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Abstract. We prove a large deviation result for return times of the orbits of a dynamical
system in a r-neighbourhood of an initial point x. Our result is a differentiable version of the
work by Jain and Bansal who considered the return time of a stationary and ergodic process
defined in a space of infinite sequences.
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1. Introduction

Consider a dynamical system (X,A, g, µ) where X is a compact metric space, A is a σ-
algebra on X, g : X → X is a measurable map and µ an invariant probability measure on
(X,A). Let A ⊂ X be a measurable set of positive measure. An important result in ergodic
theory is the Poincaré’s recurrence theorem. It states that any probability measure preserving
map has almost everywhere recurrence. More precisely, for µ-almost every x ∈ A we have
that {n : gnx ∈ A} is infinite. It is natural to ask for quantitative results of the recurrence.
Given a point x ∈ A, the first return time of the orbit of x to the set A is given by

τA(x) = min {n ≥ 1 : gnx ∈ A} .

In [10], Kac was able to prove that, when the system is ergodic, the expectation of the return
time in a set A is equal to the inverse of the measure of this set, i.e.,

∫

A

τAdµ = 1.

Moreover, if µ is not ergodic, the inequality
∫

A

τAdµ ≤ 1,

still holds.
In the study of quantitative recurrence is investigated properties related to the return time

τr(x) that is defined as follows: for every x ∈ X, the return time of x under the map g in its
r-neighborhood as

τr(x) = τB(x,r)(x) = min{n ≥ 1 : d(gnx, x) < r}.

In dynamical system this subject have been studied by many authors. Boshernitzan [3] has
studied rate of recurrence when X has a finite Hausdorff dimension. In symbolic space, Feng
and Wu [7] investigated the set

E(α, β) :=

{

x ∈ [0, 1] : lim
r→0

log τr(x)

− log r
= α, lim

r→0

log τr(x)

− log r
= β

}
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and showed that for 0 ≤ α ≤ β ≤ ∞, dimH E(α, β) = 1. Analogous results are proved in [17]
in the case of C1+α conformal repellers in smooth compact manifolds and in [12] to the Gauss
transformation on [0, 1). It is important to emphasize that if we consider a repeller J ⊂ M ,
M a smooth manifold, the spectrum for recurrence F(α) = dimH E(α,α) is degenerate, that
is, F(α) = dimH J .

In [16], the author reviews important results on recurrence. He considers an expanding map
of the interval and proves results for recurrence rates, limiting distributions of return times,
and short returns. In [8] was presented an upper bound for the exponential approximation of
the law of a hitting time in a mixing dynamical system.

The case of large deviation has been investigated by Abadi and Vaienti in [1]. It was proved
large deviation properties of τ(Cn)/n, where τ(Cn) is the first return of a n-cylinder to itself.
More precisely, if the system is ψ-mixing, if ψ(0) < 1 and the Rényi entropies exist for all
integers β, then for δ ∈ (0, 1], the limit

lim
n→∞

1

n
log µ {x : τ(Cn) ≤ [δn]} :=M(δ)

exists. In addition, they explicit the form of M(δ). If we denote with τnA(x) the nth return
times into A, the Birkhoff theorem gives that for µ-almost every point x

lim
n→∞

τnA(x)

n
=

1

µ(A)
.

For Axiom A diffeomorphisms and equilibrium states µ, it was proved by Chazottes and
Leplaideur [5] and after by Leplaideur and Saussol [11], under the assumption that µ(∂A) = 0,
the existence of a rate function ΦA such that for every u ≥ 1

µ(A) ,

lim
n→∞

1

n
log µ

{

τnA
n

≥ u

}

= ΦA(u)

and for every 0 ≤ u ≤ 1
µ(A) ,

lim
n→∞

1

n
log µ

{

τnA
n

≤ u

}

= ΦA(u).

Our result is a differentiable version of a recent work by Jain and Bansal [9] who studied
large deviation property for normalized version of recurrence times under φ-mixing conditions.
Let H denote the entropy rate of the process X and x a particular realization of X. Define
the first return time of xn1 as

Rn(x) = min
{

j ≥ 1 : xn1 = x−j+n
−j+1

}

.

We say that X have exponential rates for entropy if for every ǫ > 0, we have

P
({

xn1 : 2−n(H+ǫ) ≤ P (xn1 ) ≤ 2−n(H−ǫ)
})

≤ 1− r(n, ǫ),

where r(ǫ, n) = e−k(ǫ)n, with k(ǫ) a real valued positive function of ǫ. They proved that for
an exponentially φ-mixing process with exponential rates for entropy,

P

(∣

∣

∣

∣

logRn(X)

n
−H

∣

∣

∣

∣

> ǫ

)

≤ 2e−I(ǫ)n,∀n ≥M(ǫ),

where I(ǫ) is a real positive valued function for all ǫ > 0 and I(0) = 0.
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If we denote with

dµ(x) = lim
r→0

log µ(B(x, r))

log r
and dµ(x) = lim

r→0

log µ(B(x, r))

log r
,

the lower and upper pointwise dimensions of the measure µ at the point x ∈ X, it was proved
by Barreira and Saussol [2] that

lim
r→0

log τr(x)

− log r
≤ dµ(x) and lim

r→0

log τr(x)

− log r
≤ dµ(x),

for µ-almost every x ∈ X. If the system has a super-polynomial decay of correlations, Saussol
in [15] showed that equalities will hold for the expressions above. This implies that

log τr(x) ∼
r→0

log
(

r−dµ(x)
)

.

Our aim is to study the limiting behavior as r → 0 of µ
(

τr ≥ r−dµ−ǫ
)

and µ
(

τr ≤ r−dµ+ǫ
)

.
This characterization is via asymptotic lower exponential bound. We consider the limits

lim
r→0

1

log r
log µ

(

τr ≥ r−dµ−ǫ
)

and lim
r→0

1

log r
log µ

(

τr ≤ r−dµ+ǫ
)

and under some assumption about the measure we prove large deviation estimates (see The-
orem 2.4 for precise statements). The bounds we prove are given in terms of the minimum of
rate for dimension and rate for fast times (see Section 2 for definition). Moreover, we consider
a C1+α conformal repeller and an equilibrium state of a Hölder potential. Then, we compute
the rates functions and applies Theorem 2.4 to obtain large deviation estimates for return
times for repeller (see Theorem 3.2).

2. Large deviation estimates for return times in a general setting

Let g : X → X be a measurable map and µ an invariant probability measure on (X,A).

Definition 2.1. The measure µ is called exact dimensional if there exists a constant dµ such

that

dµ(x) = dµ(x) = dµ for µ-almost every x ∈ X.

We recall that the Hausdorff dimension of a probability measure µ on X is given by

dimH µ = inf{dimH Z : µ(Z) = 1},

where dimH Z denotes the Hausdorff dimension of Z.
Moreover, for an exact dimensional measure, the Hausdorff dimension and the local dimen-

sion coincide:

Proposition 2.2 ([19]). If µ is exact dimensional, then

dµ = dimH µ.

We now define the rates functions which will appear in our large deviations estimates:

Definition 2.3. Given ǫ > 0, we define the exponential rate for dimension:

ψ(±ǫ) = lim
r→0

1

log r
log µ

({

log µ(B(x, r))

− log r
∈ I±ǫ

})

, (1)

where Iǫ = (−∞,−dµ − ǫ) and I−ǫ = (−dµ + ǫ,+∞).
Given ǫ, a > 0, we define the exponential rate for fast return times:
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ϕ(a, ǫ) = lim
r→0

1

log r
log µ

({

x0 : µB(x0,2r)

(

τB(x0,2r) ≤ r−dµ+ǫ
)

≥ ra
})

. (2)

We may now state our main result.

Theorem 2.4. Let (X,A, g, µ) be a dynamical system. Suppose that µ is an exact dimensional

measure. Given positive constants ǫ, ξ and a, for all γ ∈ (0, 1) we have:

f(ǫ) := lim
r→0

1

log r
log µ

(

τr ≥ r−dµ−ǫ
)

≥ min
{

(1− γ)ǫ, ψ(γǫ)
}

(3)

and

f(−ǫ) := lim
r→0

1

log r
log µ

(

τr ≤ r−dµ+ǫ
)

(4)

≥ min
{

−γ(ǫ+ ξ) + a, ψ(γǫ), ϕ(a, ǫ), ψ(−γξ)
}

.

This result is satisfactory in the sense that it holds for any dynamical system. We can
observe that in (3) if the rate function for dimension ψ is positive in some interval (0, ǫ), it

means that µ
(

τr ≥ r−dµ−ǫ
)

has a fast exponential decay.
For several dynamical systems, including Hénon maps (see [4]), we obtain the following

result.

Proposition 2.5. If there exist constants a, b > 0 such that for all r ∈ (0, 1) :

• there exists a set Ωr such that

µ(Ωc
r) < rb;

• for all x ∈ Ωr,
∣

∣

∣

∣

µB(x,r)

(

τB(x,r) >
t

µ(B(x, r))

)

− e−t

∣

∣

∣

∣

≤ ra,

for every t > 0.

Then, ϕ(a, ǫ) ≥ min{ψ(a − ǫ), b}.

The proof of this proposition will be done at the end of Section 4.

3. Large deviation estimates for return times for conformal repeller

In this section we will present a version of our main result for conformal repeller. Let
φ : X → R be a Hölder continuous function. We call Gibbs measure for the potential φ an
invariant measure µ such that there exists a constant Pg(φ) ∈ R such that for some κφ ≥ 1,
for any x and n, we have

1

κφ
≤

µ(Jn(x))

exp(Snφ(x)− nPg(φ))
≤ κφ,

where Jn(x) is the cylinder of length n containing x.
Let g :M →M be a C1+α map of a smooth manifold and consider a g-invariant compact

set J ⊂ M . The map g is said to be an expanding map on J if there exist constants c > 0
and β > 1 such that

‖dxg
nv‖ ≥ cβn‖v‖
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for every n ∈ N, x ∈ J and v ∈ TxM. In addition, we call J a repeller if there exists an open
neighborhood V of J such that

J =
⋂

n≥0

g−nV.

The map g is said to be conformal on J if

dxg = a(x)Isomx,

where Isomx denotes an isometry of the tangent space TxM.
From now on, let (J, g) be a conformal repeller. We collect some facts about HP-spectrum

for dimensions.
Let (Σ+

A, σ) be a subshift of a finite type and χ : Σ+
A → J a coding map such that χ◦σ = g◦χ.

Let µ be a Borel probability measure on a metric space (X, ρ). Denote by ζ a Hölder continuous
function on J and µ = µζ the equilibrium measure for (g, ζ). Moreover, let ϕ = ζ ◦ χ be a

Hölder continuous function on Σ+
A and ν = νϕ its Gibbs measure. Finally, consider a function

ψ such that logψ = ϕ− P (ϕ).

Proposition 3.1 ([14]). For any q > 1, the following limit exists

HPµ(q) =
1

1− q
lim
r→0

log
∫

µ(B(x, r))q−1

− log r
dµ(x). (5)

In addition, given q ∈ (−∞,∞), let φq on Σ+
A be the one parameter family of functions such

that

φq(w) = −T (q) log |a(χ(w))| + q logψ(w),

where T (q) is chosen such that P (φq) = 0. For any q > 1,

T (q)

1− q
= HPµ(q).

The function T (q) is real analytic for all q ∈ R, T (0) = dimH J, T (1) = 0, T ′(q) ≤ 0
and T ′′(q) ≥ 0. And T ′′(q) > 0 if and only if the function logψ − T ′(q) log |a(χ(w))| is not

cohomologous to a constant. If and only if µ is not a measure of maximal dimension.

Note that µ is exact dimensional (one can see [13] for more details).
Under this context, if we consider a conformal repeller and an equilibrium state of a Hölder

potential ζ we obtain a version of our principal result, somewhat more concrete:

(1) in this setting we can compute the exponential rate for the dimension ψ, using ther-
modynamic formalism;

(2) we can also estimate the exponential rate for fast return times ϕ, using a technique
similar to the one used to prove exponential return time statistics.

Thus, applying our main result to this setting will give us the following theorem.

Theorem 3.2. Let (J, g) be a conformal repeller and µ an equilibrium state for a Hölder

potential ζ. Given positive constants ǫ, ξ and a0, for all γ ∈ (0, 1), we have:

(1)

f(ǫ) ≥ min {(1− γ)ǫ,Λ∗(−dµ + γǫ)} > 0; (6)
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(2)

f(−ǫ) ≥ min {−γ(ǫ+ ξ) + a0,Λ
∗(−dµ + γǫ),Λ∗(−dµ − γξ)} > 0; (7)

where Λ∗(x) = −x+ T ∗(x) = −x+ sup
λ∈R

{λx− T (λ)}.

Remark 3.3. If µ is the measure of maximal dimension the above theorem remains valid.

However, since HPµ(q) is constant equal to dµ follows that Λ∗(x) = +∞ for x 6= 0, which
makes the minimum in (6) and (7) being (1 − γ)ǫ and −γ(ǫ+ ξ) + a0, respectively.

In what follows we shall assume that there is no cohomology relation.
To obtain Theorem 3.2, we need a fundamental theorem of large deviation theory, the

Gartner-Ellis Theorem.
Let µr be a family of probability measures. Consider a family Zr ∈ R, r ∈ (0, 1) where Zr

possesses the law µr and logarithmic moment generating function

Λr(λ) = logE

[

eλZr

]

.

µr may satisfy the large deviation property if there exists a limit of properly scaled logarithmic
moment generating functions.

Assumption 3.4. For any λ ∈ R, the logarithmic moment generating function, defined as

the limit

Λ(λ) := lim
n→∞

1

− log r
Λr(− log rλ),

exists as an extended real number. Further, the origin belongs to the interior of the interval

Dλ := {λ ∈ R; Λ(λ) <∞}, Λ is C2 and strictly convex.

The Fenchel-Legendre transform of Λ(λ) is

Λ∗(x) = sup
λ∈R

{λx− Λ(λ)}.

Remark 3.5. Λ∗ is strictly convex and C1 on its support.

Thus, we can enunciate Gartner-Ellis Theorem (see e.g. [6]).

Theorem 3.6 (Gartner-Ellis). If assumption 3.4 hold, then for any closed set F ,

lim
r→0

1

− log r
log µn(F ) ≤ − inf

x∈F
Λ∗(x). (8)

and for any open set G,

lim
r→0

1

− log r
log µn(G) ≥ − inf

x∈G
Λ∗(x). (9)

We will apply this theorem to the family Zr defined by

Zr =
log µ(B(x, r))

− log r
.

It follows that

Λr(λ) = log

∫

eλ
log µ(B(x,r))

− log r dµ(x).
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Thus, from the definition of Λ(λ), we get

Λ(λ) = lim
r→0

1

− log r
log

∫

eλ log µ(B(x,r))dµ(x)

= lim
r→0

1

− log r
log

∫

µ(B(x, r))λdµ(x).

The proof of the following proposition is an immediate consequence of the Proposition 3.1.

Proposition 3.7. Let (J, g) be a conformal repeller and µ an equilibrium state for the Hölder

potential ζ. Then, for λ > 0, the following limit exists

Λ(λ) = lim
r→0

1

− log r
log

∫

µ(B(x, r))λdµ(x) = T (λ+ 1).

Applying Gartner-Ellis Theorem, we obtain:

Corollary 3.8. Under the same conditions as in Proposition 3.7 we have that for all interval

I,

lim
r→0

1

− log r
log µ

({

log µ(B(x, r))

− log r
∈ I

})

= − inf
x∈I

Λ∗(x),

where Λ∗(x) = −x+ T ∗(x) is continuous on its domain.

Proof. This equality is a direct consequence of the Theorem 3.6. Since the logarithmic moment
generating function is defined by Λ(λ) = T (λ+1), the Fenchel-Legendre transform of Λ(λ) is

Λ∗(x) = sup
λ∈R

{λx− Λ(λ)}

= sup
λ∈R

{λx− T (λ+ 1)}

= sup
ν∈R

{(ν − 1)x− T (ν)}

= −x+ sup
ν∈R

{νx− T (ν)}

= −x+ T ∗(x).

The continuity of Λ∗(x) follows from its convexity. �

In Figure 1, one can see a graph of the Frenchel-Legendre transform of Λ.

Figure 1. Graph of Λ∗.

Now, one can use Corollary 3.8, to get the rate function for the dimension:

Proposition 3.9. For any ǫ > 0, the exponential rate for the dimension is given by:

ψ(ǫ) = inf
x∈(−∞,−dµ−ǫ)

Λ∗(x) = Λ∗(−dµ − ǫ) > 0

and

ψ(−ǫ) = inf
x∈(−dµ+ǫ,+∞)

Λ∗(x) = Λ∗(−dµ + ǫ) > 0.
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Proof. Recall that the exponential rate for dimension ψ is defined by

ψ(±ǫ) = lim
r→0

1

log r
log µ

({

log µ(B(x, r))

− log r
∈ I±ǫ

})

, (10)

where Iǫ = (−∞,−dµ − ǫ) and I−ǫ = (−dµ + ǫ,+∞). So, by Corollary 3.8 we have that

ψ(±ǫ) = lim
r→0

1

log r
log µ

({

log µ(B(x, r))

− log r
∈ I±ǫ

})

= inf
x∈I±ǫ

Λ∗(x)

= Λ∗(−dµ ∓ ǫ)

which proves the proposition. �

From now on, assume that ζ is a potential such that P (ζ) = 0. To obtain exponential rate
for the return times (Prop. 3.13), we first review the shadowing property for periodic points.

Definition 3.10. Given α > 0, we call α-pseudo-orbit for (J, g) each sequence (xn)n≥0 such

that

d(gxn, xn+1) < α, for all n ≥ 0.

We call a sequence x0, x1, · · · , xm−1, xm = x0 an α-periodic orbit if

d(gxn, xn+1) < α.

A particular case of an α-periodic orbit is provided by x0, gx0, · · · , g
m−1x0 when d(g

mx0, x0) <
α.

Lemma 3.11 (Shadowing lemma). If (J, g) is a repeller then for every β > 0 there exists

α > 0 such that given an α-pseudo-orbit (xn)n≥0 in J there exists z ∈ J such that its orbit

β-shadows (xn)n≥0, that is, d(g
nz, xn) < β for all n ≥ 0.

The proof can be seen in [18].

Lemma 3.12 (Closing lemma). If (J, g) is a repeller then for every α-periodic orbit (xn)n≥0

there exists a point y with gn(y) = y and d(gky, xk) < β, for all k = 0, · · · ,m− 1.

We will use these properties to have information on the rate function for the return times:

Proposition 3.13. Given ǫ, a0 > 0, the exponential rate for fast return times satisfies:

ϕ(a0, ǫ) ≥ a0 > 0.

This proposition is a simple consequence of the following lemma.

Lemma 3.14. For any d0 ∈ (0, dµ) there exist constants a0, c0, h > 0 and a set Ωr such that

µ(Ωc
r) < ra0

and for all x0 ∈ Ωr, one has

µB(x0,2r)

(

τB(x0,2r) ≤ r−d0
)

≤ 2kζ(2r)
hc0 + r−d0kζµ(B(x0, 2r)).

Proof. We first claim that there exists Ωr with µ(Ωc
r) ≤ ra0 such that for all x0 ∈ Ωr and for

all k ≤ c0 log
1
2r we have B(x0, 2r) ∩ g

−k(B(x0, 2r)) = ∅.
Indeed, let c0 ∈ (0, dµ/ logm), wherem is the number of branches of the map g. If x0 is such

that B(x0, 2r)∩g
−k(B(x0, 2r)) 6= ∅, there exists x such that d(x, x0) < 2r and d(gkx, x0) < 2r,

thus d(x, gkx) < 4r. Take 4r = α and consider the sequence x, gx, · · · , gk−1x. By the Closing
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lemma, there exists a point z such that gkz = z and d(gjz, gjx) < β for all j < k. Moreover,
in the proof of the Shadowing lemma one can see that we can take β = c1α, where c1 > 0
depends only on the expansiveness constant. Define

Pk = {z : gkz = z} and Dk = ∂Jk ⊃ disc(gk),

where disc(gk) is the set of discontinuity points of gk. It follows that

d(x,Pk) < 4c1r or d(x,Dk) < 4c2r.

Therefore, d(x,Pk ∪Dk) < c3r. Observe that

Cr(k) =
{

x0 : B(x0, 2r) ∩ g
−k(B(x0, 2r)) 6= ∅

}

⊂ B(Pk ∪Dk, c3r) :=
⋃

y∈Pk∪Dk

B(y, c3r). (11)

Moreover, using (17), we have the inequality

µ
(

A(−ξ)(2c3r) ∩B(Pk ∪ Dk, c3r)
)

≤ (#Pk +#Dk) sup
x∈A(−ξ)(2c3r)

µ(B(x, 2c3r))

≤ 2mk(2c3r)
dµ−ξ.

Take K = c0 log
1
2r and define

Ωr = A(−ξ)(2c3r) ∩
⋂

k≤K

B(Pk ∪Dk, c3r)
c.

It follows from the previous inequality and Corollary 3.8 that

µ(Ωc
r) ≤

K
∑

k=1

µ
(

A(−ξ)(2c3r) ∩B(Pk ∪ Dk, c3r)
)

+ µ
(

Ac
(−ξ)(2c3r)

)

≤ 2(2c3r)
dµ−ξ

K
∑

k=1

mk + (2c3r)
Λ∗(−dµ+ξ)−δ,

≤ 2(2c3r)
dµ−ξmK+1 + (2c3r)

Λ∗(−dµ+ξ)−δ

≤ ra0 ,

where δ > 0 and a0 = min{dµ − ξ − c0 logm,Λ
∗(−dµ + ξ) − δ}. We observe that x0 ∈ Ωr

implies that x0 /∈ B(Pk ∪Dk, c3r). Therefore from (11), B(x0, 2r)∩ g
−k(B(x0, 2r)) = ∅ for all

k ≤ c0 log
1
2r which proves our initial claim.

We will now estimate the quantity µB(x0,2r)

(

g−kB(x0, 2r)
)

for large values of k.
Let ζ be a Hölder potential. Recall that the Ruelle-Perron-Frobenius operator

Lζ : C(M) → C(M) is defined by

Lζ(f)(x) =
∑

y∈g−1(x)

eζ(y)f(y),

for f ∈ C(M) and x ∈M. By induction, for every n ≥ 1,

Ln
ζ (f)(x) =

∑

y∈g−n(x)

eSnζ(y)f(y),
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where Snζ =
n−1
∑

k=0

ζ ◦ gk. Now we have that

µ
(

B(x0, 2r) ∩ g
−kB(x0, 2r)

)

=

∫

1B(x0,2r)1B(x0,2r) ◦ g
kdµ

=

∫

Lk(1B(x0,2r))1B(x0,2r)dµ

≤ µ(B(x0, 2r))
∥

∥

∥
Lk(1B(x0,2r))

∥

∥

∥

∞
.

Hence,

µB(x0,2r)

(

g−kB(x0, 2r)
)

≤
∥

∥

∥
Lk(1B(x0,2r))

∥

∥

∥

∞
. (12)

It follows that for all R ∈ Jk,

Lk(1R)(x) =
∑

y∈g−kx, y∈R

eSkζ(y)1R(y)

≤
∑

y∈g−kx, y∈R

kζµ(R),

where the last inequality follows from the Gibbs property since P (ζ) = 0. In addition, the
preimage of x under gk has just one element in R. Then,

Lk(1R)(x) ≤ kζµ(R). (13)

If c0 log
1
2r < k < b1 log

1
2r , the ball B(x0, 2r) is contained in at most two cylinders. So there

exists h > 0 such that

Lk(1B(x0,2r)) =
∑

R∈Jk

Lk(1R)

≤ 2kζµ(R)

≤ 2kζe
−hk.

Hence, we get

µB(x0,2r)(g
−kB(x0, 2r)) ≤ 2kζe

−hk.

We now consider RL, RR ∈ Jk such that L,R are endpoints of the B(x0, 2r). If k ≥ b1 log
1
2r ,

we have that µ(RL) ≤ e−hk and µ(RR) ≤ e−hk. Therefore, from (13) we have

Lk(1B(x0,2r)) =
∑

R∈Jk,R⊂B(x0,2r)

Lk(1R) + Lk(1RL
) + Lk(1RR

)

≤
∑

R∈Jk,R⊂B(x0,2r)

kζµ(R) + 2kζe
−hk

≤ kζµ(B(x0, 2r)) + 2kζe
−hk.

This implies

µB(x0,2r)

(

g−kB(x0, 2r)
)

≤ kζµ(B(x0, 2r)) + 2kζe
−hk.
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Recall that for all x0 ∈ Ωr and for all k ≤ c0 log
1
r
, B(x0, r) ∩ g

−k(B(x0, r)) = ∅. We get

µB(x0,2r)

(

τB(x0,2r) ≤ r−d0
)

≤
r−d0
∑

k=0

µB(x0,2r)

(

g−kB(x0, 2r)
)

=

⌊b1 log
1
2r

⌋
∑

k=c0 log
1
2r

µB(x0,2r)

(

g−kB(x0, 2r)
)

+
r−d0
∑

k=⌊b1 log
1
2r

⌋+1

µB(x0,2r)

(

g−kB(x0, 2r)
)

≤

⌊b1 log
1
2r

⌋
∑

k=c0 log
1
2r

2kζe
−hk +

r−d0
∑

k=⌊b1 log
1
2r

⌋+1

(

kζµ(B(x0, 2r)) + 2kζe
−hk
)

≤
r−d0
∑

k=c0 log
1
2r

2kζe
−hk +

r−d0
∑

k=⌊b1 log
1
2r

⌋+1

kζµ(B(x0, 2r))

≤ 2kζe
−hc0 log

1
2r + r−d0kζµ(B(x0, 2r))

= 2kζ(2r)
hc0 + r−d0kζµ(B(x0, 2r)).

This ends the proof. �

Proof of Proposition 3.13. By definition of ϕ and Lemma 3.14,

ϕ(a0, ǫ) = lim
r→0

1

log r
log µ (Ωc

r)

≥ lim
r→0

1

log r
log ra0 = a0 > 0,

thus the proposition is proved. �

We are now able to prove Theorem 3.2

Proof of the Theorem 3.2. For γ ∈ (0, 1), we get by Proposition 3.9 that

ψ(γǫ) = Λ∗(−dµ − γǫ) > 0

and

ψ(−γξ) = Λ∗(−dµ + γξ) > 0.

Moreover, by Proposition 3.13,

ϕ(a0, ǫ) ≥ a0 > 0.

Thus, it follows form Theorem 2.4, that

f(ǫ) ≥ min{(1− γ)ǫ,Λ∗(−dµ − γǫ)} > 0 (14)

and

f(−ǫ) ≥ min {−γ(ǫ+ ξ) + a0,Λ
∗(−dµ − γǫ),Λ∗(−dµ + γξ)} > 0 (15)

where Λ∗(x) = −x+ T ∗(x) and the theorem is proved. �
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4. Proof of the main result

In this section we prove the Theorem 2.4 using the method developed in [16]. We begin by
the following lemma which will be needed in the proof of our main theorem.

Lemma 4.1. Let (ai(r))i=1,...,p, ai(r) > 0. If γi = lim
r→0

1
log r log ai(r) > 0. Then

lim
r→0

1

log r
log

(

p
∑

i=1

ai(r)

)

≥ min
i=1,...,p

γi.

Proof. For all ǫ > 0 there exists ri > 0 such that r < ri implies ai ≤ rγi−ǫ. Let ǫ > 0
sufficiently small such that γi − ǫ > 0. We have,

p
∑

i=1

ai(r) ≤

p
∑

i=1

rγi−ǫ ≤ prmin{γi}−ǫ

and this implies

1

log r

(

p
∑

i=1

ai(r)

)

≥ min
i=1,...,p

{γi} − ǫ+
log p

log r
.

Finally,

lim
r→0

1

log r
log

(

p
∑

i=1

ai(r)

)

≥ min
i=1,...,p

{γi} − ǫ.

The result is proved since ǫ can be chosen arbitrarily small. �

Given ǫ, ξ > 0, define

Aǫ(r) =
{

x ∈ X : µ(B(x, r)) ≥ rdµ+ǫ
}

(16)

and

A−ξ(r) =
{

x ∈ X : µ(B(x, r)) ≤ rdµ−ξ
}

. (17)

Proof of the Theorem 2.4. Let γ ∈ (0, 1). We have

µ({x : τr(x) ≥ r−dµ−ǫ}) ≤ µ
({

x ∈ Aγǫ

(r

4

)

: τr(x) ≥ r−dµ−ǫ
})

+ µ
({

x ∈ Ac
γǫ

(r

4

)

: τr(x) ≥ r−dµ−ǫ
})

.

Let us define the set

Mr =
{

x ∈ Aγǫ

(r

4

)

: τr(x) ≥ r−dµ−ǫ
}

.

Let
(

B
(

xi,
r
2

))

i
be a family of balls of radius r/2 centered at points of Aγǫ(r) that covers Mr

and such that B
(

xi,
r
4

)

∩B
(

xj,
r
4

)

= ∅ if xi 6= xj. We have

µ
({

x : τr(x) ≥ r−dµ−ǫ
})

≤ µ(∪iBi ∩Mr) + µ
({

x ∈ Ac
γǫ

(r

4

)

: τr(x) ≥ r−dµ−ǫ
})

≤
∑

i

µ(Bi ∩Mr) + µ
(

Ac
γǫ

(r

4

))

.
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Using first the triangle inequality and then Kac’s lemma and Markov inequality, we obtain

µ(Bi ∩Mr) ≤ µ
(

Bi ∩
{

τBi
≥ r−dµ−ǫ

})

≤ rdµ+ǫ

∫

Bi

τBi
dµ = rdµ+ǫ.

Observe that
∑

i

(r

4

)dµ+γǫ

≤
∑

i

µ
(

B
(

xi,
r

4

))

≤ 1. Thus, since the balls are disjoint it

follows that the number of balls is bounded by
(

1
4r
)−dµ−γǫ

. Therefore,

µ
({

x : τr(x) ≥ r−dµ−ǫ
})

≤
∑

i

µ(Bi)r
dµ+ǫ + µ

(

Ac
γǫ

(r

4

))

≤

(

1

4
r

)−dµ−γǫ

rdµ+ǫ + µ
(

Ac
γǫ

(r

4

))

≤ 4dµ+γǫr(1−γ)ǫ + µ
(

Ac
γǫ

(r

4

))

.

Thus,

1

log r
log µ

({

x : τr(x) ≥ r−dµ−ǫ
})

≥
1

log r
log
(

4dµ+γǫr(1−γ)ǫ + µ
(

Ac
γǫ

(r

4

)))

.

Hence, by Lemma 4.1, we get

f(ǫ) ≥ lim
r→0

1

log r
log
(

4dµ+γǫr(1−γ)ǫ + µ
(

Ac
γǫ

(r

4

)))

≥ min

{

lim
r→0

1

log r
log
(

4dµ+γǫr(1−γ)ǫ
)

, lim
r→0

1

log r
log µ

(

Ac
γǫ

(r

4

))

}

= min
{

(1− γ)ǫ, ψ(γǫ)
}

.

This proves the first statement.
Now, let us define

Γr =
{

x ∈ Aγǫ(2r) ∩A(−γξ)(2r) : τr(x) ≤ r−dµ+ǫ
}

and

Dr =
{

x0 : µB(x0,2r)(τB(x0,2r) ≤ r−dµ+ǫ) ≤ ra
}

.

Let (B(xi, 2r))i be a family of balls of radius 2r centered at points of
Aγǫ(2r) ∩Dr ∩A(−γξ)(r) that covers Γr ∩Dr and such that
B (xi, r) ∩B (xj , r) = ∅ if xi 6= xj . We have

µ
({

x : τr(x) ≤ r−dµ+ǫ
})

≤ µ
({

x ∈ Aγǫ(2r) ∩Dr ∩A(−γξ)(r) : τr(x) ≤ r−dµ+ǫ
})

+µ
({

x ∈ (Aγǫ(2r) ∩Dr ∩A(−γξ)(r))
c : τr(x) ≤ r−dµ+ǫ

})

≤ µ (∪iB(xi, 2r) ∩ Γr ∩Dr) + µ
(

Ac
γǫ(2r)

)

+ µ (Dc
r) + µ

(

Ac
(−γξ)(r)

)

.

We remark that

µ (∪iB(xi, 2r) ∩ Γr ∩Dr) ≤
∑

i

µ(B(xi, 2r) ∩ Γr ∩Dr)

≤
∑

i

µ(B(xi, 2r))
1

µ(B(xi, 2r))
µ
(

B(xi, 2r) ∩
{

τB(xi,2r) ≤ r−dµ+ǫ
})
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where the last inequality follows from
{

τB(xi,r) ≤ r−dµ+ǫ
}

⊂
{

τB(xi,2r) ≤ r−dµ+ǫ
}

. Therefore,
by definition of Dr,

µ
({

x : τr(x) ≤ r−dµ+ǫ
})

≤
∑

i

µ(B(xi, 2r))µ(B(xi,2r))

(

τB(xi,2r) ≤ r−dµ+ǫ
)

+ µ
(

Ac
γǫ(2r)

)

+ µ (Dc
r) + µ

(

Ac
(−γξ)(r)

)

≤
∑

i

µ(B(xi, 2r))r
a + µ

(

Ac
γǫ(2r)

)

+ µ (Dc
r) + µ

(

Ac
(−γξ)(r)

)

.

Observe that
∑

i

rdµ+γǫ ≤
∑

i

µ(xi, r) ≤ 1. Thus, since balls are disjoint it follows that the

number of balls is bounded by r−dµ−γǫ and
∑

i

µ(B(xi, 2r)) ≤
∑

i

(2r)dµ−γξ

≤ r−dµ−γǫ(2r)dµ−γξ

≤ 2dµ−γξr−γ(ǫ+ξ).

Then, we obtain that

µ
({

x : τr(x) ≤ r−dµ+ǫ
})

≤ 2dµ−γξr−γ(ǫ+ξ)+a + µ
(

Ac
γǫ(r)

)

+ µ (Dc
r) + µ

(

Ac
(−γξ)(r)

)

.

Hence,

f(−ǫ) ≥ lim
r→0

1

log r
log
(

2dµ−γξr−γ(ǫ+ξ)+a + µ
(

Ac
γǫ(r)

)

+ µ (Dc
r) + µ

(

Ac
(−γξ)(r)

))

.

Finally, using the definitions of ψ and ϕ we get by Lemma 4.1 that

f(−ǫ) ≥ min
{

−γ(ǫ+ ξ) + a, ψ(γǫ), ϕ(a, dµ − ǫ), ψ(−γξ)
}

.

This concludes the proof of the theorem. �

We finish with a brief proof of the Proposition 2.5.

Proof of the Proposition 2.5. Take t = Cra, C > 0. Making the first order expansion of e−t,
we have for x ∈ Ωr

∣

∣

∣

∣

µB(x,r)

(

τB(x,r) >
Cra

µ(B(x, r))

)

− 1 + Cra + o(r2a)

∣

∣

∣

∣

≤ ra,

which implies
∣

∣

∣

∣

µB(x,r)

(

τB(x,r) <
Cra

µ(B(x, r))

)

+ Cra + o(r2a)

∣

∣

∣

∣

≤ ra.

So, it follows that

µB(x,r)

(

τB(x,r) <
Cra

µ(B(x, r))

)

< ra.

Let Nr be a set defined by Nr =
{

x : µ(B(x, r)) ≥ rdµ+a−ǫ
}

. For x ∈ Nr ∩ Ωr we obtain

µB(x,r)

(

τB(x,r) < Cr−dµ+ǫ
)

< ra.
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Thus,

µ
({

x : µB(x,2r)

(

τB(x,2r) ≤ r−dµ+ǫ
)

> 2ara
})

≤ µ((N2r ∩ Ω2r)
c) ≤ µ(N c

2r) + µ(Ωc
2r).

Finally, by Lemma 4.1, we get

ϕ(a, ǫ) ≥ min{ψ(a− ǫ), b}.

One can observe that the factor 2a in the above definition of ϕ does not change the general
result. �
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in Mathematical Physics, 219 (2001), 443-463.

[3] M. Boshernitzan, Quantitative recurrence results, Invent. Math., 113 (1993), 617-631.
[4] J.-R. Chazottes, P. Collet, Poisson approximation for the number of visits to balls in nonuniformly hyper-

bolic dynamical systems, Ergodic Theory Dynam. Systems, 33 (2010), 49-80.
[5] J.R. Chazottes and R. Leplaideur, Fluctuations of the Nth return time for Axiom A diffeomorphisms,

Discrete Contin. Dyn. Syst., 13 (2005), 399-411.
[6] A. Dembo and O. Zeitoune, Large deviations techniques and applications, (1992).
[7] D.J. Feng and J. Wu, The Hausdorff dimension sets in symbolic spaces Nonlinearity, 14 (2001), 81-85.
[8] A. Galves and B. Schmitt, Inequalities for hitting times in mixing dynamical systems, Random Comput.

Dyn., 5 (1997), 337-348.
[9] S. Jain and R.K. Bansal, On large deviation property of recurrence times. International Symposium on

Information Theory Proceedings (ISIT), (2013), 2880-2884.
[10] M. Kac, On the notion of recurrence in discrete stochastic processes, Bull. A.M.S., 53 (1947), 1002-1010.
[11] R. Leplaideur and B. Saussol, Large deviations for return times in non- rectangle sets for Axiom A

diffeomorphisms, Discrete Contin. Dyn. Syst., 22 (2008), 327-344.
[12] L. Peng, B. Tan and B.-W. Wang, Quantitative Poincaré recurrence in continued fraction dynamical
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