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Abstract. We show that the Poincaré return time of a typical
cylinder is at least its length. For one dimensional maps we express
the Lyapunov exponent and dimension via return times.

1. Introduction

The statistical description of dynamical system has recently been en-
riched by the study of recurrence and return times. For example the
Poisson distribution for the return and entrance time into a given set
has been investigated (see [11] and references therein), and the di-
mension like characterstics of invariant sets have been investigated by
means of recurrence [1],[16]. In these two contexts a local quantity
plays a fundamental role: the first return of a set into itself, sometimes
also called the Poincaré recurrence of the set. If A ⊂ X is a measurable
set of a measurable (probability) dynamical systems {X, β, µ, T}, the
first return of the set A is simply defined as:

τ(A) = min{n > 0 : T nA ∩ A 6= ∅}.
We will suppose in the following that A is either the cylinder of order
n around the point x ∈ X with respect to a measurable partition U ,
i.e. A = Ux

n ∈
∨n−1
i=0 T

−iU , x ∈ Ux
n , or A is a ball of radius r around x,

A = Br(x). It has been shown in [11] that the limits:

lim
n→∞

τ(Ux
n )

n
and lim

n→∞

τ(Ux
n )

n
(1)

define µ–almost everywhere invariant (subadditive) functions that con-
trol the asymptotic short returns into the sets Ux

n . It is therefore im-
portant to have information on the value(s) of (1). The first result of
this article is to show that for a measurable dynamical system with pos-
itive metric entropy, the lim in (1) is µ–a.e. bigger or equal to 1. This
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estimate is a key bound need in proving the exponential and Poisson
statistics for return times, as pointed out in [11] and [7].

For systems with zero metric entropy, examples are known where lim
is positive and strictly smaller than one, for instance in the case of
Fibonacci rotations [6] and where the lim is identically equal to zero
[2]. Our proof of the lower bound (Theorem 1) is surprisingly easy. It
uses the concept of Kolmogorov complexity, which we recall briefly in
the Appendix.

Besides the interest in the asymptotic distribution of return and en-
trance times, the limits in (1) can be exploited in another direction,
which, in [14], we proposed to call the “thermodynamics of return
times”. We prove (Theorem 2) that for a large class of ergodic one-
dimensional maps, the Lyapunov exponent can be estimated from the
behavior of the first return times of a ball as the radius vanishes.

We turn to computing the Hausdorff dimension of the measure for the
same class of one-dimensional maps. The first return of a set will be
now replaced by another quantity which will denote with τr(x) and
that is the first return of the point x into its neighborhood Br(x).

lim
r→0+

log τr(x)

− log r
(2)

In our final result (Theorem 3) we show that the limit in (2) exists
µ-a.e. and is equal to the local dimension:

dµ(x) := lim
r→0+

log µ(Br(x))

log r
(3)

For the class of one-dimensional maps considered is known that the
local dimension is almost everywhere constant and equal to the Haus-
dorff dimension of the measure and is also equal to the ratio between
the metric entropy and the µ–Lyapunov exponent [8]. A similar result
in a multidimensional setting has been proved by Barreira and Saus-
sol [3, 4], namely for the basic sets of Axiom-A diffeomorphisms. Our
proof is relatively simple and uses sharp comparison between balls and
cylinders provided by Hofbauer [8]; nevertheless it is quite general since
it covers maps with critical and parabolic points.

In conclusion these results are one of the first steps in establishing what
we have already called thermodynamics of return times. In this context
a major role is played by the first returns of sets and points which often
play the role of the measure of balls and cylinders according to the old
suggestion given by Kac’s theorem. This approach could be even more
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advantageous in numerical and experimental investigations of dynam-
ical systems as we showed in [14]; further theoretical developments in
this direction appeared quite recently in [7] and [2].

We will systematically use the same letter and underscore (overscore)
the names of pairs of functions defined via a lim (lim). Because of this
convention we will only write the one of the definitions of such pairs of
functions.

2. No small returns

In this section we provide sharp lower bounds for the first return time,
for cylinders of measurable partitions. These estimates are essential to
compute the speed of convergence to the exponential law of the first
return time. To prove this theorem we will use White’s sharpening
[18, 19] of a remarkable theorem by Brudno [5] which links Kolmogorov
complexity to entropy. We state this theorem and give a quick intro-
duction to Kolmogorov complexity in the appendix.

Theorem 1. Let (T,X, µ) be an ergodic measure preserving dynamical
system. If ζ is a finite or countable measurable partition with entropy
hµ(T |ζ) strictly positive and ζxn is the cylinder of length n containing
x, then the lower rate of return for cylinders is almost surely bigger or
equal to 1, i.e.

Rζ(x) := lim
n→∞

1

n
τ(ζxn) ≥ 1

for µ-a.e. x ∈ X.

Remark: It is an easy exercise to show that if additionally (T,X)
satisfies the specification property [12] then

Rζ(x) ≤ 1

for µ-a.e. x ∈ X and thus

Rζ(x) := lim
n→∞

1

n
τ(ζxn) = 1

for µ-a.e. x ∈ X. Afraimovich et. al. have shown that there are specific
examples of zero entropy maps for which the conclusion of Theorem 1
is not true [2].

Proof. It is sufficient to prove the theorem for finite partitions, the case
of countable ζ will follow easily. More precisely, if ζ = {B1, B2, . . . }
is a countable partition, then for some m < ∞ the partition ζ̂ =
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{B1, B2, . . . , Bm,∪l>mBl} will have positive entropy. In addition, ζ is

finer than ζ̂, hence τ(ζxn) ≥ τ(ζ̂xn).

Thus we assume that ζ is finite. We claim that a cylinder ζxn is com-
pletely determined by its first τ := τ(ζxn) symbols. To see this suppose
that ζxn = [x0, . . . , xn−1] and that y ∈ ζxn satisfies T τy ∈ ζxn . Let j be
the integer defined by jτ < n ≤ (j + 1)τ. Since T τy ∈ ζxn we have
xiτ , . . . , x(i+1)τ−1 = x0, . . . , xτ−1 for i = 0, 1, . . . , j, proving the claim.

We will use the notion of Kolmogorov complexity to prove the theorem.
All the notations used here are defined in the appendix, more details
can be found in the references [5, 18]. Let N = #ζ and let K(w) be
the Kolmogorov complexity of a finite word w with entries from the
alphabet {0, 1, . . . , N − 1}. The partition ζ gives rise to the symbolic
space Σζ and a map ϕ : X → Σζ which is a semiconjugacy σϕ = ϕT.
Let ζxn be the word consisting of the first n–symbols of the sequence
ϕ(x). We use the notation Kζ(ζ

x
n) for the complexity of ζxn and define

Kζ(x, T ) = limn→0
1
n
K(ζxn).

Since ζxn is determined by its first τ symbols the complexity of the
sequence ζxn is bounded by the complexity of defining the first τ symbols
plus the complexity of repeating these symbols up to the size n of the
cylinder. In other words

Kζ(ζ
x
n) ≤ Kζ(ζ

x
τ(ζxn)) + log n.

From which follows

Kζ(x, T ) ≤ lim
n→∞

[Kζ(ζ
x
τ(ζxn)) + log n]/n

= lim
n→∞

Kζ(ζ
x
τ(ζxn))

τ(ζxn)
× τ(ζxn)

n

≤ Kζ(x, T )Rζ(x).

White’s improvement of Brudno’s theorem [18, 5] gives for µ-a.e. x ∈ X

Kζ(x, T ) = Kζ(x, T ) = hµ(T |ζ) > 0,

hence Rζ(x) ≥ 1.
After we discovered this proof of Theorem 1 Saussol gave an alter-
nate proof using the Shannon McMillan Breiman theorem instead of
Brudno’s result [2].
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3. Dimension and Lyapunov exponent via return times

3.1. Preliminaries. We can apply the results of the previous section
to a very general case of one-dimensional piecewise monotonic maps.
For a function f : [0, 1] → R and p > 0 we define the p–variation of f
by

varp(f) := sup

{
N−1∑
i=1

|f(xi+1)− f(xi)|p
}
,

where the supremum is taken along all finite ordered sequences of points
0 ≤ x1 < x2 < · · · < xN ≤ 1 and integers N .

Throughout this section T : [0, 1] → [0, 1] is a piecewise monotonic
transformation which preserves the ergodic invariant measure µ, and
Z denotes the finite µ-partition (i.e. partition modulo µ) of the interval
into monotonic pieces. We say that a measurable function T ′ : [0, 1]→
R is a derivative of T if∫ b

a

T ′(x) dx = T (b)− T (a)

for any interval [a, b] contained in some element of Z. We then denote
the Lyapunov exponent of an invariant measure µ by

λµ =

∫
log |T ′|dµ.

Let ϕ = log |T ′| and set Snϕ =
∑n−1

i=0 ϕ ◦ T i. Given a µ-partition Y
we denote by Yn = ∨n−1

i=0 T
−iY its refinement and we denote by Y x

n the
unique element of Yn containing x. Notice that such an element exists
and is unique for µ-a.e. x.

3.2. Balls and cylinder sets. In this section we slightly adapt the
results by Hofbauer and Raith [10] (see also [8]) in order to get a good
comparison between balls and cylinders. We denote by |J | the length
of an interval J ⊂ [0, 1].

Proposition 3.1 ([10]). Let T be a piecewise monotonic transforma-
tion with a derivative of bounded p-variation for some p > 0. Let µ be
an ergodic T -invariant measure with Lyapunov exponent λµ > 0. Then
for any ε > 0 we have

a) there exists a finite or countable µ-partition Y with finite entropy
into intervals which refines Z;

b) the partition Y is a generator, in particular hµ(T,Y) = hµ(T );
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c) for any n and x we have∣∣∣∣Snϕ(x)− log
1

|Y x
n |

∫
Y xn

exp(Snϕ(y))dy

∣∣∣∣ ≤ nε;

d) for µ-almost every x we have

lim
n→∞

1

n
log d(T nx, ∂T nY x

n ) = 0.

We can use this proposition and the technique described in [8, 10] to
prove the following

Lemma 1. Let Y be the partition given by Proposition 3.1. For µ-a.e.
x the set of accumulation points of the sequence − 1

n
log |Y x

n | lies in the
interval [λµ − ε, λµ + ε].

Proof. We have |T nY x
n | =

∫
Y xn

exp(Snϕ(y))dy, hence Proposition 3.1.c

gives

|Snϕ(x)− log |T nY x
n |+ log |Y x

n || ≤ nε. (4)

Since d(T nx, ∂T nY x
n ) ≤ |T nY x

n | ≤ 1 Proposition 3.1.d also implies that
limn→∞

1
n

log |T nY x
n | = 0 for µ-a.e. x. Furthermore the Birkhoff er-

godic theorem gives that limn
1
n
Snϕ = λµ for µ-a.e. x, thus using (4)

we get the result.

Lemma 2. Let Y be the partition given by Proposition 3.1. For µ-a.e.
x the set of accumulation points of the sequence − 1

n
log d(x, ∂Y x

n ) lies
in the interval [λµ − 2ε, λµ + 2ε].

Proof. By the mean value theorem we have

d(x, ∂Y x
n ) inf

Y xn
|(T n)′| ≤ d(T nx, ∂T nY x

n ) ≤ d(x, ∂Y x
n ) sup

Y xn

|(T n)′|.

Since the logarithm is increasing this implies

inf
Y xn

log |(T n)′| ≤ log
d(T nx, ∂T nY x

n )

d(x, ∂Y x
n )

≤ sup
Y xn

log |(T n)′|

Using (4) this yields∣∣∣∣log
d(x, ∂Y x

n )

d(T nx, ∂T nY x
n )

+ Snϕ(x)

∣∣∣∣ ≤ 2 sup
y∈Yxn
|ϕ(y)− ϕ(x)|

≤ 2nε,

(5)

by Proposition 3.1.c. In addition, by the Birkhoff ergodic theorem we
have limn→∞

1
n
Snϕ(x) = λµ for µ a.e. x. The conclusion follows then
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from Proposition 3.1.d and inequality 5.

3.3. A lower bound for the Lyapunov exponent. We are now
ready to state and prove the following result.

Theorem 2. Let T be a piecewise monotonic transformation with a
derivative of bounded p-variation for some p > 0. If µ is an ergodic
T -invariant measure with non-zero entropy, then

λµ ≥
(

lim
r→0

τ(Br(x))

− log r

)−1

(6)

for µ-almost every x.

Remark: 1) Notice that each C1+ε piecewise monotonic map with
finitely many pieces has a derivative of bounded p-variation, for p ≥
1/ε, hence C1+ε multimodal maps with non-zero entropy satisfies hy-
potheses of Theorem 2.

Proof. By Ruelle’s inequality, the assumption that the entropy is
positive implies that the Lyapunov exponent is positive as well [9]. Let
ε > 0 and Y be the partition given by Proposition 3.1.

Let x ∈ [0, 1] be fixed. We set dn = d(x, ∂Y x
n ) and Dn = |Y x

n |. Observe
that since Y is generating we have limnDn = 0, hence dn converges
monotonically to zero. Thus given r > 0 we can define n(r) to be the
smallest integer n such that dn+1 < r ≤ dn. Note that we have Br(x) ⊂
Y x
n(r), which implies that τ(Br(x)) ≥ τ(Y x

n(r)). Since r ≥ dn(r)+1 and

n(r)→∞ as r → 0 we get

lim
r→0

τ(Br(x))

− log r
≥ lim

r→0

(
τ(Y x

n(r))

n(r)
× 1

− 1
n(r)

log dn(r)+1

)
≥
(

lim
n→∞

τ(Y x
n )

n

)
×
(

lim
n→∞

− 1

n
log dn

)−1

.

Since hµ(T,Y) = hµ(T ) > 0 by Proposition 3.1.b we can apply Theo-

rem 1, hence there exists a setX1
ε of full µ-measure such that limn→∞

τ(Y xn )
n
≥

1 for any x ∈ X1
ε . By Lemma 2 there exists a set of full µ-measure X2

ε

such that limn→∞− 1
n

log dn ≤ λµ + 2ε for any x ∈ X2
ε . Thus for any

x ∈ X1
ε ∩X2

ε we get

lim
r→0

τ(Br(x))

− log r
≥ 1

λµ + 2ε
.
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We conclude that the inequality (6) holds on the set of full measure
∩i≥1(X1

1/i ∩X2
1/i). This proves the theorem.

In the case of Markov expanding maps we get a stronger result

Corollary 1. Under the hypotheses of Theorem 2, if in addition T is
piecewise expanding Markov then

lim
r→0

τ(Br(x))

− log r
=

1

λµ
.

Proof. Without loss of generality we assume that T is topologically
mixing. We only sketch the proof. If Z is a Markov partition for T
then it is easy to see that for any ε > 0 the partition Y = Zp = ∨p−1

i=0Z
will have all the properties mentioned in Proposition 3.1, provided p is
chosen sufficiently large. Furthermore, Zp is still a Markov partition,
hence it has the specification property. Taking into account Remark 2,
and proceeding as in the second part of the proof of Theorem 3 yields
to the conclusion.

3.4. Dimension via return time. Give a map T : X → X on the
metric space (X, d) we define the first return of a point x ∈ X into its
r-ball Br(x) by

τr(x) := min
{
k > 0 : T kx ∈ Br(x)

}
= min

{
k > 0 : d(T kx, x) < r

}
Given a measurable µ-partition Y we denote by

Rn(x,Y) = inf{k > 0 : T kx ∈ Y x
n }

the repetition time of the first n symbols of x. Ornstein and Weiss
have proven [15] that, whenever Y is a finite measurable µ-partition we
have

lim
n→∞

logRn(x,Y)

n
= hµ(T,Y), (7)

for µ-almost every x. See also [13, 17] for the generalization to the case
of a countable partition Y . This result will be essential to prove the
following.

Theorem 3. Let T be a piecewise monotonic transformation with a
derivative of bounded p-variation for some p > 0. If µ is an ergodic
T -invariant measure with non-zero entropy, then

dµ(x) = lim
r→0

log τr(x)

− log r
(8)
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for µ-almost every x.

Proof. By Ruelle’s inequality, the assumption that the entropy is
positive implies that the Lyapunov exponent is positive as well [9]. Let
ε ∈ (0, λµ) and Y be the partition given by Proposition 3.1.

We proceed as in the proof of Theorem 2, and keep the same notations.
Observe that for any x and r > 0 we have Br(x) ⊂ Y x

n(r), from which

follows τr(x) ≥ Rn(r)(x,Y). Thus

lim
r→0

log τr(x)

− log r
≥ lim

r→0

(
logRn(r)(x,Y)

n(r)
× 1

− 1
n(r)

log dn(r)+1

)
≥
(

lim
n→∞

logRn(x,Y)

n

)
×
(

lim
n→∞

− 1

n
log dn

)−1

.

Since hµ(T,Y) = hµ > 0 by Proposition 3.1.b we can apply the count-
able alphabet version of Ornstein and Weiss return times theorem
[15, 13, 17], hence there exists a set X1

ε of full µ-measure such that
(7) holds for any x ∈ X1

ε . By Lemma 2 there exists a set of full µ-
measure X2

ε such that limn→∞− 1
n

log dn ≤ λµ + 2ε for any x ∈ X2
ε .

Thus for any x ∈ X1
εi
∩X2

εi
we get

lim
r→0

log τr(x)

− log r
≥ hµ
λµ + 2ε

. (9)

Next we want to find an upper bound for the lim of the same quantity.
If m(r) denotes the smallest integer m such that Dm < r ≤ Dm−1, then
we have Br(x) ⊃ Y x

m(r). Thus

lim
r→0

log τr(x)

− log r
≤ lim

r→0

(
logRm(r)(x,Y)

m(r)
× 1

− 1
m(r)

logDm(r)−1

)
≤
(

lim
m→∞

logRm(x,Y)

m

)
×
(

lim
m→∞

− 1

m
logDm

)−1

.

By Lemma 1 there exists a set of full µ-measure X3
ε such that for any

x ∈ X3
ε we have limm→∞− 1

m
logDm ≥ λµ − ε. This together with (7)

implies that for any x ∈ X1
ε ∩X3

ε we have

lim
r→0

log τr(x)

− log r
≤ hµ
λµ − ε

. (10)

In addition, Hofbauer [8] has shown in this setting that

dµ(x) =
hµ
λµ
,
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hence we conclude by (9) and (10) that the equality (8) holds on the
set of full measure ∩i≥1(X1

1/i ∩X2
1/i ∩X3

1/i). This finishes the proof.

4. Appendix: Kolmogorov complexity and Brudno’s

theorem

The idea of Kolmogorov complexity is that a finite 0–1 word is only
as complicated as the algorithm that produces it.1 To run an algo-
rithm we need to fix a computer (with infinite storage capacity). The
Kolmogorov complexity KM(x) of a word x with respect to a fixed
computer M is the length of the shortest algorithm which outputs x
given the length of x as an input. Kolmogorov proved that there exist
universal computers U such that

KU(x) ≤ KM(x) + C (11)

where C is a constant depending only on U and M. Here the word
universal is used to indicate that U can simulate any other computer
M .

More formally, a computer M is a Turing machine while an algorithm
which produces a finite 0–1 string s is a 0–1 string p such thatM(p) = s.
If there is no p with M(p) = s we say that the length l(p) of the
algorithm is not defined while if there is more than one such p we
choose the first in the lexicographical order.

If p is a finite word of length n then we denote by p̂ the string

p(0)p(0)p(1)p(1) · · · p(n− 1)p(n− 1)01.

If we input the concatenated word p̂q into a suitably programmed Tur-
ing machine it will recognize two distinct inputs: p and q. Also, if
n ∈ N let [n] be the n binary string in the lexicographical order given
by

0, 1, 00, 01, 10, 11, 000, . . .

i.e. [3] = 00. Notice that l([n]) ≤ log2 n.

There are countably many Turing machines, which may be computable
enumerated as A1, A2, . . . . We say that a Turing machine is universal

if, for any m and any finite word p : U( ˆ[m]p) = Am(p). Thus a universal
Turing machine simulates any given machine on any given input.

1The generalization to arbitrary finite alphabets is straightforward.
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For x an infinite 0–1 sequence one defines the average complexity by
looking at the first n–bits x(n) and defining

K(x) := lim
n→∞

KU(x(n))

n
.

Note that by equation (11) the average complexity does not depend
which universal computer U is chosen. The function K(x) is defined
in an analogous way with the lim replaced by a lim.

Brudno’s theorem shows the linkage between complexity and entropy.
Suppose that µ is an ergodic invariant measure for the map f and ζ is
a finite measurable partition. The partition ζ gives rise to the symbolic
space Σζ and a map ϕ : X → Σζ which is a semiconjugacy σϕ = ϕT.
Let ζxn be the word consisting of the first n–symbols of the sequence
ϕ(x) and define Kζ(x, T ) = K((ζxn)n). Brudno has shown:

Theorem 4. (Brudno [5]) Kζ(x) = hµ(f |ζ) for µ–almost every point
x

White has improved this theorem, he has shown:

Theorem 5. (White [18, 19]) Kζ(x) = Kζ(x) = hµ(f |ζ) for µ–
a.e. x.
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LAMFA / CNRS fre 2270, Université de Picardie Jules Verne, 33, rue

St Leu, F-80039 Amiens cedex 1, France

E-mail address: benoit.saussol@mathinfo.u-picardie.fr

URL: http://www.mathinfo.u-picardie.fr/saussol/
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