH µ.

Then we repeat the same procedure ad infinitum, choosing cylinder sets
which are successively typical with respect to νi1 and νi2 for i = 1, . . . , d.
Since intR 6= ∅ we obtain with this construction a subset Λ′ of Λ (see (21)).
When d = 1 one has Λ′ ⊂ ΓR (see (26)) under the assumptions of Lemma 2,
and in fact also under those of Lemma 1. However, when d > 1 the as-
sumptions in Lemma 1 are in general not enough to construct a subset of
ΓR using this procedure. This is due to the fact that the cylinder sets jux-
taposed between two pairs with the same fixed i (i.e., the pairs of cylinder
sets corresponding to νi1 and νi2, which occur infinitely often) may change
the values of lim infn→∞ fin(x) and lim supn→∞ fin(x). More precisely, we
can construct a set Λ′ ⊂ Λ such that for every x ∈ Λ′ and i = 1, . . . , d,

lim inf
n→∞

fin(x) ≤ αi and lim sup
n→∞

fin(x) ≥ αi,

but a priori these inequalities may be strict (unless d = 1). On the other
hand, under the additional assumptions of Lemma 2, we can construct Λ′

in such a way that for every x ∈ Λ′ and i = 1, . . . , d,

lim inf
n→∞

fin(x) = αi and lim sup
n→∞

fin(x) = αi,

and thus Λ′ ⊂ ΓR.

4. Conditional variational principle

In this section we describe the conditional variational principle mentioned
in the introduction.

We first recall the concept of topological pressure. The topological pressure
of a continuous function ϕ : [0, 1]→ R with respect to gm is defined by

P (ϕ) = lim
n→∞

1
n

log
∑
i1···in

exp sup
Ii1···in

n−1∑
k=0

ϕ ◦ gmk. (28)

For an m-Hölder continuous ϕ (i.e., a piecewise Hölder continuous function
with finitely many discontinuities and at most at negative powers of m) the
limit in (28) also exists and we still call it topological pressure of ϕ. We are
particularly interested in locally constant functions. More precisely, consider
a function ϕ such that

ϕ(0.x1x2 · · · ) = ax1···xκ

for some constants ai1···iκ ∈ R for i1, . . . , iκ ∈ {0, . . . ,m−1} and some fixed
positive integer κ. These are called κ-locally constant functions. Note that
they are m-Hölder continuous. In particular, it follows easily from (28) that
if ϕ is 1-locally constant then

P (ϕ) = lim
n→∞

1
n

log
∑
i1···in

n∏
j=1

exp aij = log
m−1∑
k=0

exp ak. (29)



DISTRIBUTION OF FREQUENCIES OF DIGITS VIA MULTIFRACTAL ANALYSIS 13

Given functions ϕk, ψk : [0, 1] → R with ψk > 0 for k = 1, . . . , d, and a
vector α = (α1, . . . , αd) ∈ Rd, we write

Kα =
d⋂

k=1

Kαk(ϕk, ψk), (30)

where each set Kαk(ϕk, ψk) is defined by (19). For each µ ∈M we set

P(µ) =

(∫ 1
0 ϕ1 dµ∫ 1
0 ψ1 dµ

, . . . ,

∫ 1
0 ϕd dµ∫ 1
0 ψd dµ

)
.

Barreira, Saussol and Schmeling [2] established the following conditional
variational principle.

Theorem 9. Let ϕ1, . . . , ϕd, ψ1, . . . , ψd be m-Hölder continuous functions
with ψi > 0 for each i. If α ∈ int P(M), then

dimH Kα =
1

logm
max {hµ(gm) : µ ∈M and P(µ) = α}

=
1

logm
inf

{
P

(
d∑

k=1

qk(ϕk − αkψk)

)
: (q1, . . . , qd) ∈ Rd

}
.

(31)

We emphasize that the identities in (31) express the dimension spectrum
D(α) = dimH Kα in two different ways. The first formula for D in (31)
is a maximum over the closed set of measures µ for which P(α) = µ (and
thus the name “conditional variational principle”). This first formula was
obtained independently by Fan, Feng and Wu [9]. Unfortunately it is in
general not easily amenable to explicit computations due to the fact that we
have to know hµ(gm) for all such measures. This is why we are especially
interested in the second formula.

The second formula for D in (31) is an infimum of a real valued function
involving the topological pressure. In view of applications, and in particular
those in this paper, it is crucial to have this formula. For example, to know
an explicit expression for the dimension spectrum it is often enough to study
the derivative of the function

q 7→ P

(
d∑

k=1

qk(ϕk − αkψk)

)
.

We emphasize that even when the infimum in (31) does not allow one to
obtain an explicit formula it is still crucial in several respects. In particular,
under the assumptions of Theorem 9, it can be used to show that D is
analytic (see [1, 2] for details). Furthermore, the first example of a nonconvex
spectrum was given in [1] also as an application of this formula.

It was also shown in [2, Theorem 14] that for each fixed Hölder exponent θ
and a residual vector (ϕ1, . . . , ϕd, ψ1, . . . , ψd) in the space of θ-Hölder con-
tinuous functions we have:

1. int P(M) = P(M);
2. dimH Kα = 0 for every α ∈ ∂P(M).
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We now describe a generalization of the first identity in (31), or more
precisely of the formula (replacing the maximum by a supremum in (31))

dimH Kα =
1

logm
sup {hµ(gm) : µ ∈M and P(µ) = α} .

In order to describe this generalization, let us consider continuous functions
ζ : [0, 1]→ U ⊂ Rr and η : U → R

p. For each α ∈ Rp we define the set

K(η,ζ)
α =

x ∈ [0, 1] : lim
n→∞

η

 1
n

n−1∑
j=0

ζ(gmjx)

 = α

 .

When

ζ = (ϕ1, . . . , ϕd, ψ1, . . . , ψd) and η(r1, . . . , r2d) =
(

r1

rd+1
, . . . ,

rd
r2d

)
we obtain K

(η,ζ)
α = Kα (see (30)).

The following is an immediate consequence of work of Takens and Ver-
bitskiy [13], where we make the convention that sup∅ = 0.

Theorem 10. Let ζ : [0, 1] → U ⊂ Rr and η : U → R
p be piecewise con-

tinuous functions with finitely many discontinuities and at most at negative
powers of m. For each α ∈ Rp we have

dimH K
(η,ζ)
α =

1
logm

sup
{
hµ(gm) : µ ∈M and η

(∫ 1

0
ζ dµ

)
= α

}
.

We observe that the classes of dynamical systems for which the statements
in Theorems 9 and 10 were respectively established in [2] and [13] are more
general than the situation considered here. However, none of these two
papers includes the class of dynamical systems considered in the other one.

The identity in Theorem 10 says that for each α with K
(η,ζ)
α 6= ∅ and

each ε > 0 there exists a measure µα,ε ∈M for which

η

(∫ 1

0
ζ dµα,ε

)
= α and hµα,ε(gm)/ logm > dimH K

(η,ζ)
α − ε.

Unfortunately, in general the measure µα,ε may not sit on K
(η,ζ)
α . Such a

property would be crucial for example as a departure point to obtain similar
results to those in Section 3 in this situation. On the other hand, under the
assumptions of Theorem 9 it is shown in [2] that there exists an ergodic
measure µα ∈M such that P(µα) = α with the additional properties

µα(Kα) = 1 and hµα(gm)/ logm = dimH Kα. (32)

5. Applications to frequencies of digits

In this section we show how the conditional variational principle can be
used in a number of problems in the study of the Hausdorff dimension of
sets defined in terms of frequencies of digits.
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5.1. Linear relations. When dealing with frequencies of digits it suffices
to consider 1-locally constant functions (sometimes called digit-functions).
In this case we can combine Theorems 9 and 10 to obtain a more explicit
statement. In this section we always take ψi = 1 for i = 1, . . . , d in
Theorem 9, and thus for each α = (α1, . . . , αd) ∈ Rd the set Kα in (30) is
given by

Kα =

x ∈ [0, 1] : lim
n→∞

n∑
j=0

ϕi(gmjx) = αi for i = 1, . . . , d

 .

For each µ ∈M set

Q(µ) =
(∫ 1

0
ϕ1 dµ, . . . ,

∫ 1

0
ϕd dµ

)
.

For simplicity we shall also write ϕik = ϕi([k/m, (k + 1)/m)).

Theorem 11. Let ϕi : [0, 1] → R be 1-locally constant functions for i = 1,
. . . , d. The following properties hold:

1. if α = (α1, . . . , αd) ∈ Q(M) then

dimH Kα =
1

logm
max

{
−
m−1∑
k=0

βk log βk : (β0, . . . , βm−1) ∈ ∆m

}
, (33)

where

∆m =

{
(β0, . . . , βm−1) ∈ Lm :

m−1∑
k=0

βkϕik = αi for i = 1, . . . , d

}
;

2. if, in addition, α = (α1, . . . , αd) ∈ int Q(M) then

dimH Kα = inf

{
logm

m−1∑
k=0

exp
d∑
i=1

qi(ϕik − αi) : (q1, . . . , qd) ∈ Rd
}

; (34)

3. the function α 7→ dimH Kα is continuous on Q(M).

Proof. Setting ζ = (ϕ1, . . . , ϕd) and η = id it follows from Theorem 10 that

dimH Kα =
1

logm
sup{hµ(gm) : µ ∈M and Q(µ) = α} (35)

for each α ∈ Q(M). Let µ be a gm-invariant measure on [0, 1] and write
βk = µ(Ik) for each k. The condition Q(µ) = α is equivalent to(

m−1∑
k=0

βkϕ1k, . . . ,
m−1∑
k=0

βkϕdk

)
= α. (36)

Therefore, using (14) and (15) we can replace the supremum in (35) by the
maximum in (33), and we obtain the first statement in the theorem.

By (29) we have

P

(
d∑

k=1

qk(ϕk − αkψk)

)
= log

m−1∑
k=0

exp
d∑
i=1

qi(ϕik − αi).

Applying Theorem 9 we obtain the second statement in the theorem.
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To complete the proof it is enough to show that the maximum in (33)
varies continuously with α. Observe first that the condition in (36) defines
a plane in Rm varying continuously with α. The strict convexity of the
function

(β0, . . . , βm−1) 7→ −
m−1∑
k=0

βk log βk

guarantees that the maximum in (33) also varies continuously with α. This
completes the proof.

Theorem 11 offers two methods to compute the Hausdorff dimension of
the set Kα, although of different nature. The first method involves the
computation of the maximum in (33). Unfortunately it consists of a problem
of conditional extrema. In applications we may try to use, for example, the
method of Lagrange multipliers. This often leads to less explicit formulas.
On the other hand, the second method to compute the Hausdorff dimension,
based on the computation of the infimum in (34), should in general be
more amenable to computation. Essentially it amounts to determine the
extrema of a function involving the topological pressure, without any extra
condition. Although the identity in (34) is only known to hold in int Q(M)
(conjecturally it holds in Q(M)), the continuity of the function α 7→ dimH Kα

on Q(M) allows us to obtain dimH Kα for α ∈ int Q(M) from the knowledge
of (34) on int Q(M). It is shown in [2] (see Section 4), that for each fixed
Hölder exponent θ and a residual vector (ϕ1, . . . , ϕd) in the space of θ-
Hölder continuous functions (not necessarily 1-locally constant) we have
int Q(M) = Q(M).

Theorem 11 (and its straightforward generalization to κ-locally constant
functions) allows us to provide a unified and simple approach to substantially
complicated problems. Moreover, it follows from work in [2] that for each
choice of functions ϕi one can explicitly exhibit a measure sitting on the
level set Kα, in the sense that (32) holds. In the case of 1-locally constant
functions these measures are always Bernoulli measures.

A first consequence of Theorem 11 is the classical result of Eggleston [8]
described in the introduction.

Corollary 12. For every (α0, . . . , αm−1) ∈ Lm,

dimH Fm(α0, . . . , αm−1) = −
∑m−1

k=0 αk logαk
logm

.

Proof. Setting ϕk and ψk as in (20) for k = 0, . . . , m− 1, we obtain Kα =
Fm(α0, . . . , αm−1). The statement follows immediately from Theorem 11.

Theorem 11 allows us to complete the proof of the results in the intro-
duction.

Proof of Theorem 2. Set d = 1 and

ϕ1 = χ[k/m,(k+1)/m) − βχ[`/m,(`+1)/m).
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The first identity in the theorem follows from Theorem 11, (14), and (15).
Furthermore, since 0 ∈ int Q(M) = (−β, 1), Theorem 11 shows that

dimH{x ∈ [0, 1] : τk(x) = βτ`(x)} = inf
q∈R

log(eq + e−βq +m− 2)
logm

.

It is straightforward to verify that the infimum is attained at q = log β
1+β and

an easy computation yields the desired result.

For example, setting β = 1 in Theorem 2 we obtain

dimH{x ∈ [0, 1] : τk(x) = τ`(x)} = 1, (37)

independently of k, `, and m. It is also interesting to observe that for a
fixed β ≥ 0 the Hausdorff dimension in Theorem 2 tends to 1 when m→∞.
This corresponds to the fact that the disjoint union⋃

αk=βα`

Fm(α0, . . . , αm−1) ⊂ {x ∈ [0, 1] : τk(x) = βτ`(x)}

contains sets with larger and larger Hausdorff dimension as m→∞.
We emphasize that the formula with the maximum in (33) can also be

used to obtain the explicit value of the Hausdorff dimension in Theorem 2.
Although the computation is not as immediate as with the infimum in (34),
in this special case it can be effected in a simple manner. This alterna-
tive approach reflects the fact that the entropy of an invariant measure is
maximized by a mass distribution as uniform as possible (see (38) below).

We assume for simplicity that k = 0 and ` = 1 in Theorem 2. Set
ρ = 1−

∑m−1
j=2 αj . We have α0 = ρ/(1 + β) and α1 = ρβ/(1 + β). One can

easily verify that the function

(α2, . . . , αm−1) 7→ −
m−1∑
j=0

αj logαj

= − ρ

1 + β
log

ρ

1 + β
− ρβ

1 + β
log

ρβ

1 + β
−
m−1∑
j=2

αj logαj

attains its maximum when

α2 = · · · = αm−1 =
1− ρ
m− 2

. (38)

Therefore, the Hausdorff dimension in Theorem 2 is given by

max
0≤α≤ 1

1+β

−
α logα+ αβ log(αβ) + (1− α− αβ) log 1−α−αβ

m−2

logm
.

One can verify that this maximum is attained at α = 1/(2ββ/(β+1) +β+ 1),
and hence obtain its explicit value.

A similar approach yields the following statement.

Corollary 13. Given integers i1 < · · · < ik in {0, . . . ,m− 1} and numbers
β1, . . . , βk ∈ [0, 1] such that β def=

∑k
j=1 βk ≤ 1, we have

dimH{x ∈ [0, 1] : (τi1(x), . . . , τik(x)) = (β1, . . . , βk)}

= −
∑k

j=1 βj log βj + (1− β) log 1−β
m−1

logm
.
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For example, setting k = 1 we obtain

dimH{x ∈ [0, 1] : τi(x) = α} = −
α logα+ (1− α) log 1−α

m−1

logm
.

Note that this tends to 1 − α when m → ∞. In particular, the Hausdorff
dimension of the set of numbers having 99.99% of zeros in their base-m
representation is uniformly bounded away from zero as m → ∞. This
should be contrasted with the behavior in Theorem 2 when m→∞.

In view of the existence of nontrivial irregular sets with large Hausdorff
dimension (see Section 3) the following is another nontrivial application of
Theorem 11. Namely, we want to show that the set of points for which the
frequency of some digits is zero and the set of points where the same digits
do not occur have equal dimension.

Corollary 14. The Hausdorff dimension of the set of points for which the
frequency of a number k of fixed digits in the base-m representation is zero
equals the Hausdorff dimension of the set of points where the same digits do
not appear in the base-m representation. The common value is logm(m−k).

Proof. Let E be the set of points where the frequency of some digits in the
base-m representation is zero. Without loss of generality we assume that
the first k digits have frequency zero. Setting d = 1 and ϕ1 = χ[0,(k−1)/m)

it follows from Theorem 11 that dimH E = logm(m − k). Let now F ⊂ E
be the set of points where the same digits do not appear in their base-m
representation. Let µ be the (ergodic) Bernoulli measure on m− k symbols
with equal probabilities. We have µ(F ) = 1 (with the natural identifica-
tion of a base-(m− k) representation with a base-m representation) and by
Proposition 4, dimH µ = logm(m − k). Therefore dimH F ≥ dimH µ and
dimH E = dimH F .

We can also consider more involved problems. Let A = (aij) be an d×m
matrix and b = (b1, . . . , bd) ∈ Rd. Consider the set K(A, b) of numbers
x ∈ [0, 1] such that Aτm(x) = b, where τm(x) = (τ0(x), . . . , τm−1(x)).

Corollary 15. If b ∈ intA(Lm) then

dimH K(A, b) = max

{
−
m−1∑
k=0

αk logm αk : (α0, . . . , αm−1) ∈ Lm ∩A−1b

}

= inf

{
logm

m−1∑
k=0

exp
d∑
i=1

qi(aik − bi) : (q1, . . . , qd) ∈ Rd
}
.

Proof. For i = 1, . . . , d, set

ϕi =
m−1∑
j=0

aijχ[j/m,(j+1)/m),

and note that Q(M) = A(Lm). The desired statement follows immediately
from Theorem 11.

We remark that intA(Lm) = A(Lm) if and only if det(AAt) 6= 0, where
At denotes the transpose of A.



DISTRIBUTION OF FREQUENCIES OF DIGITS VIA MULTIFRACTAL ANALYSIS 19

We now give several nontrivial examples as applications of Corollary 15
(the computations are straightforward and are not reproduced here):

1. given integers a0, . . . , am−1, not all zero, the set of points x ∈ [0, 1]
such that

a0τ0(x) + · · ·+ am−1τm−1(x) = β

has Hausdorff dimension

logm min

{
m−1∑
i=0

rai−β : r > 0 and
m−1∑
i=0

(ai − β)rai = 0

}
(note that this amounts to determine the positive real roots of the
polynomial

∑m−1
i=0 (ai − β)rai−mini ai);

2. the set of points x ∈ [0, 1] such that τ0(x) + 2τ1(x) = β has Hausdorff
dimension

logm

[
r1−β + 2r−β

2− β

]
,

where

r =
β − 1 +

√
(β − 1)2 + 4β(β − 2)(m− 2)

4− 2β
;

3. the set of points x ∈ [0, 1] such that τ0(x)+ · · ·+τj−1(x) = jβ (i.e., the
average of the frequencies of the first j digits equals β) has Hausdorff
dimension

logm

[
j

(
(m− j)β

1− jβ

)1−jβ
+ (m− j)

(
1− jβ

(m− j)β

)jβ]
;

4. given γ ≥ 0, the set of points x ∈ [0, 1] such that τ0(x)+τ1(x) = γτ2(x)
has Hausdorff dimension

logm

[
2
(γ

2

)1/(γ+1)
+
(

2
γ

)γ/(γ+1)

+m− 3

]
(for example, this is logm(2

√
2 +m− 3) when γ = 1).

Using results in [2] we can also compute the Hausdorff dimension of sets
that are obtained from the intersection of irregular sets (see Section 3) with
those in this section. In particular, we can consider sets of points for which
some fixed frequencies are not well-defined and for which the remaining ones
satisfy some linear relations.

5.2. Nonlinear relations. Theorem 10 allows us to study continuous non-
linear relations between frequencies of digits. In this case there is in general
no appropriate generalization of the formula given by Theorem 9 in terms
of the topological pressure, and thus we have to use the variational principle
in Theorem 10. This often makes the computations much harder when we
study nonlinear relations between frequencies of digits. We shall concentrate
here on nontrivial examples.

Fix m > 2. For each b > 0, we set

Fb = {x ∈ [0, 1] : τ1(x) = e1−bτ0(x)/b}.
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Corollary 16. If b > 2 then

dimH Fb = logm b+
b− 2
b

logm

(
m− 2
b− 2

)
.

Proof. Define f(x) = e1−bx/b. It follows from Theorem 10 that dimH Fb is
equal to the supremum of

−α0 logm α0 − f(α0) logm f(α0)−
m−1∑
i=2

αi logm αi

under the assumption that α0 + f(α0) +α2 + · · ·+αm−1 = 1 and αi ∈ [0, 1].
It is thus enough to determine the infimum of the function

G(α) = α logα+ f(α) log f(α) + (1− α− f(α)) log
1− α− f(α)

m− 2
(39)

over all α ∈ [0, 1] such that α+ f(α) ≤ 1. The derivative is

G′(α) = logα+ f ′(α) log f(α)− (1 + f ′(α)) log
1− α− f(α)

m− 2
. (40)

For α = 1/b we have f(α) = α and f ′(α) = −1, and hence, G′(α) = 0.
Some elementary calculus shows that 1/b is indeed a global minimum of G.
We conclude that dimH Fb = −G(1/b)/ logm and the desired statement
amounts now to an elementary computation.

The approach used in the proof of the corollary applies in a similar way
to other types of sets. In particular, given a continuous function f : R→ R

the set

Ff = {x ∈ [0, 1] : τ1(x) = f(τ0(x))}

has Hausdorff dimension

dimH Ff = − 1
logm

inf{G(α) : α ∈ [0, 1] and α+ f(α) ≤ 1}, (41)

where G is the function defined by (39). In particular, when f is differen-
tiable, if α ∈ (0, 1

2) is such that f(α) = α and f ′(α) = −1 it follows from
(40) that G′(α) = 0 and we should verify if it is a global minimum.

The formula (41) allows us to determine how the dimension is affected by
small perturbations of f . For example, let fε(x) = x + εx2 (and m > 2).
With similar arguments to those in [1, 2] one can show that the map ε 7→
dimH Ffε is analytic. Furthermore, one can look for an analytic function α =
α(ε) such that dimH Ffε = −G(α(ε))/ logm. Setting α(ε) = α0 +α1ε+o(ε)
we obtain

G′(α(ε)) =2 log
α0(m− 2)

1− 2α0
+
(

2α0 log
α0(m− 2)

1− 2α0

)
ε

+
(
α0 +

2α0
2(m− 2)

1− 2α0
+ α1

(
1
α0

+
4(m− 2)
1− 2α0

))
ε+ o(ε)

and thus, solving G′(α(ε)) = 0,

α(ε) =
1
m
− 3ε

5m2
+ o(ε).
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Therefore

dimH Ffε = −G(α(ε))
logm

= 1 +
(m− 1)ε
5m3 logm

+ o(ε). (42)

Note that the term 1 in (42) could have also been obtained from (37), which
corresponds to the case ε = 0.

5.3. Forbidden blocks. We now consider frequencies of digits on sets for
which some fixed blocks of digits are forbidden. These can be modeled by
topological Markov chains.

Let A = (aij) with i, j = 0, . . . , m − 1 be an m ×m matrix with each
entry either 0 or 1. Using base-m representations, we define

XA = {0.x1x2 · · · ∈ [0, 1] : axnxn+1 = 1 for all n ∈ N}.

Recall that the nonuniqueness of the representation does not affect the study
of the Hausdorff dimension.

Denote by ρ(B) the spectral radius of the matrix B, and by Λa0,... ,am−1

the diagonal matrix with entries a0, . . . , am−1. Consider a 1-locally constant
function ϕ : XA → R with ϕ(0.x1x2 · · · ) = ax1 . It is well known that

P (ϕ) = log ρ(Λa0,... ,am−1A).

Consider an m×m stochastic matrix Π = (πij), with i, j = 0, . . . , m−1,
i.e., a matrix with nonnegative entries such that

∑m−1
j=0 πij = 1 for every i.

Given a probability vector p = (p0, . . . , pm−1) ∈ Lm such that pΠ = p we
define a gm-invariant probability measure µΠ,p by

µΠ,p(Ii1···in) = pi1

n−1∏
k=1

πikik+1
.

If A satisfies aij = 0 if and only if πij = 0, then the support of µΠ,p is XA.
We have

hµΠ,p(gm) = −
m−1∑
i=0

m−1∑
j=0

piπij log πij . (43)

Using similar arguments to those in the proof of Theorem 11 one can
establish the following statement.

Theorem 17. Assume that some power of A has only positive entries and
let ϕi : XA → R be 1-locally constant functions for i = 1, . . . , d. The
following properties hold:

1. if α = (α1, . . . , αd) ∈ Q(M) then

dimH Kα =
1

logm
maxhµΠ,p(gm),

where the maximum is taken over all measures µΠ,p such that(
m−1∑
k=0

pkϕ1k, . . . ,

m−1∑
k=0

pkϕdk

)
= α;
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2. if α = (α1, . . . , αd) ∈ int Q(M) then

dimH Kα = inf{logm ρ(Λa0(q),... ,am−1(q)A) : q ∈ Rd},

where

ak(q1, . . . , qd) = exp
d∑
i=1

qi(ϕik − αi) for k = 0, . . . , m− 1.

One can also consider κ-locally constant functions with an arbitrary κ. In
this case the most convenient approach consists in reducing the problem to
the study of 1-locally constant functions. This can be done by considering a
topological Markov chain in an appropriate larger space composed of blocks
with a certain fixed length. This idea is used in the following section.

5.4. Frequencies of blocks. We now discuss how to obtain versions of
the above results for frequencies of blocks. This is related to the study of
κ-locally constant functions for an arbitrary κ. In this case (29) and (15)
have to be replaced by less explicit formulas. This makes it often difficult
to compute the Hausdorff dimension explicitly.

Consider the interval Ii1···in in (12) for a fixed integer m. Whenever there
exists the limit

τ[i1···in](x) = lim
m→∞

card{j ∈ {1, . . . ,m} : (xj+1 · · ·xj+n) = (i1 · · · in)}
m

(44)

it is called the frequency of the block [i1 · · · in] in the base-m representation
of x. When we write the symbol τ[i1···in](x) we are already assuming the
existence of the limit in (44).

We first consider a particular case in which one is able to obtain an
explicit value for the Hausdorff dimension. Given a nonnegative m × m
matrix P = (pij) we define the set

Fm(P ) = {x ∈ [0, 1] : τ[ij](x) = pij for every i, j = 0, . . . , m− 1}.

Write pi =
∑m−1

j=0 pij . We shall assume that

m−1∑
i=0

pi = 1 and pj =
m−1∑
i=0

pij (45)

(otherwise the set Fm(P ) would be empty). Then the matrix Π = (πij) with
entries πij = pij/pi is a stochastic matrix (see Section 5.3).

Theorem 18. If P = (pij) is a nonnegative matrix satisfying (45) for which
some power has only positive entries, then

dimH Fm(P ) = − 1
logm

m−1∑
i=0

m−1∑
j=0

piπij log πij .

Proof. Consider the functions ϕij = χIij for i, j = 0, . . . , m− 1. It follows
from Theorems 9 and 10 that

dimH Fm(P ) =
1

logm
max
µ

hµ(gm),
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where the maximum is taken over all gm-invariant probability measures µ
on [0, 1] such that

∫ 1
0 ϕij dµ = µ(Iij) = pij for every i and j. By the first

formula for hµ(gm) in Proposition 3, we have

hµ(gm) ≤ −
m−1∑
i=0

m−1∑
j=0

µ(Iij) log
µ(Iij)
µ(Ij)

= −
m−1∑
i=0

m−1∑
j=0

piπij log
piπij
pj

. (46)

Note that
m−1∑
i=0

m−1∑
j=0

piπij log
pi
pj

=
m−1∑
i=0

m−1∑
j=0

piπij log pi −
m−1∑
i=0

m−1∑
j=0

piπij log pj

=
m−1∑
i=0

pi log pi −
m−1∑
j=0

pj log pj = 0.

It follows from (46) and (43) that hµ(gm) ≤ hµΠ,p(gm). This implies that
the Hausdorff dimension of Fm(P ) is given by hµΠ,p(gm)/ logm.

The identity in Theorem 18 is obtained by Billingsley in [5] in the special
case when all entries of the matrix P are positive. On the other hand, using
the techniques that we develop in this paper one can consider much more
involved problems. In particular we can study sets of points for which not all
frequencies of blocks are known. Furthermore, we can consider sets defined
in terms of frequencies of blocks of different length. We emphasize that
the technique developed by Billingsley cannot be applied to these situations
without further changes. This is due to the fact that it is not known, at least
a priori, whether the dimension of each of these sets is carried by a single
subset for which all frequencies are known. It turns out, as a consequence of
the theory that we develop in [2], that this special subset always exists, but
to show that this happens amounts to compute the Hausdorff dimension of
the initial set and thus it is a problem of similar difficulty.

For example, consider the set of points

Fα = {x ∈ [0, 1] : τ[00](x) = α}.

In a similar way to that in Section 5.1 in the case of 1-locally constant
functions one can show that the entropy of gm-invariant probability measures
satisfying p00 = µ(I00) = α is maximized by the measure µΠ,p obtained
from the matrix P with entries pij = (1 − α)/(m2 − 1) for each (ij) 6=
(00). This occurs precisely when the ratio 1−p00 is equally distributed over
the remaining entries. In this case we have p0 = (mα + 1)/(m + 1) and
pi = m(1 − α)/(m2 − 1) for each i 6= 0. Applying Theorems 9 and 10, a
straightforward computation allows one to conclude that

dimH Fα = − 1
logm

m−1∑
i=0

m−1∑
j=0

piπij log πij

= − 1
logm

p00 log π00 +
m−1∑
j=1

p0j log π0j +
m−1∑
i=1

m−1∑
j=0

pij log πij


= α logm

m+ 1
mα+ 1

+
1− α
m+ 1

logm
(m− 1)(mα+ 1)

1− α
+
m(1− α)
m+ 1

.
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Note that dimH Fα → 1 − α when m → ∞. Therefore, the Hausdorff
dimension of the set of numbers having 99.99% of pairs of zeros in their
base-m representation is uniformly bounded away from zero as m→∞.

We also want to consider sets defined in terms of frequencies of blocks
of different length. Instead of presenting the general theory, which would
hide the principles behind our approach, we choose to consider a specific
example. Consider the set

F = {x ∈ [0, 1] : τ[000](x) = τ[11](x)},

with respect to the base-2 representation of x. To compute the Hausdorff
dimension of F it is convenient to transform the related 3-locally constant
functions into 1-locally constant functions on a new space and then apply
the results of the former sections. We consider an extended representation
of each number (sometimes called higher block representation). When x =
0.x1x2 · · · is a base-2 representation, we substitute the digit xk by the block
bk = [xkxk+1xk+2]. In this way each number is now represented by an
infinite sequence x = 0.b1b2 · · · on 8 symbols. The original representation
can be recovered from this one by simply looking at the first symbol of each
block bk.

There is however a strong contrast between the original representation
and the new one: not all sequences of blocks of 3 symbols are allowed in
the new representation. For example, the symbol [011] cannot follow [000].
This relation is encoded in the transition matrix:

A = (aij) =



1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1


,

where aij = 1 if and only if the jth block in the lexicographic order can
follow the ith one, i.e.,

a[x1x2x3][y1y2y3] = 1 if and only if x2 = y1 and x3 = y2.

Any function that is 3-locally constant with respect to the original rep-
resentation becomes 1-locally constant in the new representation. By The-
orem 17, log 2 · dimH F is equal to the infimum over q ∈ R of

P (q(χ[000] − χ[11])) = log ρ





eq eq 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 e−q e−q 0 0
0 0 0 0 0 0 e−q e−q




.
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The characteristic polynomial of the matrix is x5(x3−(eq+e−q)x2 +(eq−1))
and one can deduce that

dimH F =
1

log 2
log inf

y>0

(
1 + y2

3y
+

(1 + y2)2

3y 3
√
p(y)/2

+
3
√
p(y)/2
3y

)
,

where

p(y) =2y6 − 21y4 + 27y3 + 6y2 + 2
+
√
−27y3(4y7 − 4y6 − 15y5 + 42y4 − 15y3 − 12y2 + 4y − 4).

After the acceptance of this paper we noticed that the numerical value an-
nounced for dimH F in [2] was unfortunately obtained implementing incor-
rectly the formulas in the computer (and thus it should be revised).

A similar approach allows us to consider any other set defined in terms
of linear relations between frequencies of blocks with an arbitrary length.
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6. E. Borel, Sur les probabilités dénombrables et leurs applications arithmétiques, Rend.

Circ. Mat. Palermo 26 (1909), 247–271.
7. R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc. 184

(1973), 125–136.
8. H. Eggleston, The fractional dimension of a set defined by decimal properties, Quart.

J. Math. Oxford Ser. 20 (1949), 31–36.
9. A. Fan, D. Feng and J. Wu, Recurrence, dimension and entropy, J. London Math.

Soc. 64 (2001), 229–244.
10. G. Hardy and J. Littlewood, Some problems on Diophantine approximations, Acta

Math. 37 (1914), 155–190.
11. W. Parry, Topics in ergodic theory, Cambridge Tracts in Mathematics 75, Cambridge

University Press, 1981.
12. Ya. Pesin, Dimension theory in dynamical systems: contemporary views and applica-

tions, Chicago Lectures in Mathematics, Chicago University Press, 1997.
13. F. Takens and E. Verbitskiy, On the variational principle for the topological entropy

of certain non-compact sets, preprint.
14. P. Walters, An introduction to ergodic theory, Graduate Texts in Mathematics 79,

Springer, 1981.



26 L. BARREIRA, B. SAUSSOL, AND J. SCHMELING
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LAMFA/CNRS FRE 2270, Université de Picardie Jules Verne, 33 rue Saint

Leu, 80039 Amiens, France

E-mail address: benoit.saussol@mathinfo.u-picardie.fr

URL: http://www.mathinfo.u-picardie.fr/saussol/

Centre for Mathematical Sciences, LTH, Lund University, Box 118, SE-221

00 Lund, Sweden

E-mail address: joerg@maths.lth.se


