LARGE DEVIATION FOR RETURN TIMES
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ABSTRACT. We prove a large deviation result for return times of the orbits of a dynamical
system in a r-neighbourhood of an initial point . Our result is a differentiable version of the
work by Jain and Bansal who considered the return time of a stationary and ergodic process
defined in a space of infinite sequences.
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1. INTRODUCTION

Consider a dynamical system (X, A, g, ) where X is a compact metric space, A is a o-
algebra on X, g : X — X is a measurable map and p an invariant probability measure on
(X, A). Let A C X be a measurable set of positive measure. An important result in ergodic
theory is the Poincaré’s recurrence theorem. It states that any probability measure preserving
map has almost everywhere recurrence. More precisely, for p-almost every x € A we have
that {n : ¢"x € A} is infinite. It is natural to ask for quantitative results of the recurrence.
Given a point x € A, the first return time of the orbit of x to the set A is given by

TA(z) =min{n >1:g¢"x € A}.

In [10], Kac was able to prove that, when the system is ergodic, the expectation of the return
time in a set A is equal to the inverse of the measure of this set, i.e.,

/ Tadp = 1.
A

Moreover, if p is not ergodic, the inequality

/ TAd/j/ < 17
A
still holds.

In the study of quantitative recurrence is investigated properties related to the return time
7r(x) that is defined as follows: for every x € X, the return time of z under the map ¢ in its
r-neighborhood as

7 (%) = Tz (x) = min{n > 1:d(g"z,z) <r}.

In dynamical system this subject have been studied by many authors. Boshernitzan [3] has
studied rate of recurrence when X has a finite Hausdorff dimension. In symbolic space, Feng
and Wu [7] investigated the set

E(a,p) = {xe [O,l]:li_mw =« mw :ﬁ}

o —logr "r—0 —logr
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and showed that for 0 < o < 8 < o0, dimpy E(a, ) = 1. Analogous results are proved in [17]
in the case of C1*¢ conformal repellers in smooth compact manifolds and in [12] to the Gauss
transformation on [0, 1). It is important to emphasize that if we consider a repeller J C M,
M a smooth manifold, the spectrum for recurrence F(«) = dimpy E(«, «) is degenerate, that
is, F(a) = dimp J.

In [16], the author reviews important results on recurrence. He considers an expanding map
of the interval and proves results for recurrence rates, limiting distributions of return times,
and short returns. In [8] was presented an upper bound for the exponential approximation of
the law of a hitting time in a mixing dynamical system.

The case of large deviation has been investigated by Abadi and Vaienti in [1]. It was proved
large deviation properties of 7(C),)/n, where 7(C),) is the first return of a n-cylinder to itself.
More precisely, if the system is t-mixing, if ¥(0) < 1 and the Rényi entropies exist for all
integers 3, then for ¢ € (0, 1], the limit

nh_)rrgo % log pu{z : 7(Cy) < [on]} := M(9)

exists. In addition, they explicit the form of M (d). If we denote with 77(x) the nth return
times into A, the Birkhoff theorem gives that for p-almost every point x

. Th(x) 1
lim A2 = —
oo u(A)

For Axiom A diffeomorphisms and equilibrium states p, it was proved by Chazottes and
Leplaideur [5] and after by Leplaideur and Saussol [11], under the assumption that pu(0A) = 0,
the existence of a rate function ® 4 such that for every u > ﬁ,

Tn
lim —logu{— > u} =®4(u)

n—oo n

1
and for every 0 < u < (A

lim —log,u{ 4 < u} = Py (u).
n—oo n

Our result is a differentiable version of a recent work by Jain and Bansal [9] who studied
large deviation property for normalized version of recurrence times under ¢-mixing conditions.
Let H denote the entropy rate of the process X and x a particular realization of X. Define
the first return time of =7 as

R, (z) = min {j >1:a] = x:;i?} .
We say that X have exponential rates for entropy if for every ¢ > 0, we have

P ({x’f o7 nUF) < pph) < 27"(H76)}) <1-—r(n,e),

where r(e,n) = e ¥ with k(e) a real valued positive function of e. They proved that for
an exponentially ¢-mixing process with exponential rates for entropy,

p < log R,,(X)

n
where I(¢) is a real positive valued function for all € > 0 and I(0) = 0.

- H

> €> < 2¢7 1"y > M(e),
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If we denote with

and Eﬂ(x) = EM

. logu(B(x,r))
d“(x) = = r—0 log r

r—0 log r
the lower and upper pointwise dimensions of the measure p at the point z € X, it was proved
by Barreira and Saussol [2] that
log 7,-(7) —log 7,-(7)

- -
< d,(z) and }1—% —logr

)

lim

r—0 — log r
for p-almost every x € X. If the system has a super-polynomial decay of correlations, Saussol
in [15] showed that equalities will hold for the expressions above. This implies that

log 7,-() ~ log <r_d“(“”)> .

Our aim is to study the limiting behavior as » — 0 of (’Tr > r_d“_g) and (Tr < ’I“_d”+6) .
This characterization is via asymptotic lower exponential bound. We consider the limits

lim log 1 <Tr > r_d“_e) and lim ! log (Tr < r_d”+e>
7"—>010g r r—)OlOg r

and under some assumption about the measure we prove large deviation estimates (see The-
orem 2.4 for precise statements). The bounds we prove are given in terms of the minimum of
rate for dimension and rate for fast times (see Section 2 for definition). Moreover, we consider
a C17% conformal repeller and an equilibrium state of a Hélder potential. Then, we compute
the rates functions and applies Theorem 2.4 to obtain large deviation estimates for return
times for repeller (see Theorem 3.2).

< Eﬂ(x)’

2. LARGE DEVIATION ESTIMATES FOR RETURN TIMES IN A GENERAL SETTING
Let g : X — X be a measurable map and p an invariant probability measure on (X, .A).

Definition 2.1. The measure p is called exact dimensional if there exists a constant d,, such
that 3
d,(z) =dy(r) =dy, for p-almost every z € X.

We recall that the Hausdorff dimension of a probability measure p on X is given by
dimgy p = inf{dimg Z : u(2) = 1},

where dimy Z denotes the Hausdorff dimension of Z.
Moreover, for an exact dimensional measure, the Hausdorff dimension and the local dimen-
sion coincide:

Proposition 2.2 ([19]). If p is exact dimensional, then
d, = dimg p.
We now define the rates functions which will appear in our large deviations estimates:

Definition 2.3. Given ¢ > 0, we define the exponential rate for dimension:

o tog n(B(a )
w0 = lim o tog e ({ A ¢ 1, 1), )

where I, = (—o00, —d, —€) and I_ = (—d, + €, +00).
Given €,a > 0, we define the exponential rate for fast return times:
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log p ({wo S HB(xo,2r) <TB(x0,27~) < T_d”e) > 7"“}) : (2)

We may now state our main result.

1
p(a,€) = lim
_( ) r—)OlOgr

Theorem 2.4. Let (X, A, g, 1) be a dynamical system. Suppose that p is an exact dimensional
measure. Given positive constants €,& and a, for all v € (0,1) we have:

= i > =€) > mi —
f(e) li%logr log 1 (Tr > > > min { (1 — y)e, (ve) } (3)
and
—) = i 1 < pdute 4
J(=¢) TI_,—H(I)logr o8 H (Tr =rr (4)

> min {—y(e + &) + a,¥(ve), p(a, €), (7€) } -

This result is satisfactory in the sense that it holds for any dynamical system. We can
observe that in (3) if the rate function for dimension 1 is positive in some interval (0, ¢), it

means that p (’Tr > r_d“_g) has a fast exponential decay.
For several dynamical systems, including Hénon maps (see [4]), we obtain the following
result.

Proposition 2.5. If there exist constants a,b > 0 such that for all r € (0,1) :

e there exists a set Q. such that
p($2) <’
e for all xz € Q),,

t —t
1B () (TB(”) g m> o

for every t > 0.
Then, ¢(a,€) > min{y(a — €),b}.
The proof of this proposition will be done at the end of Section 4.

3. LARGE DEVIATION ESTIMATES FOR RETURN TIMES FOR CONFORMAL REPELLER

In this section we will present a version of our main result for conformal repeller. Let
¢ : X — R be a Holder continuous function. We call Gibbs measure for the potential ¢ an
invariant measure g such that there exists a constant P,(¢) € R such that for some x4 > 1,
for any x and n, we have

R AC) B

ko — exp(Sng(x) —nPy()) ~
where J,(x) is the cylinder of length n containing x.
Let g : M — M be a C'T map of a smooth manifold and consider a g-invariant compact
set J C M. The map g is said to be an expanding map on J if there exist constants ¢ > 0
and 8 > 1 such that

ldzg™vll = cB[|v]]
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for every n € IN, x € J and v € T, M. In addition, we call J a repeller if there exists an open
neighborhood V' of J such that

J=)g"V.
n>0

The map g is said to be conformal on J if
dyg = a(x)lsomy,

where Isom, denotes an isometry of the tangent space T, M.

From now on, let (J, g) be a conformal repeller. We collect some facts about HP-spectrum
for dimensions.

Let (X%, o) be a subshift of a finite type and x : £ — J a coding map such that yoo = gox.
Let 11 be a Borel probability measure on a metric space (X, p). Denote by ¢ a Hélder continuous
function on J and p = p¢ the equilibrium measure for (g,¢). Moreover, let ¢ = (o x be a
Holder continuous function on Ej and v = v, its Gibbs measure. Finally, consider a function
¥ such that logy = ¢ — P(y).

Proposition 3.1 ([14]). For any q > 1, the following limit exists

1 loa S u(Bla,n)!
HF,(q) = 1—q71~£% —logr .

(). ()

In addition, given q € (—o0,00), let ¢q on Ej be the one parameter family of functions such
that

¢g(w) = —T'(q)log [a(x(w))| + qlog ¥ (w),
where T'(q) is chosen such that P(¢q) = 0. For any q > 1,
T(q) _
l—gq

The function T(q) is real analytic for all ¢ € R, T(0) = dimy J, T(1) = 0, T'(q) < 0
and T"(q) > 0. And T"(q) > 0 if and only if the function logy — T"(q)log |a(x(w))]| is not
cohomologous to a constant. If and only if p is not a measure of maximal dimension.

HP,(q).

Note that u is exact dimensional (one can see [13] for more details).
Under this context, if we consider a conformal repeller and an equilibrium state of a Holder
potential ¢ we obtain a version of our principal result, somewhat more concrete:

(1) in this setting we can compute the exponential rate for the dimension 1, using ther-
modynamic formalism; N

(2) we can also estimate the exponential rate for fast return times ¢, using a technique
similar to the one used to prove exponential return time statistics.

Thus, applying our main result to this setting will give us the following theorem.

Theorem 3.2. Let (J,g) be a conformal repeller and p an equilibrium state for a Hoélder
potential ¢. Given positive constants €,& and ag, for all v € (0,1), we have:

(1)
f(€) > min {(1 —v)e, A"(—dy + ve)} > 0; (6)
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f(=€) = min{—(e + &) + ao, A" (=dy + 7€), A" (=dy = 7€)} > 0; (7)
where N*(z) = —ov +T*(x) = —x + ilelg{)\x —T\)}

Remark 3.3. If p is the measure of maximal dimension the above theorem remains valid.
Howewver, since HP,(q) is constant equal to d,, follows that A*(x) = 400 for x # 0, which
makes the minimum in (6) and (7) being (1 —v)e and —vy(e + &) + ao, respectively.

In what follows we shall assume that there is no cohomology relation.

To obtain Theorem 3.2, we need a fundamental theorem of large deviation theory, the
Gartner-Ellis Theorem.

Let p, be a family of probability measures. Consider a family Z, € R,r € (0,1) where Z,
possesses the law p, and logarithmic moment generating function

Ay (X)) =logE [eAZ*} .

1 may satisfy the large deviation property if there exists a limit of properly scaled logarithmic
moment generating functions.

Assumption 3.4. For any A € R, the logarithmic moment generating function, defined as
the limat

A(A) :== lim %AT(—logr)\),

n—oo — logr
exists as an extended real number. Further, the origin belongs to the interior of the interval
Dy :={) € R;A(\) < oo}, A is C? and strictly convexr.

The Fenchel-Legendre transform of A()\) is
A*(x) = sup{\x — A(\)}.
AER
Remark 3.5. A* is strictly convex and C' on its support.
Thus, we can enunciate Gartner-Ellis Theorem (see e.g. [6]).

Theorem 3.6 (Gartner-Ellis). If assumption 3.4 hold, then for any closed set F,

lim | F) < —inf A*(2).
rl P og pin(F) < éeF (z) (8)
and for any open set GG,
i I G) > — inf A*(2). 9
rm(l) logr og tn(G) > ;rel () 9)

We will apply this theorem to the family Z, defined by

log p(B(, 1))

Zy =
—logr

It follows that

3\ log (B (z.r)

A (M) :log/e T —ler du(z).
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Thus, from the definition of A()), we get

A(A) = lim ! log/e)‘log“(B(x’r))dp(x)

r—0 — logr
1
= i 1 B A .
L e og/u( (@, 7)) dp(x)

The proof of the following proposition is an immediate consequence of the Proposition 3.1.

Proposition 3.7. Let (J,g) be a conformal repeller and p an equilibrium state for the Hélder
potential (. Then, for A > 0, the following limit exists

log/,u(B(x,r)))‘d,u(:c) =T(A+1).

AR = lg% —logr

Applying Gartner-Ellis Theorem, we obtain:

Corollary 3.8. Under the same conditions as in Proposition 3.7 we have that for all interval

I,
. log p(B(z,1)) — *
}g%—logrbg'u<{ —logr €1 __:}:Ielf}A (z),
where A*(x) = —x + T*(x) is continuous on its domain.

Proof. This equality is a direct consequence of the Theorem 3.6. Since the logarithmic moment
generating function is defined by A(\) = T (A + 1), the Fenchel-Legendre transform of A(\) is

A(z) = igg{kw—A(A)}

= sup{Az—-TA+1)}
AeR

= sup{(v—1z—-T(v)}
veR

= —x+supf{ve—T(v)}
veR

= —x+T"(x).
The continuity of A*(x) follows from its convexity. O

In Figure 1, one can see a graph of the Frenchel-Legendre transform of A.

FicUure 1. Graph of A*.

Now, one can use Corollary 3.8, to get the rate function for the dimension:

Proposition 3.9. For any € > 0, the exponential rate for the dimension is given by:

P(e) = i inf AN (z) =A"(—=d,—€) >0

€(—o0,—dy,—e¢

and

P(—e€) = inf A (xz) = A" (—=d, +€) > 0.
- x€(—d;+e,400)
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Proof. Recall that the exponential rate for dimension 1 is defined by

g ({2212 e ). (10)

1
+e) = 1i
ﬁ( €) rljnélog r

where I, = (—o00, —d, —€) and I_. = (—d,, + €,+00). So, by Corollary 3.8 we have that

1 log p(B(z, 7))
+e) = 1 1 —————=c
(Ee) rljn(l)logr e p ({ —log r e

= inf A*(2)

r€l4
= AM(=dyFe)

which proves the proposition. O

—logr

From now on, assume that ¢ is a potential such that P(¢) = 0. To obtain exponential rate
for the return times (Prop. 3.13), we first review the shadowing property for periodic points.

Definition 3.10. Given o > 0, we call a-pseudo-orbit for (J,g) each sequence (zy)n>0 such
that
d(gxy, Tny1) < a, for all n > 0.
We call a sequence o, X1, yTm—1,Tm = rg an «-periodic  orbit if
d(gzp, Tne1) < a.

m

A particular case of an a-periodic orbit is provided by xq, gzo, - -+ , g™ 'z when d(g™xo, z0) <

[

Lemma 3.11 (Shadowing lemma). If (J,g) is a repeller then for every B > 0 there exists
a > 0 such that given an a-pseudo-orbit (zy)n>0 in J there exists z € J such that its orbit
B-shadows (xy)n>0, that is, d(g"z,z,) < B for all n > 0.

The proof can be seen in [18].

Lemma 3.12 (Closing lemma). If (.J, g) is a repeller then for every a-periodic orbit (xy,)n>0
there exists a point y with g"(y) =y and d(g*y,xx) < B, for all k =0,--- ,m — 1.
We will use these properties to have information on the rate function for the return times:
Proposition 3.13. Given €,ag > 0, the exponential rate for fast return times satisfies:
v(ag,€) > ag > 0.

This proposition is a simple consequence of the following lemma.

Lemma 3.14. For any dy € (0, du) there exist constants ag,co, h > 0 and a set €, such that
p(05) < 70

and for all xg € Q,., one has
HB(x0,2r) (TB(xO,Zr) < T_d°> < 2k¢(2r)"0 4 =Dk (B (2, 2r)).

Proof. We first claim that there exists €, with p(€25) < r% such that for all zp € €, and for
all k < cglog 5 we have B(zo,2r) N g~ *(B(xq,2r)) = 0.

Indeed, let ¢ € (0,d,,/logm), where m is the number of branches of the map g. If z is such
that B(zg,2r)Ng % (B(xg,2r)) # 0, there exists x such that d(z, zo) < 2r and d(g"z, 2¢) < 2r,
thus d(z, gkx) < 4r. Take 4r = o and consider the sequence z, gz, - - - , g* 'x. By the Closing
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lemma, there exists a point z such that ¢*z = 2z and d(¢’z,¢’z) < B for all j < k. Moreover,
in the proof of the Shadowing lemma one can see that we can take § = ci«, where ¢; > 0
depends only on the expansiveness constant. Define

Pe={z:¢"2=2} and Dy, = 8}, O disc(g"),
where disc(g") is the set of discontinuity points of g¥. It follows that
d(z,Py) < 4err or d(x, D) < 4ear.
Therefore, d(xz, P UDy) < csr. Observe that
Cr(k) = {xo : B(x0,2r) N g~ (B(xg, 2r)) # @} C B(PrUDyg,car) == U B(y,csr). (11)
yEPLUDy,

Moreover, using (17), we have the inequality

1 (A—g)(2e3r) N B(Pr, U Dy, car)) < (#Pr + #Dy) ., sulz )M(B(x, 2¢37))
TEA(—¢) 2c3r

< 2mF(2c3r) 8.
Take K = ¢glog % and define

0, = A(_g)(2037‘) N ﬂ B(Py U Dy, c3r)°.
k<K

It follows from the previous inequality and Corollary 3.8 that

K
u(Q2) < Z 1 (A(_g)(2037") N B(Py. U Dy, c;;r)) + i <Af_§)(2037")>
k=1

K
< 2(2037“)‘1“_5 Z mk + (203T)A*(_d“+5)_6,
k=1
< 2(203r)d“*£mK+1 + (2037“)A*(7d“+£)75
< r,

where ¢ > 0 and ap = min{d, — { — cologm,A*(—d, + &) — 0}. We observe that zy € €,
implies that g ¢ B(Py, U Dy, c3r). Therefore from (11), B(z,2r) N g *(B(zq,2r)) = 0 for all
k < colog 2—1r which proves our initial claim.

We will now estimate the quantity (1o 2r) (g*kB (zo, 2r)) for large values of k.

Let ¢ be a Holder potential.  Recall that the Ruelle-Perron-Frobenius operator
Le:C(M) — C(M) is defined by

L Hx)y= D Wiy,
yeg— ()

for f € C(M) and x € M. By induction, for every n > 1,

LHP@) = Y e Wfy),

y€g— ()
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n—1

where S, = Z ¢ o ¢*. Now we have that
k=0
2 (B(I'Q, 270) N g_kB('%Da 27’)) = /]IB(Z‘Q,QT)]IB(%‘Q,QT‘) © gkdﬂ

= /‘ck(]lB(:onr))]lB(:onr)d,u

< u(Blao,20) || L5 poan)||

Hence,
HB(xo,27) <g_kB(£C0, 2T)> < H‘ck(]lB(xo,Qr))Hoo : (12)
It follows that for all R € J;,
LF1R)(z) = > Wy
yeg~kz, yeR
yeg~kz, yeR

where the last inequality follows from the Gibbs property since P(¢) = 0. In addition, the
preimage of z under g* has just one element in R. Then,

L¥(1R)(x) < keu(R). (13)

If ¢g log % < k < bylog %, the ball B(z,2r) is contained in at most two cylinders. So there
exists h > 0 such that

Ek(]lB(xo,Qr)) = Zﬁk(]lR)
ReJy,
2k¢p(R)

<
S 2]{3{67“{:.

Hence, we get
1B (zo2r) (9" B(x0,2r)) < 2kee™ .

We now consider Ry, Rr € Ji such that L, R are endpoints of the B(xq,2r). If k > b log %,
we have that u(Rp) < e and u(Rg) < e”*. Therefore, from (13) we have

‘ck(]lB(:vo,2r)) = Z Ek(]lR) + Ek(]lRL) + ‘ck(]lRR)
ReJk,RCB(x0,2r)

> kep(R) + 2kce
ReJk,RCB(x0,2r)
< kep(B(xo, 2r)) + 2kce .

IN

This implies
—k —hk
5(0.2n) (97FB(20,2r) ) < keu(B(wo, 2r)) + 2hce ™",
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Recall that for all 2o € Q, and for all k < ¢glog 2, B(zo,r) N g *(B(zo,7)) = 0. We get

HB(zg,2r) <TB($0,2r) < T_d°>

r—do
< Z K B(x0,2r) <97k3($0,27“))
k=0
[b1 log TlrJ r—do
= Z HB(zo,2r) <gikB(x07 27“)) + Z KB (x0,2r) (gikB(xm 27“))
k=co log % k=|b1 log %JJrl
b1 log 5- r—do
< Z 2kce Mk 4 Z (ij,U,(B(CC(], 2r)) + nge_hk)
k=co log 5~ k=|b1 log 3= |+1
r—do r—do
< > 2kee™ 4+ N kep(B(wo,2r))
k=co log % k=|b1 log 2—1TJ+1

< nge*hco log 5 4 ridokc,u(B(xo, 2r))
= 2ke(2r)he0 4+ 70k pu(B o, 2r)).
This ends the proof.
Proof of Proposition 3.13. By definition of ¢ and Lemma 3.14,

p(ag,e) = lim——Ilogp ()

- r—ologr

lim
r%OlOg r

v

log 7% = ag > 0,

thus the proposition is proved.
We are now able to prove Theorem 3.2

Proof of the Theorem 3.2. For v € (0,1), we get by Proposition 3.9 that

Y(ve) = A (=dy —ve) >0
and
Y(=78) = A (=du + 7€) > 0.
Moreover, by Proposition 3.13,
o(ap,€) > ap > 0.

Thus, it follows form Theorem 2.4, that

£(6) > min{(1 = )6, A*(—dy 1)} > 0
and
f(=€) > min {—y(e + &) + ag, A*(=d, — ve), A*(=d, +7§)} > 0
where A*(z) = —x + T*(z) and the theorem is proved.

11

(14)

(15)
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4. PROOF OF THE MAIN RESULT

In this section we prove the Theorem 2.4 using the method developed in [16]. We begin by
the following lemma which will be needed in the proof of our main theorem.

Lemma 4.1. Let (a;(r))i=1,..p,ai(r) > 0. If v; = h_m@ loga;(r) > 0. Then
r—0

p
log <Z aﬂ)) > min 7.

i=1

lim
r%OlOg r

Proof. For all € > 0 there exists r; > 0 such that r < r; implies a; < 777, Let ¢ > 0
sufficiently small such that v, — e > 0. We have,

P P
Zai(r) < Zr’n*e < prmin{%‘}*e
i=1 i=1
and this implies
L (St ) > min {3 — e 182
; in {v}— .
log r P wir) | = iznll,...,p . ¢ log r
Finally,
1 P
li 1 ; > mi i} — e
i 108 (ZU) LIRS
The result is proved since € can be chosen arbitrarily small. O
Given €,£ > 0, define
Ac(r) = {x € X :u(B(z,r)) > rd“+e} (16)
(17)

and
A_¢(r) = {x € X :pu(B(z,r)) < rd“*g}.

Proof of the Theorem 2.4. Let v € (0,1). We have

p{z:m(x) >r % ) < g <{x €A, (%) cTe(x) > r*d“*€}>

+ u <{x € AS, (%) cTr(T) > rid“7€}> .

Let us define the set

M, = {x €A <£> s () > r*d‘”e} .

Let (B (x;, %))Z be a family of balls of radius /2 centered at points of A.¢(r) that covers M,

and such that B (CCZ', ﬁ) NnB (xj, %) =0if x; # xj. We have

1 <{x s Te(x) > r_d”_g}) w(U; B; N M) + p ({x € A5, <£) s Te(x) > r_d“_g})

S+ (. ()

IN

IN



LARGE DEVIATION FOR RETURN TIMES 13

Using first the triangle inequality and then Kac’s lemma and Markov inequality, we obtain
u(B; VM) < (Bi N {TBZ- > T_d“_g}) < rd””Le/ B, dp = rite,
B;
7\ dutre : e
Observe that Z (Z) < Z ,u( <xz, —>) < 1. Thus, since the balls are disjoint it
i

follows that the number of balls is bounded by (ir) —dn e Therefore,

({2 o) < St (a(3)

(1) )
st o, (5)

oo (o2 ) > T (e o, ()

Hence, by Lemma 4.1, we get

e e P )

IN

IN

Thus,

log (4d“+767“(177)6> lim

’,j(]lo;r log p (A'CY6 <£)) }

> min {h_m
r—0 lOg r
= min{(1 —7)e,¢¥(ve)}.
This proves the first statement.
Now, let us define

Iy = {@ € 4,2r) N A (2r) o) < vt

and
D= {xo " HB(z0,2r) (TB(xO,Qr) < r_d/fi‘f) < Ta} _

Let (B(x;,2r)); be a family of balls of radius 2r centered at points of
Anye(2r) N Dy N A(_yg)(r) that covers I N D, and such that
B (zi,r) N B (zj,7) =0 if x; # x;. We have

p(frin@<ri ) < u({re A nDnAcg(): miz) <))
i <{:c € (Aye(2r) N Dy N ALy (1) 2 To(x) < T_d”+e})
< (UiB(ws,2r) N, 0 D;) + p (A5(20) + (D5) + 1 (AT (1)
We remark that
w(UiB(z,2r)NT.ND,) < Z,u (x,2r)NT, N D,)

ZN (w4,2r)) mﬂ <B($i, 2r) N {TB(%’QT) < r_du"‘f})

IN
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where the last inequality follows from {7p(, ) < 7%} C {7p(y,2r) < 7~ %7€} . Therefore,
by definition of D,.,

1 <{x c1e(z) < r_d“'“})

< Z ,LL xla 274 :LL(B(mZ 2r)) (TB(IZ',QT) < rid,u+5> + i (A'cye(zr)) +u (Dﬁ) +p < ?7,\/6) (T)>
< Zu (i, 20)r" + 1 (ASe(20) + 1 (D5) + 1 (AL (7)) -

Observe that Zrdﬁ'% < Z p(x;,r) < 1. Thus, since balls are disjoint it follows that the

number of balls is bounded by r~9%=7€ and

Zu (24,2r))

IN

Z(zr)du*“fﬁ

7
,,,.—d;L_'YE (2T)du_'yg
9du—=7E = v(e+€)

IN A

Then, we obtain that

p({ o) < ot} ) < 28GR (48, () 1 (DF) 1 (AT (1))

Hence,
f(=e) = hfélogr log (2d“ T FOR o (AS(r)) + e (DF) + p <Af,%) (T))) :

Finally, using the definitions of 1) and ¢ we get by Lemma 4.1 that

i(—E) > min {_7(6 + 5) + a7ﬁ(76)7£(a7 du - 6)7%(_76)} .
This concludes the proof of the theorem. O

We finish with a brief proof of the Proposition 2.5.

Proof of the Proposition 2.5. Take t = Cr® C > 0. Making the first order expansion of e™?,
we have for x € QQ,

Cr®

ot a 2a <r¢
HB(z,r) <TB($J’) - /L(B($,7°))> rererET
which implies
oo < ) 4 g oy < 10
HB(z,r) B(w,r) IL/,(B(QU’T)) o

So, it follows that

< o <r?
KEB(z,r) | TB(z,r) M(B(.%’, T')) :
Let N, be a set defined by N, = {z : (B(z,r)) > r®+*=<} For z € N, N, we obtain

KB(a,r) (TB(:c,r) < Cridt”re) < .
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Thus,

i ({2 o (Thwan <77%7) > 2900 1) < pl((Nay 1 Q20)) < (NS, + (95,).

Finally, by Lemma 4.1, we get

p(a,e) > min{y(a — ¢€), b}.

One can observe that the factor 2% in the above definition of ¢ does not change the general

result. O
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