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ABSTRACT. For Axiom A diffeomorphisms and equilibrium states, we prove a
Large deviations result for the sequence of successive return times into a fixed
Borel set, under some assumption on the boundary. Our result relies on and
extends the work by Chazottes and Leplaideur who considered cylinder sets of
a Markov partition.

1. INTRODUCTION

Recall that for any given measurable and ergodic dynamical system (X, T, 1), and
for any set A with positive y-measure, Kac¢ ’s lemma together with birkhoff ergodic
theorem implies that the sequence r’ of nth return-times into A by iterations of
the map T satisfies

n
lim LOC) = L for u-a.e. x.
e T T (A)
We are interested in fluctuations of order n of ri around 7z, so we want to

prove a Large Deviations Principle (LDP for short), that is, we want to show the

existence of the rate function ®4 such that for every u > ﬁ,

1 n
lim log,u{TA > u} =P 4y(u)
n

n—oo N

1
and for every 0 <u < ——,
p(A)

.1 { ' }
lim —logpu< 2 <up=4(u).
n—oo N n

If this holds, we will say that the sequence of return-times into the set A satisfies the
LDP for the measure . If the above LDP only holds for v Clu, u[ with u < ﬁ <,
we will say that the sequence of return-times into A satisfies a LDP for the measure
1 near the average.

A standard method to get a LDP is to prove the existence of the scaled-cumulant
generating function W 4, defined by the following limit

Uy(a) = lim 1 log / €A dy,

n—oo N
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and prove that it is differentiable. In this case it is well known that the rate function
exists and these two functions form a Legendre transform pair, namely

(1) D 4(u) :iralf{\IJA(a) —au}.

This is the approach that we are adopting in this paper, with the difference that we
do not prove the differentiability of the function ¥ 4. It is noteworthy that with our
monotone approximation method this assumption is not required (see Proposition 5
for details).

Our result applies to Axiom A diffeomorphism and equilibrium state of Holder
potential, and for the sequence of successive return times into a Borel set A that
satisfies a condition about the smallness of its (non-Markovian) boundary. Taking
a Markov partition and the corresponding semi-conjugacy, we will state the result
for subshifts of finite type, keeping in mind that this really corresponds to a result
for Borel sets on the manifold.

2. STATEMENTS

Throughout, (¥, o) will denote a topologically mixing subshift of finite type. The
set of vertices of the defining graph of (¥,0) is {1,..., N} with V > 2. We denote
by A = (ai;) the N x N-transition (irreducible and aperiodic) matrix associated to
¥; namely points in ¥ are sequences = {z,, } nez such that for every n, x,, belongs
to {1,...,N} and

Agpanyq = L
Recall that if f is an Axiom A diffeomorphism of a compact manifold M then there
always exists a subshift of finite type ¥ and a coding map n: ¥ — M such that
moo = fonm.

Let ¢ : ¥ — R be a-Holder continuous. For a given o-invariant measure A, the
¢-pressure is the quantity Py(¢) := ha(o) + [ ¢dX; Px(¢) will also be called the
A-pressure of ¢. The unique equilibrium state for ¢, i.e. the unique o-invariant
probability measure with maximal ¢-pressure, will be denoted by p4. Its pressure
is the topological ¢-pressure.

For a set A C ¥ and an integer n, we denote by 0A its topological boundary
ANY\ A

Note that A can be empty; this holds for example when A is a finite union of
cylinders. We let 734,(814) be the ¢ pressure of 0A ; since A may not be invariant
we define it according to the variational principle:

75¢(8A) = sup {hl,(a) + /(bdz/: v ergodic and v(0A) > O}

Note that this does not correspond to the dimension-like definition of the pressure
introduced by Pesin and Pitskel [7].

If D is any subset in 3, and for 2 € X, we denote by rp(z) the first hitting in
D by iterations of o (if it exists). Namely rp(z) is the smallest integer n > 1 such
that o™ (z) belongs to D, and rp(z) = +oo if no such integer exists. We also set
rL(z) = rp(z), and denote the nth return time r’ () the cocycle defined by

rp (@) = rp(@) + (e (@)).

Let max(A) := sup,, p(A) and min(A) = inf,, u(A), where the extrema are taken
among all invariant measures pu. Then our result is:
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Theorem. Let ¢ : X — R be any Holder continuous function. Let A C X be a
Borel set. We have:

(1) if for any o-invariant measure p, pu(0A) = 0, then the sequence (r’%)n>1
satisfies the Large Deviations Principle for e, except possibly for disconti-

nuity points. More precisely, for any u € (m, m) the rate function

D 4 (u) exists and is finite, and for any u outside the interval [m, m],
the rate function ® 4(u) exists is equal to —oo.

(2) if the ¢-pressure 75¢(8A) of the boundary is strictly smaller than the ¢-
topological pressure then the sequence (17 )n>1 satisfies a Large Deviations
Principle for pg near the average.

We recall that our method is based on the existence of the cumulant generating
function W 4 («) for every « in some open interval (o, @). For the statement 1, we will
prove that the function ¥ 4 is defined on an interval (—oo,@). For the statement 2,
we will only get the existence of ¥ 4 on some open neighborhood (a, @) of 0.

We emphasize that if f is an axiom A diffeomorphism of a manifold M and pi is
an equilibrium state of a Holder potential ¢, and V is a Borel set then the theorem
applies to A = 77!V since 7'V C 7~ !0V under the same hypotheses on OV.
The hypothesis in statement 1 could seem very restrictive; however it should be
satisfied quite often in some general situations, as the following example suggests.

Example 1. Let (M, f) be an hyperbolic automorphism of the 2-torus, and consider
the family of balls B(x,r) about a given point € M. Then, for all but countably
many radii » > 0, the condition u(0B(z,r)) = 0 for every invariant measure y is
satisfied.

Proof. Let S be the boundary of a ball. Using hyperbolicity one can show that the
intersection of S with its images f™(.5) consists, at most, of countably many points.
Hence the set of recurrent points R(S) in S is at most countable. If an invariant
measure gives weight to S, by Poincaré Recurrence Theorem it implies that it gives
weight to R(S) which is a countable set. Thus the measure must have an atomic
part consisting of a periodic orbit. Hence S must contain a periodic point. Since
the set of periodic points of such a map is countable there can be at most countably
many boundaries 0B(x,r) carrying a periodic point as r varies, which proves the
proposition. O

The hypothesis in statement 2 about the pressure of the boundary appears quite
naturally in the thermodynamic formalism of dynamical systems with singularities.
In the case of ¢ = 0 it simply says that the boundary 0 A does not carry full measure
theoretical entropy. A more explicit condition can be given on the manifold itself.

Proposition 1. Let f be an azxiom A diffeomorphism of a manifold M and let pg
be an equilibrium state of a Holder potential ¢. Let V' be a Borel set and denote
by U-(OV') the e-neighborhood of the boundary OV . Assume that there exist some
constants ¢ > 0 and a > 0 such that

pe(Ue(OV)) < e Ve > 0.

Then, ﬁz,((?V) < Py(M). In particular the sequence of return times into V' satisfies
a Large Deviations Principle near the average.

See Section 5 for further details. In particular we have:
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Example 2. Let (M, f) be a C? volume preserving Anosov diffeomorphism and let
V C M be an Borel set with piecewise C! boundary. Then the sequence of return
times into V satisfies a Large Deviations Principle near the average.

Proof. Set ¢ = —log|D¥f|. The equilibrium measure py is the SBR measure
which is here the volume measure, and the assumption in Proposition 1 is clearly
satisfied. 0O

Outline of the proof of the theorem: in Section 3 we recall how the LDP was
obtained for the return-times in cylinders. In Section 4 we compare the cumulant
generating functions of inner and outer approximation of our set A by union of
cylinders. In section 5, under the assumption of the statement 2 of the theorem, we
prove the existence of the cumulant generating function ¥4 on some interval. In
section 6 we give a dynamical proof of the first statement of the theorem.

3. LARGE DEVIATIONS FOR RETURN TIME IN CYLINDERS

We first recall the local thermodynamic formalism introduced in [4]. Then we
recall how the large deviations principle for union of cylinders was obtained in [2].
Finally, we derive a uniform mass concentration principle.

3.1. Induced systems and local thermodynamic formalism. For a given
point * = (2,)nez € X, the past (resp. future) of the point denotes the back-
ward (resp. forward) sequence (z,)n<o (resp. (zn)n>0). For = and y in ¥, when
Zo = Yo, the point z := [z,y] is the point obtained when we take the past of y and
the future of x.

In X, the cylinder [ig,...,ik+n] Will denote the set of points € 3 such that
x; = i; (for every k < j < k+n). Such a cylinder will also be called a word
(of length n + 1) or equivalently a (k, k + n)-cylinder. If z is in X, C g4 (x) will
denote the cylinder [ig,...,%k+ns] such that x; =4, (for every k < j < k+n). By
extension, C_ pn(z) will denotes the set of points (yx) such that v = xy, for every
k < mn; similarly C,, 10 () will denotes the set of points (yj) such that yi, = xy, for
every k > n. By definition, the local unstable leaf W} (z) is C_s 0(z), and the
local stable leaf W () is Cp 4o0(z). For n > 0, a n-cylinder will denote a (—n,n)-
cylinder. The letter R = UR; denotes some finite union of (—n, n)-cylinders; in each
of these cylinders we fix some local unstable leaf F;. There is a natural projection
from each R; onto each F; defined by 7p,(2) = [z, 2], where x is any point in F;.
For convenience we denote by 7 the map defined on R by

’ﬂ'F(Z) :WFi(Z) <~ z € R,.

We denote by g the first return map in R, and by gr the map 7 og. We thus have
g(z) = 0"2@)(z). Note that if the maps rg, g and g are not defined everywhere
in R, the inverse branches of g are well defined in the whole F'.

We can thus define the Ruelle-Perron-Frobenius operator for gg: for = in F', we
set

Ls(M@) = Y, Fmo@WmmST(y),
Y, gr(y)==

where 7 : FF — R is a continuous function, and S is a real parameter. As usual,
S,(¢)(x) denotes the Birkhoff sum ¢(x) + -+ + ¢ o o™ 1(z).

There exists some critical S., such that for every S > S, all the following holds:
Ls admits a unique and single dominating eigenvalue Ag in the set of a-Holder
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continuous functions. The adjoint operator L% has also Ag for unique and single
dominating eigenvalue; we denote by vg the unique probability measure on F' such
that L(vs) = Agvs. We denote by Hg, the unique a-Hélder continuous and
positive function on F satisfying Lg(Hs) = AgHg and [ Hgdvs = 1. We also
denote by pg the measure Hgrg, and by jis the natural extension of ug. We recall
that pg is a gp-invariant probability measure, and fig is a g-invariant probability
measure. At last, we denote by mg the opened-out measure: namely mg is the
o-invariant measure satisfying, mg(R) > 0, and [ig is the conditional measure
ms(|R).

The spectral properties of Lg yield the existence of positive real constants Cy
and g, such that for every Holder continuous 7 : F — R, for every integer n > 1
and for every x in F

(2) LY(T)(x) = "8 /TstHs(:v) +O(en 108 As=29) | T .

Note that Hg is a positive function on the compact set F.

In [2], it is proved that the critical value S, is the pressure of the dotted system,
with hole R, associated to the potential ¢. Namely we consider in X the system
Yr = pezo "(X\ R). Although not explicitly mentioned, the case ¥ = ()
appears, when min(R) # 0. In this case one simply has S, = —oco and the identity
remains valid with the convention that the pressure of the emptyset is —co. The
proof in [2] was done under the assumption that X is mixing. We claim that
the mixing hypothesis can be omitted. Indeed, any subshift of finite type can be
decomposed in irreducible components, which satisfy the mixing property, but for
some iteration of the map o (see e.g. [1]). As we are considering first returns in R,
note that the word defined by the cylinder C () () contains no R; but at the
first position. Now, two different irreducible components can be joined in ¥ only by
a path which contains R. Therefore, the word defined by the cylinder Cp ., (4 ()
is an admissible word for a unique irreducible component.

Unicity of the equilibrium state in any mixing subshift (for ¢) implies that the
topological ¢-pressure Py(Xg) for (Xg,0) is strictly lower than the topological ¢-
pressure for X, Py(X).

We now finish this subsection with some important characterization for the mea-
sure mg.

Lemma 3.1. The measure mg is the unique equilibrium state in (X, 0) associated
to ¢ —log Aslgr. Moreover, its ¢ — log Aglg-pressure is S.

Proof. For simplicity we set 3 := log Ag. The measure mg satisfies,
(3) hms(0)+/¢dm5:S+mg(R)B.

We refer the reader to [4], Proposition 6.8 for a proof. Moreover, the measure fig is
the unique equilibrium state for (R, g) associated to the potential S,..y(¢)(-) —S7(:),
with pressure 3. Let us pick some o-invariant probability measure v.

Let us first assume that v(R) > 0. We have

h,,(a)+/¢dy—s - (hyR(g)—k/Sr(.)((;S) dI/R—S/r(~)d1/|R>,
< v(R)B,
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where v|p is the conditional measure v(-|R). This gives

/¢dy75/1RdV<S

with equality if and only if vz = fis (i.e. mg =)
If we assume that v(R) = 0, then v is a o- 1nvar1ant probability measure with
support in X . Therefore it must satisfy

/gbdu—ﬁ/lpbdyf /¢du<5 < 8.

This finishes the proof of the lemma. O

3.2. Large deviations for return times in cylinders. In [2], it is also proved
that A\g — +o00 as S goes to S.. Moreover, the map S — log Ag is a decreasing
convex map on |S., +o0o[. There also exists some complex neighborhood of | S., +o0|
such that the map S — log Ag admits an analytic continuation on it. In particular
the map S — log Ag is real-analytic on ]S, +o00].

Finally, it is proved in [2] that for every a < a(R) := Py(X) — Py(Xr),

1 n
(4) lim —log /R 2@ dpy = log AP, (D) —a

n—oo N
We shall show now that the large deviations for successive return time and en-

trance time is the same question; namely, the fact that we are starting from the set
R or from the whole space to compute the integral does not make any difference.

Proposition 2. If R and S are non-empty finite unions of cylinders, then
1 n
Up(a) =lim— log/ e“"’dpg,
n s

in particular we have ¥g(a) = log A\p, (5)—a-

Remark 1. As mentioned in the introduction, this readily implies the large devi-
ations principle for return times in the form given by (1) since the function ¥g is
differentiable.

The proposition is a weak consequence of the ¥-mixing property of the measure
ttg. Indeed, there exists M > 0 and x > 1 such that if f and g are two inte-
grable functions such that f(x) only depends on (x,,),<, and g(z) only depends on
(Zn)n>p+m then

(5) ff‘l/fduqs/gdw < /fgdu¢ < H/fduqb/gduqs-

Lemma 3.2. If R and S are finite union of (—m,m) cylinder then for any n >
M + 2m and for

Hflu(s)/E(zowgf(zxwzm)d’uqS S/Sear%d,ugb SHN(S)Ga(M+2m)/E€ar}’?jdu¢ (OZZO)

Hilu(S)ea(M“m)/ZeMgdu(ﬁS/Semgdu(ﬁgnu(s)/zemg (IVPr’A’m)dMq5 (@ < 0).

Proof. For any n > M + 2m we have

r%_(MHm) o fMF2m <ot < M 4 2m + 1 o fMF2m

from which the result follows by inequality (5). |
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The proof of the proposition consists in applying twice the lemma : from the
integration over S to ¥ and then to R.

3.3. Concentration of the mass. Let R be a finite union of cylinders. The large
deviations principle holds for the return times r%. It is well-known that this implies
a kind of concentration of the mass.

Proposition 3. Let R be a finite union of cylinders. Let o and § > 0 such that
Yr(a+0) — Wgr(d)

a+3d < a(R). Then for every T > 5 we have
o1 n .1 o
Ur(a) = lim flog/eaTRdu(z, = lim flog/ e Rdpg.
n—oo n oo Jfim<nr

Proof. Take £ > 0 so small that —07 + Ur(a + 0) + & < Ur(a) — . Using Markov
inequality we get

/ @aTRdu(z, _ / e(a+6)rRe—6eru¢
TR>NT TR>NT

< efén'r/ e(a+§)r%du¢
rR>NnT

< 676n7—/€(a+5)r;dﬂ¢

< efén'ren(\lln(oH»é)Jrs)

— O(en‘IlR(a))
g

4. EXISTENCE OF INNER AND OUTER APPROXIMATIONS, THEIR PROPERTIES AND
CONSEQUENCES OF THEIR EQUALITY

In the first subsection we prove a monotonicity result about cumulant generating
functions. The idea is to approximate the set A from the inside and from the
outside by finite unions of cylinders, and show that the inner cumulant generating
function ¥, and the outer cumulant generating function ¥, exist. Finally, we
study the consequence of their equality on the cumulant generating function and
the rate function for the set A.

4.1. Monotonicity of the cumulant generating function on rectangles. For
m an integer, let BB, be the biggest union of m-cylinders contained in A and C,, be
the smallest union of m-cylinders which contains A. Then, we denote by D,, the
set Cp, \ By, (See Figure 1). As any (—m, m)-cylinder is a union of (—m —1,m+1)-
cylinders, we have B,,, C B,,+1 C A C Cpyy1 C Cpy; Therefore (D,,) is a decreasing
sequence of compact set which converges to 0A.

Following what is done above, there exists two analytic functions ¥z, and V¢,
respectively defined on | — oo, (B, )[ and | — 0o, a(C,,)[. As it is said above, «(B,,)
is the difference between P, (%) and the topological ¢-pressure of the dotted system
¥5,,. In the same way, a(Cp,) is the difference between Py () and the topological ¢-
pressure of the dotted system X¢, . Now, we clearly have ¥, C Xpg, , because Cp, D
B,,. We also have C,,41 C Cp, and By, C By 11. Therefore the sequence (a(Bp,))m
is non-decreasing and the sequence (a(Cp,))m is non-increasing. Moreover, for any
m

)

a(Bm) < a(Cp).
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FIGURE 1. Inner and outer approximation of the set A by m-cylinders.

The sequence (a(By,))m is thus converging to some limit as, € (0, +o0]. Hence,
for any o < ain, and for any sufficiently large m, the functions U and Ue, are
real-analytic on | — oo, .
Let us define the lower and upper cumulant generating functions of A by
1 n — 1 n
U ,4(a) = liminf — log/eaTAdu¢ and Vu(a) = limsup — log/eaTAdu¢.

n—oo n n—oo M

Proposition 4. For any 0 < a < a;, and for any sufficiently large m, we have
Ve, (a) < Uy(a) < Tu(a) < Vg, (a).

For any o < 0 we have

U5, (0) < ¥ 4(a) < Ta(a) < Te, (a).

m

Proof. The double inclusion B,, C A C C,, implies that TR, TR >TC . The result
follows then immediately by integration and taking the appropriate limits. |

Remark 2. Forgetting the set A in the previous proof, we have in fact proved that
if B and C are finite unions of cylinders satisfying B C C, then for any a < 0,

(6) V(@) < We(a),
and for any o > 0 (but sufficiently small such that the functions are well-defined)
(7) Up(a) > Ve(a).

4.2. Existence of inner and outer cumulant generating functions. Let us
pick some 0 < o < . By (7), the sequence of functions (¥g, ), is a non-increasing
sequence of non-decreasing convex functions on [0, o[ (for sufficiently large m !). It
thus (simply) converges to some limit function ¥y,. This function ¥;, has to be
convex, thus continuous on ]0,«[. It also has to be non-decreasing, thus it must
be continuous on [0, «[. Moreover the Dini Theorem yields that the convergence is
uniform on every compact set included in [0, @[. This occurs for any 0 < o < aip,
thus the limit function ¥y, is non-decreasing and continuous on [0, aj,[ and the
convergence is uniform on every compact set included in [0, vy .
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In the same way the sequence of functions (U¢,, )., is a non-decreasing sequence of
non-decreasing convex functions on [0, aiy [ (for any m !). It thus (simply) converges
to some limit function Wyyy; this function Wy, is convex and continuous on ]0, aiy [-
Note that by (7) we have

0 S \I/out S \IJiI]'

As ¥ (0) = Ue, (0) =0 for any m, ¥y is continuous on [0, auy[, and the conver-
gence is uniform.
We do the same work on | — 00, 0] using (6) instead of (7). Note that for a < 0
we have
0 2 \Ilout(a) Z \I/in(a)'

The two functions ¥, and ¥, are convex and non-decreasing. By Proposition 4
we have

Uoue(a) < ¥, (a) < Wa(a) < Uiy(a) for a >0,

and Ui, (a) < ¥ (a) < Wa(a) < Uoye(a) for a <0.

We emphasize that the existence of the limit ¥ 4(«) immediately follows from
the equality Ui, () = Wou (). Moreover, it also implies, quite surprisingly, despite
any knowledge about the differentiability of the function W4, that ® 4 exists and is
the Legendre transform of W 4:

Proposition 5. If U;, = ¥y, on an open interval (a, @) then

(i) the cumulant generating function W4 exists, is equal to Vi, = Uouy on this
interval and it is a convex, continuous, non-decreasing function. In addition W 4 is
differentiable for all but countably many points and left and right limits of ¥', exists
everywhere on the closure of the interval.

(it) for all uw € (¥4 (a+), V4 (@—)), the rate function ®4(u) exists and satisfies
the relation

Da(u) = inf {Pu(a)-— au}.
ae(a,@)

(i11) if a« = —o0 then for any u < V', (@), except possibly for u = V', (—o0), the

rate function ®4(u) exists and satisfies the relation

D(u) = (il<1fa{\IlA(a) — au}.

Proof. (i) is straightforward.
(ii) Using exponential Markov inequality we immediately get the upper bound

® 4 (u) := limsup 1 log py (1’ > nu) <inf Uu(a) —ou  (u > l(A))
W a :

D4(u) = liTl;,Il—i)tolp - log pg(ry < nu) < igf Upla)—ou (u< ;(A))
We now prove that for @ 4, defined with the liminf the lower bound also holds true.
Fix u € (¥, (a+), ¥/, (@—)). By convexity of U4 the function ¥ 4(a) — cu attains
its infimum for some a, € (o, @), and the limits at the endpoints of the interval
are strictly larger. Let € > 0 so small that there exists 8 < a.. < 3 in the interval
(o, @) such that for « = 8 and 3 we have U 4(a) — au > U4 (o) — au + 2e.

Suppose a, > 0, i.e. u > ﬁA). By equality of the outer approximation W,

with W 4, there exists a set C which is a finite union of cylinders such that A C C
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and We < W4 < We + € on the interval [0,3]. This implies that V¢ (3) — fu >
Ue(aw) — agu, therefore by convexity of e (o) — au we have
(9) inf e(a) —au= inf Ue(a) —au>inf ¥u(a) —au —e.
« a€0,4] «

On the other hand r# > nu implies 7y > nu, hence ®,(u) > ®¢(u). Since the
large deviations principle holds for the set C (see Remark 1), we have ®¢(u) =
inf, Ye(a) — « and the conclusion follows from inequality (9). The case a, < 0 can
be treated in the same way by considering the inner approximation Wy,.

(iii) By (ii) it is enough to consider v < lim,— _o ¥/4(), but in this case
inf, U 4(u) — au = —oo which implies the result by (8). O

We remark that the exceptional value ¥’(—oc0) in statement (iii) is the slope of
W 4 at —oo which is m. At this point the value of ® 4 jumps from —oo to finite
values.

Note that if limy—.z ¥’ (a) = +oo in Proposition 5 then one gets the Large
Deviations Principle and the formula (1) holds for every u > ¥’ (a+). In Sections 6
we will prove under the assumption in statement 1 of the theorem the existence of
U4 on the interval (—oo, asn). However, we are not able to prove that the limit of
the derivative at o, is infinite. We doubt that it could be finite when «;, < +o0.
Still, this is clearly the case whenever «j, = +00, which is equivalent to min(A) > 0.

Nevertheless, using next proposition which exploits the symmetry of our assump-
tion (since A and A€ share the same boundary), this will be sufficient to get the
existence of the rate function ® 4 on the whole interval (except at the discontinuity).

Proposition 6. Assume that the Large Deviations Principle of return times into

A° holds for any u < ﬁAC) with a continuous rate function @ 4c (except possibly for

u = m) Then the Large Deviations Principle for return times into A holds

for any u > ﬁ (except possibly for u = m) with a rate function ® 4 which
satisfies

Da(u) = (u—1) e (uL) .

In particular, if ® ac is the Legendre transform of the cumulant generating function
W pc then
D(u) = info{—au + (u—1)Pac ()}
a<

Proof. Observe that if u > ﬁ > 1 then 7} > nu if and only if the orbit entered

at most n times in A before the time |nu], which means that the orbit entered at
least [n(u — 1)] times into A¢ before the time |nu|. Therefore

lomielry 2 ) = g (P < o) )

and the result follows by taking the limit as n — oco.
a

5. COINCIDENCE OF INNER AND OUTER APPROXIMATION IN THE CASE OF A
SMALL PRESSURE BOUNDARY

The goal of this section is to prove the statement 2 of the theorem. By the
previous analysis (See Proposition 5) it is sufficient to prove the existence of some
interval (a, @) 3 0 such that for any a € (@, @) we have Ui, (a) = Ui ().
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5.1. A more explicit condition to get a small pressure boundary. Let K C
> be a Borel set. We recall our definition of its ¢-pressure:

Py(K) = sup {hl, + /qbdz/: v ergodic and v(K) > O} )

Note that it is not the same as the one defined as a dimension like characteristic
with forward cylinders. That would satisfy us in the case of expanding maps, but
for diffeomorphisms it would lead to a condition much too strong.

Proposition 7. Let K C 3 be a Borel set and let V,,(K) be the smallest union of
(—n, n)-cylinders which contains K. If there exist some constants ¢ >0 and 6 > 0
such that pug (Vo (K)) < ce™ for all integers n, then Py(K) < Py(2) — 36.

Proof. Let S,¢(x) = Z;in ¢(z) denote the two sided Birkhoff sum and C_,, ,,(z)
the (—n,n)-cylinder containing the point € ¥. Recall that since py is a Gibbs
measure, for some constant b > 0 and for every x € 3 we have

-b < i%(C,n)n(x))
exp (Sn¢(x) - 2n77¢(2))

Let v be an ergodic measure such that v(K) > 0. We have

e < e.

¢ 2 e pug(Va(K))

> /Kexp <0n + log W) dv(z)

_ /K exp <2n B +Pu(E) + %gngb(a:) _ % log y(c_n,n(x))]) dv(z).

The Shannon-McMillan-Breiman theorem and the ergodic theorem implies the con-
vergence v-a.e. of the term into square bracket to the value

0
B +Py(X) + hy + /(bdu,
which cannot be positive according to Fatou’s lemma. O

Proof of Proposition 1. Take a Markov partition of sufficiently small diameter and
denote by m: ¥ — M the semi-conjugacy. We know that the diameter of the
image by 7 of a (—n,n)-cylinder goes uniformly to zero at an exponential rate.
Thus, setting A = 71V, since 94 C 7719V, we get that the (—n,n)-cylindrical
neighborhood of JA has a measure exponentially small, therefore Proposition 7
applies. O
5.2. Coincidence for positive values of a. Lemma 3.1 characterizes Ui, and
Ue : assoon as Up () is defined, Ui () is the unique real number ¢ = ¢(a, m)
such that the topological pressure associated to the potential ¢ — {15, , Pp—115,,
equals Py(X) — a.

Similarly, U¢ () is the unique real number ¢ = ¢(a, m) such that the topological
pressure associated to the potential ¢ —tlc, , Py_i1., , equals Py(X) — a.

Let us pick some a > 0. We denote by mg,, o the measure mg obtained when
we have R = B, and S = Py(X) — « in subsection 3.1. This measure is the unique
equilibrium state associated to the potential ¢ — Up_(a)lg,,. The measure weights
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B,., hence C,, and we can take the induced measure on C,,. Therefore we have
(omitting the subscribe m for convenience)

hmg,a (f) + /¢ - \IJB(Oé) de,oc - Pqﬁ(z) -
s, () + / 6~ (Po(S) —a)dmpe = mpa(B)Us(a)

ms,a(C) <hus,a,c(gc)+/Src(¢—(7’¢(2)—a))dﬂs,a,c> = mg,a(B)¥s(a),

where (15 o ¢ is the conditional measure mp o|c and g is the first return map on C.
This measure has a pressure in C lower than e (a); we thus get

mBm,a(Bm)

(10) ma,,,a (Cm)

Vs, (a) < Ve, ().
Recall that for positive o, 0 < ¥¢, (o) < ¥ () and are upper bounded (uni-
formly in every compact set in [0, aip|).

Proposition 8. There exists some @ > 0 such that for every a € (0, @),

« D’ITL
lim B ol Zm) ( )

=0.
m—+00 mBm,oc(Cm)

In particular, Vi, = Wy on this interval.

The proof of the proposition is an immediate consequence of these two lemmas
and Inequality (10).
Lemma 5.1. For any o € (0, aiy) we have liminf ma,,,a(Cm) >0

m—-+0Q

Proof. Let us denote by pi,, the measure mpg,, o, and pick any accumulation point
v of (fm) such that p,,(B,,) converges (up to the correct subsequence) to L :=
lim Jirnf tm (Bi). Let us show that L > 0 whenever « < ajy,.
m—-1+00

Since pn, is an equilibrium state we have
(1) i+ [ Gt = s, (@i (Br) = Po(S) ~ .
By semi-continuity for the metric entropy and the continuity of ¢ we obtain
(12) PuO) =hu + [ 0= Po(D) - a+ V(o)L

If v(B;) = 0 then this yields that v is a o-invariant measure for the dotted system
Ys,. Hence, its ¢-pressure must be smaller than Py (¥p,), which is by definition
Py(X) — a(B;). If this holds for every j then P, (¢) < Py(X) — ain (remember that
(a(B;)) converges to ain). On the other hand by (12) we had P,(¢) > Py(X) —
a, and a < ajy. This yields a contradiction. Therefore v(B;) > 0 for some j.
Additionally, whenever m > j we get p,(Bm) > pm(B;), and the later converges
to v(B;) by continuity of 15,. This achieves the proof of the lemma since C,,, D B,
for any m. O

Lemma 5.2. Let us set @ := min(Py(X) — Py(DA), ain) > 0. For every o € (0,a)

we have lim mp, o(Dm) =0.
m——+oo ’
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Proof. Let us fix some « € (0,@). Let us pick any accumulation point v for the
sequence of measures i, (we keep the notation of the preceding lemma). We claim
that v(0A) =

Assume for a contradiction that ¥(0A) > 0. Then let H = U,czf "0A be the
invariant hull of 0A. Let 1y and v, be the conditional measures of ¥ on H and
Y\ H. These two invariant probabilities are such that v = pvg+ quv; for some p > 0.
Observe that by definition, any ergodic component of v gives mass to H. Therefore
even if vy is not ergodic, since the entropy is affine we still get that

(13) huy + / ddvy < Ps(9A) = Py(S) —a.

Copying the equality (11), we get for every integers m > j that

um /¢dﬂ'm - (O‘)Nm(Bj) > P¢(Z) - Q.

Thus letting m — oo gives, since the entropy is semi-continuous and affine,
(14)

(hVU +/¢dl}0 1n( )VO(B ))+q <hu1 +/(,Z5d1/1 m(Oé)l/l(B )> > P¢( )
Hence (13) and (14) yield that for every j

v, +/¢d”1 = Uin(@)11(B;) = Py(X) —a + g(a—a).
We now choose j large enough such that

b, +/¢dV1 - \I’B]» (a)V1(Bj) > 77¢(E) -«

holds. This is a contradiction because the measure v; would have a ¢ — ¥ 15.-
pressure strictly larger than the associated equilibrium state. Thus we have v(0A) =
0.

To finish the proof let us fix some € > 0 and consider any j such that v(D;) < e.
Such an integer j exists by outer regularity of the measure v and because 0A =
ﬂ 1Dy. Note that 1p, is continuous. Now, for any m > j we have D,, C D;, and
then we get

0 < limsup pim (D) < v(D;) <e.
m

This holds for every positive €, which proves the lemma. O

Remark 3. We remark that under the assumption in statement 1 of the theorem,
we always have v(A) = 0 for the measure v constructed in Lemma 5.2, therefore
a = Qjp-

5.3. Coincidence for negative values of a. We remark that the measure mec 4 is
a Gibbs measure with full topological support, thus it gives weight to 5. Therefore
we can copy the case « positive and induce on B (instead of C); we get similarly

mcm7a(cm)
me,,,.a(Bm)

Proposition 9. There exists some real a < 0 such that for every a € (,0),

m—+o0 mc,, o(Cm)

(15) Ue () < Up, (a).

=0.

In particular, U, = Wy on this interval.
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The proof of the proposition is an immediate consequence of these two lemmas
and Inequality (15).

Lemma 5.3. For any negative o we have liminf me,, o(Cy,) > 0.

m——+o00o

Proof. Let us denote by u,, the measure mc,, o, and pick any accumulation point
v of (i) such that p,,(Cy,) converges (up to the correct subsequence) to L :=

liminf o (Cr)-
Since ., is an equilibrium state we have
(16) hum + / & dpm — \I/Cm (a)um(cm) = P¢(E) - Q.

By semi-continuity for the metric entropy and the continuity of ¢ we obtain

Therefore L # 0 otherwise the right hand side would be larger than the topological
pressure of ¢. O

Lemma 5.4. There ezists a < 0 such that for any o € (o, 0) we have lim me,, o (D) =
0.

Proof. We keep the notation of the preceding lemma. Let v be an accumulation
point of (p,). We first show that v(0A) = 0. By equality (16) we get that for any
integers m > j, since C; D C,, and now ¥¢, (o) < 0, we have

By, + / bt — Ve, (0)m(C}) > Py(E) — o

Letting m — oo gives, since the entropy is semi-continuous and 1¢; is continuous,
that

hy + /(;de — Uout()v(Cj) > Py(E) — cu.

Assume for a contradiction that v(0A) > 0 and decompose v = pry + qv; as in the
case « positive. Let 6 > 0. By definition of Wy, for any j sufficiently large we
have —W¢, (a)v1(Cj) +6 > —Woui(a)r1(C;). Since the entropy is affine, we get

p (huo + [ o - wout(awo(cj)) » (hyl + [ o — e, (@m(€) + 5) > Py()—a

This together with (13) gives
q (h,j1 + /¢du1 — Ve, (a)r1(Cj) + 6) > Py(E)—a—p (Py(X) — @ — Your ()1 (Cy)) -

Since the pressure P, (¢ — ¥¢,(a)lc;) < Pg(X) — o this implies that
A(Py(E) — a4 6) 2 Py(X) —a—p(Ps(X) —a — Your()ro(C)) -

By outer regularity of the measure vy we have v4(C;) — v9(A) < max(A) as j — oo.
Since ¢ is arbitrary this gives p(—a—Uoyut () +«) > 0, which is contradictory if p > 0
and « is small enough, since the function o — o — W,y (a) max(A) is continuous
and vanishes for & = 0. Thus there exists @ < 0 such that if o €]a, 0] we have
v(0A) = 0.

The conclusion of the lemma follows as in the positive case. O
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Remark 4. We remark that under the assumption in statement 1 of the theorem,
we always have v(A) = 0 for the measure v constructed in Lemma 5.4, therefore
a = —00.

6. A DYNAMICAL PROOF OF THE COINCIDENCE OF INNER AND OUTER
APPROXIMATION IN THE CASE OF TOTALLY NEGLIGIBLE BOUNDARY

In this section we give an alternative and somewhat more direct proof of the
statement 1 in our theorem. By Proposition 5 and Proposition 6 it suffices to show
the equality ¥, = W,y on the interval (—oo,0) for the set A and its complement
A¢. The hypotheses on the boundary is completely symmetric if we replace A by
A€ so it is sufficient to prove the equality on the interval (—oo,0) for the set A
only. However, we also prove that the equality holds some interval (—oo, ) for
some «iy > 0. This in turn not only implies that the rate function ® 4 exists on
the whole interval [0, +00) (except at discontinuity points), but also shows that the
formula (1) is satisfied on some interval [0, %) for some @ > m.

6.1. Infinite rate function for return times near the boundary. Recall that
Dy = Cp, \ By, is the m-cylindrical neighborhood of the boundary 9A. For conve-
nience, and for general computations, we remove the subscript "m” and just write
D. Our aim is to show that, the probability that the successive return times into
D, are small, is extremely small. We first prove a key lemma.

Lemma 6.1. With the assumption on 0A, lim,, 1~ max(D,,) = 0.

Proof. Since D,, is decreasing the limit p := lim,,_ 4 o max(D,,) exists. For any m
there exists some probability i, such that

1
fim (D) = max(Dy) — —

Let us pick any accumulation point p for the sequence of probabilities (g, ). Recall
that the map 1p,, is continuous. Let us pick some integer m. For simplicity we
write converging sequences instead of converging subsequences.

1
w(Dp) = lim p, (D) > liminf p, (D) > lim max(D,,) — — = p.
n—oo n

n—oo n—oo

By outer regularity of the measure p this yields that p < lim u(D,,) = p(0A) =
0. O

Proposition 10. For every v > 0, there exists some M = M (v) such that for every
m> M, &p_ (v) = —o0.
Proof. Let v > 0. By Lemma 6.1 we always can consider m large enough such that
1
116(D)

Note that D is a union of (—m,m)-cylinders. We thus can use the large deviations

principle for (r%) (see Remark 1) which gives

> 0.

n

1
(18) Op(v) = lim —logpg {TD < v} = inf {—va+ ¥p(a)},
n—oo n n a<a’

where o = (D) > 0 (it thus depends on m).

We emphasize that the slope of & +— Up(a) as & goes to —oo is —2

ax(D) "
Lemma 6.1 yields the existence of some M = M (v) such that for every m > M,
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Up(a)

A

>

Op(v)

av

FIGURE 2. The rate function ®p(v) is the maximal distance be-
tween awv and ¥p(a) on the negative axis.

1 < v. This implies by (18) that ®p_, (v) < limg—, oo & (v - m) = —00

max(D,,)

(See Figure 2). O

6.2. Coincidence for positive values of «. Fix some o € (0,q,) and § such
that @ + 0 < asy. For sufficiently large m, all the ¥ are defined on [0, + ¢]
and equicontinuous. then choose a uniform 7 in Proposition 3 such that the mass
concentration holds, namely

1 n
(19) U3, (a) = lim —log / e Bmdpig

n

n
"B <nt

for all sufficiently large m.
Let us pick some fixed positive €. We have

n n(l+e) n

ar ar, ar
(20) / e dugy < / L et dpg + / ) e dpug.
rg<nt rggrg( +e) rg< +a)<r%$n_’_

The first term in the right hand side of this equation is simply bounded by
(21) /e()érg<1+€) d/.t(z) < en(1+25)‘llc(oz)

provided n is sufficiently large.
We turn to the second term. The condition rg
r7y < nT, hence we get

(+e) r% < nt implies that

@2 [ el < e (0 ) = (o < () )
Te <rg<nrt €

By Proposition 10, if we consider m > M () for some fixed ¢, for n large enough
we get
r
py(ryy <me—) <e 2,
€

Therefore, (22) gives for n sufficiently large

ar®
e“"B duy < 1.
/n(1+5) n ‘LL¢ -
Te <rg<nrt
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Recall that ¥e(a) > 0 for o > 0. Then, (20) together with (21) and (19) yield that
V() < (1+2)¥c(a)

It follows from Proposition 4 that

(23) Ui (@) < (14 26) Wy ().

Letting € go to 0 we get that Ui, (a) = Yoyt ().

6.3. Coincidence for negative values of a. We now do the proof for a fixed
a < 0. Here again we omit the subscript “m” when it is not necessary. We also
pick some positive €. Then, we have:

n n(l4e)
eaTB dﬂ(b BO(TC d/,,LqS
7’% <Tn(1+5)

n(l+e) n(l+4e)
e*e dpy — e*’e dpig.
v > (+e)

Let us pick some positive real 7 which will be chosen latter. We have

n(l4+e)
/ eaTe d,u¢
e >rg<1+5)

Y

(24)

Y

Mo (rB > rg( +e)

IN

> n(l+e)F) +

116 (TB >t Al + )7 > 7‘"(1+6))

IN

o (7819 > n(1 4+ )7) + i (5 < nl(1+€)7).
(25)

The large deviations principle for rlg means

(26) ®c(7T) := lim logu¢{ >T} = inf {-Ta+ ¥Y¢(a)}
n—oo M a<al
for some o’ > aj,. Fix some j and some & € (0, «(B;)). Choose then 7 such that
—Ta+ Vg, (a) < 2¥p; (o) <O0.

Recall that on Ry all the U are lower than all the Uy, and the converse holds on
R_. Therefore we get for every m that

(27) —Ta+ \I/cm (&) < Z\I/Cm (Oé) < 0.
For n large enough, (26) and (27) yield
(28) %( n(l+e) > n(1 +€)7~_> < M149)(Be(@)+e) < on(1+e)(2Tc(a)+e)

Following Proposition 10 we get
(29) po (15 < m(1 +¢)7) < n(iFe)vele)

for every large enough m and for every large enough n. Therefore (24), (28), and
(29) yield for every large enough m and for every large enough n:

/eargm dlj‘d) > en(l—i—e)(\llcm(a)—s) _ e2n(1+£)\11cm(a) o e’rL(l-‘,-e)(Q\I/cm(a)—i—fs)7

For fixed m, letting n go to 400 and using Proposition 4 with o < 0 we get for
every € > (

(30) Uin(a) = (1+&)(Your(a) —&).
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When € goes to 0, we get that Ui, () = Ugue(a).
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