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Abstract. We prove that return time statistics of a dynamical system
do not change if one passes to an induced (i.e. first return) map. We
apply this to show exponential return time statistics in i) smooth in-
terval maps with nowhere–dense critical orbits and ii) certain interval
maps with neutral fixed points. The method also applies to iii) certain
quadratic maps of the complex plane.

1. Introduction

In the last few years the study of return and hitting times has become an im-
portant ingredient for the statistical characterization of dynamical systems.
A historical account of this approach can be found in the review paper [10]
or in the introduction of [20], where an extended bibliography is provided.
To pose the problem in general terms, suppose that T is a measure preserv-
ing transformation of a measure space (X,µ) and Ux ⊂ X is a neighborhood
of a point x ∈ X. The two questions which are the fundamental objects of
investigation are:

1. What is the probability distribution of the first hitting time of the set
Ux as µ(Ux)→ 0?

2. What is the probability distribution of the first return time for points
leaving from Ux as µ(Ux)→ 0?

For large classes of dynamical systems showing some sort of hyperbolic be-
havior, the answers to those questions are surprisingly easy and universal.
The probability distribution function up to a suitable normalization, turns
out to be the exponential 1-law exp(−t): If τU (x) is the smallest integer n
such that Tn(x) ∈ U (so τ stands for first hitting and for first return time),
then both

µ({x ∈ X; τU (x) ≥ t

µ(U)
})→ e−t
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and
1

µ(U)
µ({x ∈ U ; τU (x) ≥ t

µ(U)
})→ e−t,

as µ(U) → 0. After the works of Pitskel [36], Hirata [19] and Collet [11]
at the beginning of the nineties which focused essentially on uniformly hy-
perbolic dynamical systems, new developments have brought at least three
improvements:

• The possibility to treat larger classes of systems, notably certain non–
uniformly hyperbolic systems;
• The possibility to estimate the error to the asymptotic distribution

which is closely related to the hyperbolic character of the transforma-
tion and to the influence of sets with short recurrence;
• The application of the exponential statistics to the computation of the

fluctuations of repetition times in the Ornstein-Weiss formula for the
metric entropy.

These improvements were the result of four new approaches. The first ap-
proach was originated by Galves and Schmitt [15] and was formulated in a
probabilistic setting for systems satisfying a ϕ-mixing condition. This ap-
proach was translated into the dynamical systems language by Haydn for
Julia sets [16], by Paccaut [34] for a large class of non-Markovian maps of
the interval and by Boubakri [4] for some Collet-Eckmann unimodal maps.
Recently Abadi [2] extended it for α-mixing stationary processes. The true
probabilistic flavor of this technique led to the discovery of a close connec-
tion with the Ornstein-Weiss [33] theorem on metric entropy and resulted
in a proof of the log-normal fluctuations of the repetition times for Gibbs
measures in [13] (see [22] for related results); see also [34] for further devel-
opments.

The second approach is due to Hirata, Saussol and Vaienti [20]. First for
measure-preserving dynamical systems it quantifies the error to the asymp-
totic exp(−t) distribution giving precise bounds in terms of the mixing prop-
erties of the systems and of a sharp control of short recurrences (this last
point is in itself an interesting subject suggesting the possibility to formu-
late a thermodynamics of return times [39, 40]). These bounds are then
computed for a large class on non-uniformly hyperbolic maps of the interval
in [20]. We used this method in the present paper to prove the exponen-
tial statistics for the class of Rychlik maps introduced in Section 3. A key
observation in [20] allows to link the statistics of hitting and return times
quoted above, namely the distribution of the first return time is close to the
exponential law if and only if it is close to the distribution of the first hitting
time.

The third approach goes back to a probabilistic paper of Sevast’yanov [41].
This approach was already used by Pitskel [36] in the context of Markov
chains and Axiom-A diffeomorphisms. The same scheme was applied by
Haydn in [16] and [17] for equilibrium states on Julia sets, in the presence
of a supremum gap in the Perron-Frobenius operator (namely, if f is an
Hölder continuous function on the Julia set of a rational map of degree at
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least 2, then P (f) > sup f , where P (f) is the topological pressure of f). The
original technique of Sevast’yanov only allowed to prove the convergence to
the exponential 1-law. A recent work by Haydn and Vaienti [18] quantifies
this technique and thus provides bounds for the error estimate in the case
of rational maps and parabolic maps of the interval; such bounds improve
all other existing bounds for the class of maps considered.

The last approach has been introduced by Collet [12]; it is an application of
the Gumbel’s law for entrance times [14] to a large class of non–uniformly
hyperbolic dynamical systems with exponential decay of correlations for
which a tower satisfying Young’s conditions can be constructed [48, 49].
Collet has proven that the statistics of closest return to a given point is
almost surely asymptotically Poissonian and gave the fluctuations for the
nearest return to the starting point.

It is useful to remark at this point that the approaches we are describing
also permit to compute the probability distribution of successive visits to
the set Ux: it gives, in all the cases where the exponential statistics holds,
the Poisson distribution tn

n! e
−t, where n is the number of visits of Ux.

In this paper we propose a new scheme which allows us to compute the
asymptotic distributions for the first and successive return times when-
ever these distributions are known on a subset endowed with an induced
structure. Its interest lies in the fact that several non-uniformly hyperbolic
systems admit around almost every point (w.r.t. the invariant measure) a
neighborhood where the first return map acts as the induced transformation
and exhibits hyperbolic behavior. The first application of our approach is
for C2 interval maps; we prove the exponential return time statistics under
the additional hypothesis that the map preserves a conformal measure (see
Section 4 for details) and that the closure of the orbit of the critical points
has zero measure. Our result complements those given Boubakri [4] and
by Collet [12], in the sense that, contrarily to them, the growth rate of the
derivatives along the critical orbit plays no role in our theorem. It applies
for example to the well known Fibonacci map [28].

As a second example, we improve the exponential statistics for the parabolic
map studied in [20]. In both cases, the first return map of the induced
systems belongs to a class of piecewise monotonic maps of the interval (with
countably many pieces), previously investigated by Rychlik; the induced
measure shows exponential decay of correlations with respect to the Rychlik
map and this is the kind of hyperbolic behavior which is sufficient to prove
the exponential statistics for such maps.

In most of the approaches quoted above, the set Ux shrinking to {x} was
chosen in the class of cylinders generated by some partition of the space.
The exponential return time statistics around cylinders is what is needed to
compute the fluctuations in the Ornstein-Weiss theorem [39].

Instead of cylinders one can also use balls for the sets Ux. The use of balls
has a twofold interest. Firstly, it enlarges the class of sets where to check the
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recurrence of rare events, such as entrance time (particularly from the per-
spective of numerical simulations in physical situations, see for example [9]
and [50]), Second, the behavior of return time in balls is strongly related to
other statistical indicators, like local dimension and Lyapunov exponents,
as shown in [40].

Balls instead of cylinders were used by Haydn [17] and Collet [12]. In this
article we prove exponential statistics for Rychlik maps around balls. This
improves the work of [34], who considered a particular class of Rychlik
maps (the covering weighted systems introduced in [25]), and only cylin-
ders around points.

The general scheme proposed in this paper could in principle be applied
to a wide class of dynamical systems for which the induced transformation
enjoys an exponential statistics; we think in particular to rational maps of
the Riemann sphere (an example is given in Chapter 5) and of billiards for
which the induced structures, although not yet studied, seem however more
accessible than the original systems.

As a final observation, we would like to point out the robustness of the
exponential statistics, which persists in the non-hyperbolic systems covered
in this paper. This confirms its central role in the characterization of re-
currence for ergodic systems and motivate further analysis for larger class
of transformations especially in dimension greater than one and exhibiting
singularities.

2. Statistics via inducing: an abstract theorem

Suppose that (T,X, µ) is an ergodic measure preserving transformation of a
smooth Riemannian manifold X. Let X̂ ⊂ X be an open set. Furthermore
let T̂ : X̂ → X̂ be the first return map. We denote the induced measure
by µ̂: the measure preserving transformation (T̂ , X̂, µ̂) is therefore ergodic.1

For z ∈ X we denote by Ur(z) the ball of radius r centered at z and by τUr(z)
(resp. τ̂Ur(z)) the first return time of Ur(z) for T (resp. T̂ ). For a µ (resp. µ̂)
measurable set A we denote by µA (resp. µ̂A) the induced measure on the
set A. We suppose that (T̂ , X̂, µ̂) has return time statistics f̂(t): i.e. for
µ̂-a.e. z ∈ X̂, ∃εz(r) > 0 with εz(r)→ 0 as r → 0 such that

sup
t≥0

∣∣∣µ̂Ur(z)(x ∈ Ur(z) : τ̂Ur(z)(x) >
t

µ̂(Ur(z))

)
− f̂(t)

∣∣∣ < εz(r). (1)

Our main theorem of this section is that on X̂ the map T̂ obeys the “same”
statistical law as T :

Theorem 2.1. If f̂ is continuous at 0, then there exists f : R+ → [0, 1]
such that N def= {x : f 6= f̂} is countable and for µ–a.e. z ∈ X̂ and t 6∈ N ,

1We could weaken our assumptions by demanding that the map T̂ is ergodic instead

of T ; the ergodicity of T is however recovered when X = ∪∞n=0T
−nX̂
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there exists δz,t(r) > 0 with δz,t(r)→ 0 uniformly in t as r → 0 such that∣∣∣µUr(z)(x ∈ Ur(z) : τUr(z)(x) >
t

µ(Ur(z))

)
− f(t)

∣∣∣ < δz,t(r). (2)

In addition, if f̂ is continuous then the convergence is uniform in t, which
means there exists δz(r) → 0 as r → 0 such that for all t ∈ R+ and r > 0,
δz,t(r) ≤ δz(r).

Remark: the function f̂ (resp. f) is known to be decreasing and thus contin-
uous everywhere except for an at most countable set of exceptional points.
The set N is a subset of the points of discontinuity of f̂ .

Proof. First of all, if µ has an atom then µ is supported on a periodic orbit,
hence the result is trivial because in this case f(t) = f̂(t) = 1 for t ≤ 1
and 0 otherwise. We may assume then that µ has no atoms, consequently
µ(Ur(z))→ 0 as r → 0 for all z ∈ X̂.

At first we suppose that z ∈ X̂ and assume that r is small enough that
Ur(z) ⊂ X̂. Note that this implies µ̂Ur(z) = µUr(z).

For x ∈ X̂ let n(x) def= τX̂(x) be the T–first return time of x to X̂. By Kac’s
Theorem and ergodicity of µ̂ we have

Am(x) def=
1
m

m−1∑
i=0

n(T̂ ix) −→
m→∞

c
def=
∫
X̂
n(x) dµ̂ =

1
µ(X̂)

(3)

for µ̂-a.e. x ∈ X̂. Let G def= {x ∈ X̂ : limm→∞Am(x) = c}. Clearly µ̂(G) =
1. For all x ∈ G and for all ε > 0 there exists m(x, ε) < ∞ such that
|Am(x) − c| < ε for all m ≥ m(x, ε). Let Gm

def= {x ∈ G : m(x, ε) < m}
where we have suppressed the obvious ε dependence on the set Gm. We
choose M def= M(ε) such that µ(GM ) > 1− ε.

By definition |
∑m−1

i=0 n(T̂ ix) − cm| < εm for all m ≥ M and all x ∈ GM .
Thus T̂m(x) = T cm+s(x) for some s = s(x) with |s| < εm. It immedi-
ately follows that τUr(z)(x) = cτ̂Ur(z)(x) + s with |s| < ετ̂Ur(z)(x) whenever
τ̂Ur(z)(x) ≥M and x ∈ GM .

Next we define

G̃M
def=
{
z ∈ GM : µUr(z)(GM )−→

r→0
1
}
. (4)

By the Lebesgue Density Theorem, µ̂(G̃M ) = µ̂(GM ) and thus µ̂(G̃M ) > 1−
ε. For each z ∈ GM there exists r(z,M, ε) > 0 such that µUr(z)(GM ) > 1− ε
for all r < r(z,M, ε). Thus ifR > 0 is sufficiently small then µ̂(GM,R) > 1−ε,
where GM,r

def= {z ∈ G̃m : r(z,M, ε) > r}.

Let S be the set of points z ∈ X̂ for which εz(r) → 0 as r → 0. By
assumption µ̂(S) = 1. Hence µ̂(GM,R ∩ S) = µ̂(GM,R) > 1− ε.
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Denote

FUr(z)(t)
def= µUr(z)({x ∈ Ur(z) : τUr(z) > t/µ(Ur(z))}),

F̂Ur(z)(t)
def= µ̂Ur(z)({x ∈ Ur(z) : τ̂Ur(z) > t/µ̂(Ur(z))}),

and set BUr(z)(M) = {x ∈ Ur(z) : τ̂Ur(z)(x) > M}.

Assume additionally that z ∈ GM,R ∩ S. The limiting distribution f̂(t) is
continuous at 0 and f̂(0) = 1, hence if r is sufficiently small

µUr(z)(BUr(z)(M)c) = µ̂Ur(z)(BUr(z)(M)c) ≤ 1− f̂(Mµ̂(Ur(z))) + εz(r) < ε.

Thus for all t ∈ [0,∞),

FUr(z)(t) ≤ µUr(z)
(
GcM,R ∪BUr(z)(M)c

)
+

+µUr(z)

(
GM,R ∩BUr(z)(M) ∩

{
x : τUr(z)(x) >

t

µ(Ur(z))

})
≤ µUr(z)(G

c
M,R) + µUr(z)(BUr(z)(M)c) +

+µUr(z)

(
GM,R ∩BUr(z)(M) ∩

{
x : τ̂Ur(z)(x) >

t/(c+ ε)
µ(Ur(z))

})
≤ 2ε+ F̂Ur(z)

(
t

1 + ε/c

)
.

A similar computation with 1 − FUr(z)(t) = µUr(z)(τUr(z) ≤ t/µ(Ur(z)))
yields

F̂Ur(z)
(

t

1− ε/c

)
− 2ε ≤ FUr(z)(t) ≤ F̂Ur(z)

(
t

1 + ε/c

)
+ 2ε. (5)

For r sufficiently small, εz(r) < ε. Thus inequality (5) implies:

−3ε+ f̂

(
t

1 + ε/c

)
≤ FUr(z)(t) ≤ f̂

(
t

1 + ε/c

)
+ 3ε. (6)

Define

δt(z)
def= max

{∣∣∣∣f̂(t)− f̂
(

t

1− c−1ε

)∣∣∣∣ , ∣∣∣∣f̂(t)− f̂
(

t

1 + c−1ε

)∣∣∣∣} . (7)

For each point t of continuity of f̂ , the function δt(ε) → 0 as ε → 0. Com-
bining (6) and (7) yields:

|FUr(z)(t)− f̂(t)| ≤ 3ε+ δt(ε). (8)

We just showed that for any ε > 0, there exists a set G(ε) with µ̂(G(ε)) >
1− ε and a real number R(ε) > 0 such that for all z ∈ G(ε), Inequality (8)
holds whenever r < R(ε). The conclusion of the theorem for µ-a.e. z ∈ X̂
follows from the remark that µ-almost every z ∈ X̂ is contained in the set
of full measure ∩n>0 ∪m>n G(1/m).

Finally we want to prove the uniform convergence in t in the case f̂ is
continuous. Since f̂(t) → 0 as t → ∞, it is uniformly continuous; hence
q(δ) = sup0≤s<t<s+δ |f̂(s)− f̂(t)| → 0 as δ → 0.



RETURN TIME STATISTICS VIA INDUCING 7

Moreover, f̂(t) is bounded by 1/t by Chebychev’s inequality. Hence Equa-
tion (7) gives

δt(ε) ≤ min
(
q

(
tε

c− ε

)
, 1/t

)
+ 3ε.

If tε/(c − ε) <
√
ε then δt(z) ≤ q(

√
ε) + 3ε, while if tε/(c − ε) ≥

√
ε then

δt(z) ≤ 1/t ≤
√
ε/(c− ε) + 3ε.

Remark: Using the same method it is possible to show the counterpart of
Theorem 2.1 for the successive return times and the number of visits.

3. Piecewise monotonic transformations

In this section we show that piecewise monotonic maps of Rychlik’s type
(even with countably many monotonic pieces) enjoy exponential statistics.
Let X ⊂ R be a compact set and m a Borel regular probability measure on
X. The variation of a function g : X → R is defined by

Var g def= sup{
k−1∑
j=0

|g(xj+1)− g(xj)|},

where the supremum is taken along all finite ordered sequences (xj)j=1,... ,k

with xj ∈ X. The norm ‖g‖BV = sup |g|+ Var g makes BV = {g : X → R :
‖g‖BV <∞} into a Banach space. We endow X with the induced topology
and denote by B(X) the Borel σ-algebra of X. We say that I ⊂ X is an
X-interval if there exists some interval J ⊂ R such that I = X ∩ J .

Definition 3.1 (R-map). Let T : Y → X be a continuous map, Y ⊂ X
open and dense, and m(Y ) = 1. Let S = X \Y . We call T an R-map if the
following is true:

1. There exists a countable family Z of closed X-intervals with disjoint
interiors (in the topology of X) such that ∪Z∈ZZ ⊃ Y and for any
Z ∈ Z the set Z ∩ S consists exactly of the endpoints of Z;

2. For any Z ∈ Z, T |Z∩Y admits an extension to a homeomorphism from
Z to some X-interval;

3. There exists a function g : X → [0,∞), with Var g < +∞, g|S = 0
such that the operator P : L1(m)→ L1(m) defined by

Pf(x) =
∑

y∈T−1(x)

g(y)f(y)

preserves m. In other words, m(Pf) = m(f) for each f ∈ L1(m), that
is m is g−1-conformal;

4. T is expanding: sup
x∈X

g(x) < 1.

We first remark that if T is an R-map, then any iterate Tn is also an R-map
(see Lemma 2 in [38] and the discussion before for details). Given a weight
function g such that supX g < 1 and Var g < ∞, Liverani, Saussol and
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Vaienti have shown in [25] the existence of a conformal measure m which
fulfills the hypotheses, under the additional assumption that T is covering:

for any interval I ⊂ X, there exists an integer N > 0 such that

inf
x∈Y

PNχI(x) > 0.

Proposition 3.1. Suppose that X = [0, 1], m is Lebesgue measure and T
is a piecewise monotonic transformation on X. If

1. T |Z∩X is C2 for each Z ∈ Z,
2. T is uniformly hyperbolic, i.e. for some M > 0, inf |(TM )′| > 1, the

infimum being taken on the subset of X where (TM )′ is defined,
3. T has bounded distortion, which means

sup
Z∈Z

sup
Z

|T ′′|
|T ′|2

<∞ and
∑
Z∈Z

sup
Z

1
|T ′|

<∞, (9)

then T is an R-map with weight function g = 1/|T ′| on Y and g = 0 on S.

Proof. It is enough to check that the variation of g = 1/|T ′| is finite. Since
g is C1 on the interior of Z ∈ Z, the variation is estimated by

Var g ≤
∑
Z∈Z

∫
Z
|g′(t)|dt+ 2

∑
Z∈Z

sup
Z
g

≤
∑
Z∈Z

∫
Z

|T ′′(t)|
|T ′(t)|2

dt+ 2
∑
Z∈Z

sup
Z

1
|T ′|

≤ sup
Z∈Z

sup
Z

|T ′′|
|T ′|2

+ 2
∑
Z∈Z

sup
Z

1
|T ′|

<∞.

R-maps possess very strong statistical properties, which we collect below

Theorem 3.1 (Rychlik [38]). If T is an R-map then there exists an invari-
ant measure µ which is absolutely continuous with respect to the conformal
measure m with density h = dµ

dm ∈ BV . The measures m and µ have no
atoms. In addition, there exists a partition (mod m) of X into disjoint
open sets Xi,j, where i = 1, . . . , k and j = 1, . . . , Li such that each system
(TLi |Xi,j , Xi,j , µXi,j ) is mixing and has exponential decay of correlations for
bounded variation observable, which means that for some C ∈ (0,∞) and
θ ∈ (0, 1)∣∣∣∣∫ϕ ◦ TnLiψdµXi,j − ∫ϕdµXi,j ∫ψdµXi,j ∣∣∣∣ ≤ C‖ϕ‖L1(m)(‖ψ‖BV )θn (10)

for any ϕ ∈ L1(m) and ψ ∈ BV .

This theorem tells us in particular that X can be partitioned (mod m) into
compact sets Xi,j where some iterate of T is again an R-map with a mixing
measure equivalent to m|Xi,j and which has exponential decay of correlations
for bounded variation observable.
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Theorem 3.2. Any R-map T with conformal measure m and invariant
mixing measure µ� m has exponential return time statistics around balls.

Proof. In the proof we use the estimate given by Lemma 2.4 in [20] to apply
Theorem 2.1 in [20]. We recall the quantities considered there (N is any
integer).

aN (U) def= µU ({x : τU (x) ≤ N}),
bN (U) def= sup

{
|µU (T−NV )− µ(V )| : V is measurable

}
,

c(U) def= sup
k≥0
|µU ({x : τU (x) > k})− µ({x : τU (x) > k})|.

We denote by h the density of the measure µ with respect to m. Let U ⊂ X
be an interval in X and set τ(U) def= inf{τU (x) : x ∈ U}. We now compute
an upper bound for aN and bN .

Obviously aN (U) =
∑N

n=τ(U) µU ({x : τU (x) = n}), and for each n ≥ τ(U)

µU ({x : τU (x) = n}) ≤ 1
µ(U)

∫
1IT−nU1IUdµ

=
∫ ( 1IU

µ(U)
)
◦ Tn · (1IU − µ(U))dµ+ µ(U)

≤ C
m(U)
µ(U)

‖1IU − µ(U)‖BV θ
n + µ(U).

We used for the last inequality the estimate on decay of correlations (10)
given by Theorem 3.1, with ϕ = 1IU/µ(U) and ψ = 1IU − µ(U). Since
U is an interval we have ‖1IU − µ(U)‖BV ≤ 3, hence the summation on
n = τ(U), . . . , N gives

aN (U) ≤ 3C
1− θ

m(U)
µ(U)

θτ(U) +Nµ(U). (11)

We consider now bN (U). The decay of correlations given by (10) yields (with
ϕ = 1IV and ψ = 1IU/µ(U))

bN (U) ≤ sup
V ∈B(X)

C‖1IV ‖L1(m)‖1IU‖BV θN/µ(U) ≤ 3C
θN

µ(U)
. (12)

Lemma 2.4 in [20] together with (11) and (12) yield (with N = 2 log µ(U)
log θ )

c(U) ≤ c1
m(U)
µ(U)

θτ(U) + c2µ(U) + c3µ(U)| logµ(U)|, (13)

for some constants c1, c2 and c3 independent of the interval U .

Since µ has no atoms the countable union W = ∪∞j=0T
−jS has zero measure.

Hence for µ-a.e. point z ∈ X, the iterates T kz are well defined and T kz 6∈ S.
One easily sees then that τ(Ur(z)) → +∞ as r → 0 provided z is not
periodic. Consider the set

G = {z ∈ X \W : z is not periodic and D(z) def= lim
r→0

m(Ur(z))
µ(Ur(z))

< +∞}.
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The Lebesgue Density Theorem tells us that D(z) is µ-almost everywhere
finite because the density h = dµ

dm > 0, µ-a.e. Since µ is aperiodic (it is
ergodic with no atoms), we conclude that µ(G) = 1.

Moreover, for all z ∈ G, using (13) we get c(Ur(z)) → 0 as r → 0. We
conclude then by Theorem 2.1 in [20] that for µ-almost all z ∈ X,

µUr(z)

(
τUr(z) >

t

µ(Ur(z))

)
−→
r→0

e−t

uniformly in t ∈ [0,∞).

4. Statistic of return times for non-hyperbolic interval maps

Here we prove that a large class of interval maps enjoy exponential statistics
for the return time. The strategy is to prove that around almost every point,
an interval can be found whose first return map is an R-map.

4.1. Smooth maps with critical points. Let T : [0, 1] → [0, 1] be a C2

interval map. Denote the critical set by Crit def= {x ∈ [0, 1] : T ′(x) = 0}.
For this class of systems, the existence of invariant probability measures
and their statistical properties have been frequently studied by means of in-
duced maps (jump transformations rather than first return maps) and tower
constructions. The situation is best understood for unimodal map with ex-
ponential growth of the derivatives along the orbit of the critical value. This
is known as the Collet-Eckmann condition, but a slightly stronger form (in-
volving a slow recurrence condition of the critical point) has been applied
by Benedicks & Carleson [3], in which also the prevalence of such behavior
in the quadratic family is proven.

Every Collet-Eckmann unimodal map has an absolutely continuous invariant
probability measure µ, µ has exponential decay of correlations (w.r.t. to
some iterate of the map), satisfies the Central Limit Theorem, and the
Perron-Frobenius operator with suitable weights has a spectral gap [47, 21].
An important quantity is the tail behavior of the inducing scheme, i.e. the
asymptotic behavior of m({x;R(x) > n}), where m is the reference measure
(Lebesgue) and R the inducing time (playing the role of the first return
time in our paper). Collet-Eckmann maps have exponential tail behavior:
m({x;R(x) > n}) ≤ Ce−αn for some α,C > 0. In [7] the tail behavior
of induced maps over multimodal maps with arbitrary growth rates on the
critical orbits is computed. The correlation decays were computed using
Young’s framework [48].

The multiple return time statistic for Collet-Eckmann maps has been studied
(in the Benedicks-Carleson setting) by Boubakri [4]; he finds that they have
a Poissonian distribution, and proves additional fluctuation results. A more
general approach is taken by Collet [12], but also his result relies essentially
on exponential tail behavior of the inducing structure.

The below theorem covers certain maps that are not Collet-Eckmann, and
therefore (cf. [32]) have strictly subexponential decay of correlations. One
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should think of (unimodal) maps with a so-called persistently recurrent crit-
ical point, the Fibonacci map being the best known example, see [28]. Such
maps frequently admit absolutely continuous invariant probabilities [28, 5],
but are never Collet-Eckmann, see [6, Theorem 2]. In this sense, Theo-
rem 4.1 complements Boubakri’s and Collet’s results. The main importance
of the theorem is that it shows that, as long as the measure is mixing, ex-
ponential, and in fact, any rate of mixing is not needed to have exponential
return time statistics.

We will assume that the orbit of the critical set is nowhere dense. This
enables us to use a first return map as induced transformation. The only
information on the tail behavior we need is that

∑
nm({x; τ(x) = n}) <

∞. This is equivalent to the existence of an invariant probability measure
µ � m. Furthermore, we state the result for multimodal maps and for
|T ′|t-conformal measures mt.

Theorem 4.1. Let T : [0, 1]→ [0, 1] be as above. Assume that

1. there exists a non-atomic |T ′|t-conformal probability measure mt for
some t > 0,

2. T preserves an ergodic probability measure µ� mt, and
3. mt(orb(Crit)) = 0.

Then (supp(µ), T, µ) has exponential return time statistics.

Remark: A special case is t = 1, i.e. m = mt is Lebesgue measure. A
point c ∈ Crit is called non-flat if there exists an `, 1 < ` < ∞, such
that |f(x) − f(c)| = O(|x − c|`). If each critical point is non-flat, then the
condition m(orb(Crit)) = 0 follows from

orb(Crit) is
{

nowhere dense if #Crit = 1,
a minimal set if 2 ≤ #Crit <∞.

This was shown by Martens [29] (see also [30, Theorem V.1.3’]) if #Crit = 1
and by Vargas [45] if 2 ≤ #Crit <∞.

The case t < 1 comes into view when T has a periodic attractor and the
measure mt is supported on a repelling Cantor set.

Proof. Let X = supp(µ) \ orb(Crit). Obviously µ(X) = 1. Let x be any
recurrent point in X; by the Poincaré Recurrence Theorem, this concerns
µ-a.e. x ∈ X.

Let Y be the component of [0, 1]\orb(Crit) containing x and n be any integer
such that Tn(x) ∈ Y . As orb(Crit) ∩ Y = ∅, there exists a neighborhood U

of x such that Tn maps U monotonically onto Y . Let T̂ be the first return
map to U . By taking n sufficiently large, we can ensure that U is compactly
contained in Y and that T i(∂U) ∩ U = ∅ for all i ≥ 0.

Let W ⊂ U be any maximal interval on which T̂ |W is monotone. Since
orb(∂U) ∩U = ∅, it follows that T̂ : W → U is onto, and therefore contains
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a fixed point, say pW . The derivative |T̂ ′(pW )| is uniformly bounded away
from 1, see [30, page 268].

Write X̂ = X ∩ U and Z = X ∩W . Let Z be the partition of X̂ into the
sets Z. We will show that T̂ : ∪Z∈ZZ → X̂ is an R-map.

Given intervals I ⊂ J , J is said to contain a δ-scaled neighborhood of I if both
components of J \ I have length ≥ δ|I|. Let δ0 > 0 be the distance between
∂Y and ∂X. For each branch T̂ |W = T k|W (where k def= τU (W ) is the return
time), there is an interval W ′ ⊃ W such that T k maps W ′ monotonically
onto Y . It follows that T k(W ′) contains a δ0

|U | -scaled neighborhood of T k(W ).

More precisely, if x, y ∈W , then T k(W ′) contains a δ def= δ0
|Tk(x)−Tk(y)| -scaled

neighborhood of (T k(x), T k(y)). This allows us to use the Koebe Principle:

Proposition 4.1 (Koebe Principle). Let W ′ ⊃W be intervals and assume
that Tn : W ′ → T (W ′) is a C2 diffeomorphism. If Tn(W ) contains a δ-
scaled neighborhood of Tn(W ), then there exists K such that the distortion

sup
s,t∈(x,y)⊂W

T̂ ′(s)
T̂ ′(t)

≤ K. (14)

Remark 1: Historically, the Koebe Principle was proven under the assump-
tion that T has negative Schwarzian derivative, see [30, Chapter III.6]).
Recent work of Kozlovski [23], extended to the multimodal case by Van
Strien & Vargas [42] shows that the C2 assumption suffices. The magnitude
of K = K(δ) = K0(1+δ

δ )2, where K0 depends only on the map.

Remark 2: By taking U small, we can choose K as close to 1 as we want. It
follows that infZ∈Z infZ |T̂ ′(x)| ≥ 1

K infZ∈Z |T̂ ′(pW )| > 1, i.e. T̂ is expand-
ing.

Since mt is g−1-conformal,

mt(X̂) =
∫
Z
|T̂ ′(x)|tdmt ≤ sup

Z
|T̂ ′(x)|tmt(Z).

By (14),

sup
Z
g = sup

Z

1
|T̂ ′|t

≤ Kt
0 inf
Z

1
|T̂ ′|t

≤ Kt
0

mt(Z)
mt(X̂)

.

This shows that
∑

Z supZ g ≤ Kt
0 <∞.

Let I ⊃ J be intervals such that T |I is monotone, and let L and R be the
components of I \ J . If I is sufficiently small, T expands the cross ratio if

|T (I)|
|T (L)|

|T (J)|
|T (R)|

≥ |I|
|L|
|J |
|R|

. (15)

This is a consequence of the Koebe Principle. It follows that |T̂ ′|−
1
2 is convex

on each branch and therefore d
dx |T̂

′|−
1
2 = −1

2 T̂
′′|T̂ ′|−

3
2 is nondecreasing.

Hence, each branch domain (aW , bW ) def= W contains at most one point rW
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at which T̂ ′′ changes sign. We get

VarZg ≤ VarW g

=
∫ rW

aW

|T̂ ′′(s)|
|T̂ ′(s)|1+t

ds+
∫ bW

rW

|T̂ ′′(s)|
|T̂ ′(s)|1+t

ds

≤ sup
W

1
|T̂ ′|t

[∣∣∣∣∣log
T̂ ′(rW )
T̂ ′(aW )

∣∣∣∣∣+

∣∣∣∣∣log
T̂ ′(bW )
T̂ ′(rW )

∣∣∣∣∣
]

≤ 2Kt
0 logK0 sup

Z
g.

Therefore

VarX̂g ≤
∑
Z∈Z

VarZg + 2
∑
Z∈Z

sup
Z
g

≤
∑
Z∈Z

2
(
Kt

0 logK0 + 1
)

sup
Z
g ≤ 2Kt

0

(
Kt

0 logK0 + 1
)
<∞.

Thus T̂ is a R-map and it satisfies the assumptions of Proposition 3.1. By
Theorems 3.2 and 2.1, the conclusion follows because the set of X̂ satisfying
the above assumptions have full measure.

In the proof of this theorem we even get that Z is a Markov partition for
the induced map T̂ (in fact, each monotone branch is onto). Note that this
is much better than what is necessary, since R-maps need not to satisfy
this extremely strong topological property. This supports our belief that
this method could be in principle applied to much more general systems,
especially those with singularities.

4.2. Maps with neutral fixed points. Let α ∈ (0, 1) and consider the
map Tα defined on X = [0, 1] by

Tα(x) =
{
x(1 + 2αxα) if x ∈ [0, 1/2),
2x− 1 otherwise.

Let µα denote the invariant measure absolutely continuous with respect
to Lebesgue (see e.g. [26] for the existence and properties). The system
(X,Tα, µα) has exponential return time statistics around cylinders of some
naturally associated partition [20]; Here we prove that this is also true if the
neighborhoods are balls.

Theorem 4.2. For any α ∈ (0, 1) the system ([0, 1], Tα, µα) has exponential
return time statistic.

Proof. Let X̂0
def= (1

2 , 1] and for n ≥ 1

X̂n
def= {x ∈ X : Tn(x) >

1
2

and for k = 0, 1, . . . , n− 1, T k(x) <
1
2
}.

Fix n ≥ 0 and let X̂ = X̂n. Let T̂ : X̂ → X̂ be the first return map to
X̂. We then define a partition of X̂ by Z = {Zp : p = 1, 2, . . . }, where
Zp = {x ∈ X̂ : τ̂X̂(x) = p}. One easily check that Z is a partition into
intervals, and each branch of T̂ : Z → X̂ is monotone and onto. Let m be
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the normalized Lebesgue measure restricted to X̂ and let g(x) = 1/|T̂ ′(x)|
when x ∈ int(Z) for some Z ∈ Z and g(x) = 0 otherwise. In the proof of
Proposition 3.3 in [26] it is proved that for some constant K

sup
x,y∈Z

T̂ ′(x)
T̂ ′(y)

≤ K

for all Z ∈ Z. A straightforward computation shows that

logK ≥

∣∣∣∣∣log
T̂ ′(x)
T̂ ′(y)

∣∣∣∣∣ ≥
∣∣∣∣∣
∫ y

x

T̂ ′′(t)
T̂ ′(t)

dt

∣∣∣∣∣
for all x, y ∈ Z and Z ∈ Z. Since T̂ is increasing and convex on each Z ∈ Z,
we get ∫

Z

|T̂ ′′(t)|
|T̂ ′(t)|2

dt ≤ sup
Z
g logK.

Taking into account that T̂Z = X̂ for any Z ∈ Z, we get

sup
Z
g ≤ K m(Z)

m(T̂ (Z))
≤ Km(Z).

Therefore, since g is C1 in the interior of Z and g|∂Z = 0,

Var g ≤
∑
Z∈Z

∫
Z
|g′(t)|dt+ 2

∑
Z∈Z

sup
Z
g ≤ K(2 + logK) <∞.

Finally, it is obvious that sup g < 1, hence (X̂, T̂ ,m) is an R-map. By
Theorems 3.2 and 2.1 µα-almost all points inside X̂ have exponential return
time statistics, and the conclusion follows since ∪n≥0X̂n has full Lebesgue
measure.

5. Complex quadratic maps

In this section we apply the main framework to certain polynomials on the
Riemann sphere C̄. Every rational map T has a |T ′|t-conformal measure
mt for some t ∈ (0, 2], see Sullivan [43]. If T is hyperbolic on the Julia
set J , then we can take t equal to the Hausdorff dimension of J , and mt is
equivalent to t-dimensional Hausdorff measure. In general however, mt can
be supported on a proper subset of J ; it can even be atomic. This can be
an issue if e.g. T has neutral periodic points.

For our results we assume that the orbit of the critical point does not densely
fill the Julia set, but we do not require a supremum gap as in e.g. [16].

We start with a complex version of R-map and show (analogous to Theo-
rem 3.2) that under some additional conditions they have exponential return
time statistics.

Definition 5.1 (complex Markov maps). Let T : Y → X be a continuous
map, Y ⊂ X open subsets of C̄, and mt(Y ) = 1 where mt is a probability
measure and 0 < t ≤ 2. Let S = X \ Y . We call T a complex Markov map
if the following is true:
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1. There exists a countable family Z of pairwise disjoint open discs such
that ∪Z∈ZZ = Y ;

2. For any Z ∈ Z, T : Z → X is a conformal diffeomorphism (with
T (Z) = X), and with bounded distortion:

sup
Z∈Z

sup
Z

|T ′′|
|T ′|2

<∞; (16)

3. The measure mt is |T ′|t-conformal;
4. The map T is expanding: inf

y∈Y
|T ′(y)| > 1.

5. Let Zk = Z ∨ T−1Z ∨ · · · ∨ T−(k−1)Z is the k-th join of the partition
Z. The domains Z ∈ Zk are uniformly convex-like, by which we mean

sup
k

sup
Z∈Zk

sup
x 6=y∈Z

pZ(x, y)
|x− y|

<∞, (17)

where pZ(x, y) denotes infimum of the lengths of the path in Z con-
necting x and y.

Analogous to Theorem 3.1 one can show that complex Markov maps have
an invariant measure with exponential decay of correlations.

Theorem 5.1. Let T be a complex Markov map as above. There exists an
invariant ergodic probability measure µ equivalent to mt. Moreover (X,T, µ)
is mixing with exponential decay of correlations : There exists C > 0 and
ρ ∈ (0, 1) such that for any f Lipschitz and g ∈ L1

µ∣∣∣∣∫ f · g ◦ Tndµ−
∫
fdµ

∫
gdµ

∣∣∣∣ ≤ C‖f‖Lips‖g‖L1
µ
ρn, (18)

where ‖f‖Lips = sup |f |+ supx 6=y
|f(x)−f(y)|
|x−y| .

Proof. First let us make the following remark. As T is expanding, a straight-
forward calculation shows that (16) implies that

K := sup
n∈N

sup
Z∈Zn

sup
w∈Z

|(Tn)′′|
|(Tn)′|2

<∞

and
∑

Zn∈Zn supZ |(Tn)′|−t < ∞ uniformly in n. Let Pt be the Perron-
Frobenius operator

(Ptf)(z) =
∑

T (y)=z

f(y)
|T ′(y)|t

.
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Let us write ‖f‖s for the seminorm supz 6=z′
|f(z)−f(z′)|
|z−z′| . If ‖f‖Lips < ∞, we

have

‖Pnt f‖s ≤ sup
z,z′∈Y

1
|z − z′|

|Pnt (f)(z)− Pnt (f)(z′)|

≤ sup
z,z′∈Y

1
|z − z′|

{∑
y

|f(y)− f(y′)|
|(Tn)′(y)|t

+

∑
y′

|f(y′)|
∣∣∣∣ 1
|(Tn)′(y)|t

− 1
|(Tn)′(y′)|t

∣∣∣∣


Here we summed over the pairs y, y′ in the same atom Zn ∈ Zn with Tn(y) =
z and Tn(y′) = z′. As T : Z → X is onto for every Z ∈ Z, these pairs are
well-defined. The first term in the above expression is bounded by∑

Zn

sup
y,y′∈Zn

|f(y)− f(y′)|
|y − y′|

1
|(Tn)′(y)|1+t

≤ ‖f‖s‖Pnt 1I‖∞ sup
y∈Y

1
|(Tn)′(y)|

.

Next we use the Mean Value Theorem and (17) to estimate∣∣∣∣ 1
|(Tn)′(y)|t

− 1
|(Tn)′(y′)|t

∣∣∣∣ ≤ K̃ ·
(

1
|(Tn)′(w)|t

)′
|y − y′|

=
K̃|t| |y − y′|
|(Tn)′(w)|t−1

.
|(Tn)′′(w)|
|(Tn)′(w)|2

,

for some w. The constant K̃ is an upper bound in (17). This gives for the
second term

sup
Z∈Z

sup
z,z′∈Z

∑
y′

f(y′)
|z − z′|

∣∣∣∣ 1
|(Tn)′(y)|t

− 1
|(Tn)′(y′)|t

∣∣∣∣
≤ ‖f‖∞

∑
Zn

sup
y,y′∈Zn

1
|y − y′| · |(Tn)′(y)|

∣∣∣∣ 1
|(Tn)′(y)|t

− 1
|(Tn)′(y′)|t

∣∣∣∣
≤ ‖f‖∞

∑
Zn

sup
w∈Zn

K̃|t|
|(Tn)′(w)|t

|(Tn)′′(w)|
|(Tn)′(w)|2

≤ 2KK̃‖f‖∞‖Pnt 1I‖∞.

Let θ = sup |T ′|−1 ∈ (0, 1). Then

‖Pnt f‖s
‖Pnt 1I‖∞

≤ θn‖f‖s + 2KK̃‖f‖∞.

Obviously ‖Pnt f‖∞ ≤ ‖f‖∞‖Pn1I‖∞. Therefore also

‖Pnt f‖Lips
‖Pnt 1I‖∞

≤ θn‖f‖Lips + (2KK̃ + 1)‖f‖∞.

By construction ‖Pnt 1I‖∞ =
∑

Z∈Z supZ
1

|(Tn)′|t < ∞ uniformly in n. This
allows us to use the Tulcea-Ionescu & Marinescu theorem, which shows that
Pt is a quasicompact operator. Since each branch is onto, 1 is a simple
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eigenvalue with Lipschitz eigenvector h > 0, and is the unique eigenvalue on
the unit circle. Consequently, for any Lipschitz function f we have

‖Pnt (fh)− h
∫
fdµ‖Lips ≤ C0‖fh‖Lipsρn,

for some C0 > 0 and ρ ∈ (0, 1). It follows that the correlations between
Lipschitz functions f and L1

µ functions decays exponentially fast: if g ∈ L1
µ

we find∣∣∣∣∫ f · g ◦ Tndµ−
∫
fdµ

∫
gdµ

∣∣∣∣ =
∣∣∣∣∫ (Pnt (fh)− h

∫
fdµ) · gdmt

∣∣∣∣
≤ ‖Pnt (fh)− h

∫
fdµ‖∞

∫
|g|dmt

≤ C‖f‖Lips‖g‖L1
µ
ρn,

for C = C0‖h‖Lips‖1/h‖∞.

Theorem 5.2. Any complex Markov map T as defined above with |T ′|t-
conformal measure mt for some t > 1 admits an invariant mixing measure
µ equivalent to mt with exponential return time statistics around balls.

The proof of Theorem 5.2 is similar to that of Theorem 3.2. The additional
difficulty is that the decay of correlation is given for Lipschitz function and
not characteristic function of balls. The usual way to overcome this problem
is to approximate balls by an union of small cylinders. This is the object
of the next lemmas. Note that if we restrict ourselves to cylinder sets, then
the theorem is valid for all t > 0.

As before, let Zk = Z ∨ T−1Z ∨ · · · ∨ T−k+1Z denote the k-dynamical
partition and Bk the σ-algebra generated by Zk.
Lemma 5.1. Let T be a complex Markov map. There exists some constants
Γ and γ > 0 such that for any set A ∈ Bk and Borel set B we have∣∣∣µ(A ∩ T−n−kB)− µ(A)µ(B)

∣∣∣ ≤ Γµ(A)µ(B) exp(−γn). (19)

Proof. We can rewrite (19) as∣∣∣∣∫ h−1 · P kt (h1IA) · 1IB ◦ Tndµ− µ(A)µ(B)
∣∣∣∣ ≤ Γµ(A)µ(B) exp(−γn).

where h = dµ
dmt

is Lipschitz and bounded away from below (see [46]), and
Pt is the Perron-Frobenius operator as defined in the previous proof. Recall
also that K def= supk∈N supZ∈Zk supZ

|(Tk)′′|
|(Tk)′|2 < ∞. Since T k : A → X is

one-to-one and onto when A ∈ Zk, the above facts imply that

sup
k∈N

sup
A∈Zk

‖h−1P kt (h1IA)‖Lips
µ(A)

<∞.

The lemma follows now from (18) in Theorem 5.1 by taking f = P kt (1IA)/µ(A)
and g = µ(A)1IA.

Given S ⊂ C we denote by Bk(S) the smallest element of the σ-algebra Bk
containing S ∩ J .
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Lemma 5.2. There exists α > 0 such that for any z ∈ Y , r > 0 and k > 0
we have

µ (Bk(Ur(z)) ∩ Bk(Ur(z)c)) ≤ exp(−αk), (20)

where Ur(z) denotes the ball of radius r about the point z.

Proof. Let us assume for simplicity that diam(Y ) ≤ 1. We denote by intJS
the interior of a subset S ⊂ J in the induced topology. Since T is expanding,
there exists a ∈ (0, 1) such that diam(Z) < ak for any Z ∈ Zk and integer
k. By the Markov property, the bounded distortion and the conformality of
the map T we can find some constant c > 0 such that the following property
holds: For any integer k and cylinder Z ∈ Zk there exists pZ ∈ intJZ and
rZ > c · diam(Z) such that UrZ (pZ) ∩ intJZ ′ = ∅ for any Z 6= Z ′ ∈ Zk
different from Z. Given Z 6= Z ′ ∈ Zk, we have d(pZ , pZ′) > max(rZ , rZ′); in
particular, UrZ/2(pZ) ∩ Ur′Z/2(pZ′) = ∅.

Let x ∈ Y , r > 0 and consider the following partition

P = {Z ∈ Zk : Z ⊂ Bk(Ur(z))}.

Let Pn = {Z ∈ P : an < diam(Z) ≤ an−1}. Any Z ∈ Pn is a subset of the
annulus Sn(z, r) def= Ur+an(z)\Ur−an(z). Thus there exists card(Pn) disjoint
balls or radius at least an/2 inside Sn(z, r). Since the area of Sn(z, r) is
equal to 4πran when an ≤ r we get

card(Pn) ≤ 4πran

c2a2n/4
=

8π
c2
ra−n ≤ 8π

c2
a−n.

Obviously when an > r we also have card(Pn) ≤ 8π
c2
≤ 8π

c2
a−n.

Since the measure mt is |T ′|t-conformal and the map itself is conformal and
Markov we have for some constant c1, mt(Z) < c1diam(Z)t for any Z ∈ Zk
for some k. The previous inequalities imply (observe that Pn = ∅ if n ≤ k
and recall that t > 1)

µ(
⋃
Z∈P

Z) =
∑
n>k

µ
( ⋃
Z∈Pn

Z
)

≤
∑
n>k

max{µ(Z) : Z ∈ Pn} · card(Pn)

≤
∑
n>k

c1a
−tatn

8π
c2
a−n

=
8πc1

(a− at)c2
a(t−1)k.

Taking α ∈ (0, (1− t) log a) sufficiently small gives the result.

Proof of Theorem 5.2. The proof closely follows the one of Theorem 3.2, we
use the same notation aN and bN . Let U = Ur(z) and k,N ∈ N to be chosen
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later on. By Lemma 5.1 and Lemma 5.2

aN (U) ≤
N∑

n=τ(U)

1
µ(U)

µ(Bn(U) ∩ T−nU)

≤ (1 + Γ)
N∑

n=τ(U)

µ(Bn(U))

≤ 1 + Γ
1− exp(−α)

[Nµ(U) + exp(−ατ(U))] .

Similarly, we get by Lemmas 5.1 and (twice) Lemma 5.2

bN (U) ≤ Γµ(Bk(U)) exp[−γ(N − k)] +
1

µ(U)
µ(Bk(U) ∩ Bk(U c))

≤ Γ exp[−γ(N − k)] +
1

µ(U)
(Γ exp[−αk − γ(N − k)] + exp[−αk]) ,

for all k ≤ N . Taking k = − 2
α logµ(U) and N = 2k gives

bN (U) ≤ Γµ(U)
2γ
α + Γµ(U)1+ 2γ

α + µ(U).

For all non periodic points z 6∈ ∪k∈N∂Zk we have τ(Ur(z)) → ∞, which
implies c(Ur(z))→ 0 as r → 0. Since this concerns µ-almost all points in J ,
the theorem is proved.

We will apply these results to quadratic maps on C. Induced systems have
been used before for rational maps, notably by Aaronson et al. [1]. They
consider parabolic rational maps (i.e. rational maps whose Julia sets contain
no critical point but rationally indifferent periodic points), and establish the
existence of an invariant measure µ� mt, wheremt is a t-conformal measure
with t = HD(J). Moreover, µ is finite if and only if t ·minp

a(p)+1
a(p) > 2. Here

the minimum is taken over all parabolic points p and a(p) is such that
T q(z) = z + α(z − p)a(p) + . . . for the appropriate iterate q. It follows that
µ is finite only if t > 1, which is the hypothesis in Theorem 5.2. It is to
be expected therefore that parabolic rational maps with a finite invariant
measure µ� mt have exponential return time statistics on balls.

Theorem 5.3. Let T (z) = z2 + c be a quadratic map on C such that T
is not infinitely renormalizable (see discussion below) and its Julia set J
contains no Cremer points. Suppose that also for some t > 1

• J supports a non-atomic |T ′|t-conformal measure mt,
• mt(orb(Crit)) = 0, and
• T preserves a probability measure µ equivalent to mt.

Then (supp(µ), T, µ) has exponential return time statistics on disks.

The Hausdorff dimension of the Julia set HD(J) > 1 for each parameter c
in the Mandelbrot set M (see Zdunik, [51]); the two exceptions c = 2 and
c = 0 are easy real one-dimensional cases. So assuming that these parameter
values allow a t-conformal measure with t = HD(J), the condition t > 1 is



20 H. BRUIN, B. SAUSSOL, S. TROUBETZKOY, AND S. VAIENTI

no restriction. By continuity, there are many parameters close to M that
give t > 1 as well.

Note that we allow T to have parabolic points or Siegel disks. The map T
is called renormalizable if there exist open disks W0 and W1, 0 ∈W0 ⊂W1,
such that Tn : W0 → W1 is a two-fold covering map for some n ≥ 2 and
T in(0) ∈ W1 for all i ≥ 1. If there are infinitely many integers n such
that this is possible, T is infinitely renormalizable. We assume that T is
not infinitely renormalizable and has no Cremer point to be able to use
Yoccoz’ puzzle construction. In particular the result that for each z ∈ J ,
the puzzle pieces Pn(z) containing z shrink to z as n→∞ is important. For
an exposition of Yoccoz’ puzzles and the proof of these statements we refer
to [31].

Yoccoz’ results have been extended to certain infinitely renormalizable poly-
nomials by Lyubich and Levin & van Strien, [27, 24]. For reasons of sim-
plicity, we have not tried to extend Theorem 5.3 to these cases; we prefer to
work with a single set of initial puzzle pieces P0. Prado [37] has shown that
in all of the above cases, the conformal measure mt is ergodic.

Proof. Let z ∈ supp(µ) \ orb(Crit) be arbitrary, and let U ⊃ V 3 z be open
disks such that U ∩ orb(Crit) = ∅ and V is compactly contained in U . Let
log δ = mod(U \ V ) > 0 be the modulus of U \ V . Assume also that V is
convex-like in the sense that supx 6=y∈V pV (x, y)/|x− y| <∞, where pV is as
in (17).

The strategy is to find a subset X̂ of V such that Tn(∂X̂) ∩ X̂ = ∅ for all
n ≥ 0, and then we can invoke Theorem 5.2.

If J is a Cantor set, we can assume that ∂V is contained in the Fatou set F ,
which is the basin of∞ in this case. Moreover, there are no neutral or stable
periodic orbits. Thus each point in F , in particular ∂V , converges to ∞. It
follows that Tn(∂V ) intersects V for at most finitely many n ≥ 0. Let X̂ be
the component of V \∪n≥0T

n(∂V ) containing z. Then Tn(∂X̂)∩ X̂ = ∅ for
all n ≥ 0 as required. Since X̂ consists of the intersection and difference of
at most finitely many, convex-like disks, we find supx 6=y∈X̂ pX̂(x, y)/|x−y| ≤
C(X̂) <∞.

Assume now that J is connected and by Yoccoz’ results also locally con-
nected. Let Fi, i ≥ 0, be the periodic components of the Fatou set, with
F0 the basin of ∞. Since T is a polynomial (with exceptional point ∞),
J = ∂F0. There are only finitely many such components, and by Sullivan’s
Theorem (see e.g. [44]), every z′ ∈ F is eventually mapped into ∪iFi. We
construct a special forward invariant subset G of ∪iFi.

1. Consider the renormalization Tn : W0 → W1 of the highest possible
period n. (If T is not renormalizable, then we just take T : C → C.)
It is known that W1 contains an n-periodic point p with at least two
external rays, say A0 and A′0. The existence of such external rays
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(and the arcs Ai defined later on) is guaranteed by results initiated by
Douady, see [35] and references therein.) Let G0 = {z ∈ C; |z| > 10}.

2. If Fi, i ≥ 1, contains a stable periodic point, let Gi be a disk compactly
contained in Fi such that T per(Fi)(Gi) ⊂ Gi and orb(Crit ∩ Fi) ⊂
Gi. There is at least one per(Fi)-periodic point pi in the boundary of
Fi. Let Ai be a smooth compact arc connecting pi and Gi such that
T per(Fi)(Ai) ⊂ Ai∪Gi. Since pi ∈ ∂F0, there is also an external ray A′i
landing at pi.

3. If Fi contains a parabolic point pi in its boundary such that each z ∈ Fi
converges to pi, let Gi ⊂ Fi be a disk such that T per(Fi)(Gi) ⊂ Gi,
orb(Crit)∩Fi ⊂ Gi, and ∂Gi∩∂Fi = {pi}. Let A′i ⊂ F0 be an external
ray landing at pi.

Let

G =
⋃
i≥0

(Gi ∪ {pi} ∪Ai ∪A′i).

Then G is connected, and for some N ∈ N, ∪Nj=1T
jG is forward invariant.

We start a Yoccoz puzzle construction by putting, for n ≥ 0,

Pn = {components of C̄ \ T−nG}

For each n ≥ 1, T maps any element of of Pn into an element of Pn−1.
Using the arguments in [31], one can show that the diameters of the elements
Y ∈ Pi tend to 0 as i→∞, unless Y eventually intersects a Siegel disk.

We can assume that the point z /∈ ∪nT−n(G). Moreover, since orb(Crit)
densely fills the boundary of any Siegel disk, and mt(orb(Crit)) = 0, we can
assume that z does not lie on the boundary of a Siegel disk. Find n so large
that the element Y of Pn containing z is contained in V . Let X̂ = V ∩ Y .
Then Tn(∂X̂) ∩ X̂ = ∅ for all n ≥ 0. Note also that Tn(Y ) is bounded by
finitely many smooth curves of ∂Gi, Ai and A′i. At worst these curves end in
a logarithmic spiral, namely as they approach the hyperbolic periodic points
pi. Therefore also Tn(X̂) is convex-like, and obviously simply connected. It
follows that supx6=y∈X̂ pX̂(x, y)/|x− y| ≤ C(X̂) <∞.

The rest of the argument works for both J locally connected and J a Cantor
set. Let T̂ : X̂ → X̂ be the first return map to X̂. Then T̂ is defined on a
countable collection Z of disks Z. The modulus mod(U \ X̂) ≥ log δ, and
for each branch T̂ = T τ : Z → X̂ there exists a disk Z ′ ⊃ Z such that T τ

maps Z ′ univalently onto U . It follows from the Koebe 1
4 -Theorem (e.g. [8,

Theorem 1.4]) that the distortion of T̂ |Z is uniformly bounded:

sup
x,y∈Z

|T̂ ′(x)|
|T̂ ′(y)|

≤ K = K(δ) (21)

More precisely, take x ∈ Z and let [x, y] ⊂ Z be a straight arc containing x
such that T̂ ′′/T̂ ′ varies little on A. Then

|T̂ ′′(x)|
|T̂ ′(x)|

≤ 2
|y − x|

∣∣∣∣∣
∫ y

x

T̂ ′′(u)
T̂ (u)

du

∣∣∣∣∣ ≤ 2
|y − x|

log
|T̂ ′(y)|
|T̂ (x)|

.
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To estimate this, let B be the maximal round disk centered at x contained
in Z ′. Let δ0 be the radius of B; we have δ0|T̂ ′(x)| = O(δ). Define f(w) =
T̂ (x+δ0w)−T̂ (x)

δ0T̂ ′(x)
. Then f is a univalent map on the unit disk with f ′(0) = 1.

By Theorem 1.6. of [8], we obtain

|T̂ ′(y)|
|T̂ ′(x)|2

=
1

|T̂ ′(x)|
log
|f ′( |y−x|δ0

)|
|f ′(0)|

≤ 1
|T̂ ′(x)|

[
log(1 +

|y − x|
δ0

)− 3 log(1− |y − x|
δ0

)
]

≤ 5|y − x|
δ0|T̂ ′(x)|

,

provided y is close to x. Therefore |T̂
′′(x)|

|T̂ ′(x)|2
≤ 10

δ0|T̂ ′(x)|
, proving that

sup
Z∈Z

sup
Z

|T̂ ′′|
|T̂ ′|2

<∞. (22)

The distortion bound K(δ) applies by the same argument also to iterates
T̂n of the induced map. Therefore each domain Z ∈ Zn is not much less
convex than X̂:

sup
k

sup
Z∈Zk

sup
x 6=y∈Z

pZ(x, y)
|x− y|

≤ C

for some C = C(δ, X̂) <∞.

We can also assume that V and hence X̂ is so small that inf∪Z |T̂ ′(x)| > 1.
Thus T̂ is hyperbolic. Recall that mt is the |T ′|t-conformal measure of T .
As T̂ is a first return map, it is straightforward to show that m̂t = mt

mt(X̂)

is a |T̂ ′|t-conformal map for T̂ . In fact, m̂t can also be constructed using
Sullivan’s techniques [43]. Now we can invoke Theorem 5.2 with the invariant
measure µ̂ = 1

µ(X̂)
µ.
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MAM, Féderation de Recherche des Unites de Mathematiques de Marseille,

CNRS Luminy, Case 907, F-13288 Marseille Cedex 9, France

E-mail address: serge@cpt.univ-mrs.fr

E-mail address: troubetz@iml.univ-mrs.fr

URL: http://iml.univ-mrs.fr/~troubetz/
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