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Abstract. Abadi and Saussol (2011) have proved that the first time a dy-

namical system, starting from its equilibrium measure, hits a target set A has
approximately an exponential law. These results holds for systems satisfying

the α-mixing condition with rate function α decreasing to zero at any rate.
The parameter of the exponential law is the product λ(A)µ(A), where the

later is the measure of the set A; only bounds for λ(A) were given. In this

note we prove that, if the rate function α decreases algebraically and if the
target set is a sequence of nested cylinders sets An(x) around a point x, then

λ(An) converges to one for almost every point x. As a byproduct, we obtain

the corresponding result for return times.

1. Introduction

In the statistical analysis of Poincaré’s Recurrence, a major effort was done in the
last two decades to determine the behavior of several quantities in the evolution of
a stochastic processes and/or measure preserving dynamical system. For instance,
the time τA elapsed until a fixed target set A is observed, called the hitting time,
the above quantity but observed in the restricted space A, called return time and
the subsequent returns, the return time to the first now randomly generated set, the
number of visits to both, a fixed or random set in a given interval. For references
of results and methodologies we mention the three review papers [7, 3, 13] and
references therein.

This paper is the natural complement of the author’s previous one [4], in which
the problem of the approximation of the hitting time distribution of a general
sequence of target sets An, n ∈ N was addressed. The technique used there was the
one introduced by Galves and Schmitt in [12]. This technique provides results that
apply to limiting exponential law for hitting time distribution along sequence of
cylinder sets nested around every point of the phase space, in contrast with other
techniques that allow to prove results which hold only for almost every point.

At this level of generality the parameter of the exponential law must be re-scaled
not just by the measure of the target set µ(A), but an extra factor of existentialist
kind λ(A), related to some specific quantile of the hitting time distribution, must
be added. That is

µ(τA > t) ≈ e−λ(A)µ(A)t .

The motivation for these notes is to shed some light on the behavior of the re-
scaling factor λ(A). In our previous paper only some bounds for λ(A) where given.
Here we prove that this parameter converges to one almost surely for α-mixing
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systems with rate function α decreasing to zero, at least, at an algebraic rate. Our
results holds for sequences of cylinder sets nested around a given point x. This is
done in section 2.

We recall the reader’s attention to a recent paper by Abadi, Cardeño and Gallo
[2] where it is described the spectrum of values of this parameter in the whole
phase space for positive recurrent renewal processes. The authors prove that, in
that case, the parameter λ(A) represents the probability the process has to escape
the set A soonly after having entered A. This was first proved for particular n-
cylinders in exponential α-mixing systems in [1] and later on for φ-mixing systems
in [5]. Specifically λ(A) is determined by the first possible return to A, which for
n-cylinders, is typically of order n [6, 16] and of course, for cylinders around a
periodic point, is given by the period. This makes easy to compute in practice
λ(A), since it depends on very short values of the time scale. It is not known if this
is possible in more general settings like the α-mixing case.

What can be interpreted about λ(A) is that it is a clustering factor. It determines
if, once the process hits the set A, if either this hit will appear isolated or if there
will be a cluster or clumps1 of occurrences of A. This can be deduced by the result
by Haydn et al. [14] and then extended by Abadi and Saussol in [4] where the return
time distribution is determined by the hitting time one (or vice-versa). Thus, under
the α-mixing condition and applying the result in the later article we get that the
return time distribution verifies

µA(τA > t) ≈ λ(A) e−λ(A)µ(A)t .

Thus, we also show here that for almost every point, the return time distribution
actually behaves typically like e−µ(A)t.

To bring also some more information in the case of non typical cylinders (in the
sense of Ornstein-Weiss’s theorem), we prove also a number of general properties
for λ(A). In section 2 we give to λ(A) not an existentialistic expression (as was
done in our previous paper [4]) but rather a constructivist one. It shows that λ(A)
may depend on values of the time scale smaller than the inverse of the measure
of A but they could be also very large, which may render its explicit computation
difficult. Therefore, some more information is needed.

In Section 3 we show that, given an escape time m (not so large), λ(A) has the
same order than the escape probability µA(τA > m) times λ(A′), where A′ is the
portion of A that does not return before the escape time. Namely A′ = {A ∩ τA >
m}. This automatically says that λ(A) is asymptotically bounded by µA(τA > m).
This is of particular interest for using with a small value of m. In particular one
may take m equal to the period of a periodic point x when A is the n-cylinder
around it, say T (A). Thus, we generalize the results on [1, 5, 2] where under more
restrictive conditions, it was proved that |λ(An)−µA(τA > T (A))| → 0 for A = An,
n-cylinder nested around a point x, for any x. This shows that in particular that
our upper bound is sharp.

Part of the argument of this result relies on a fact that we also prove which is in-
teresting by itself: the hitting time distributions of A and A′ are close to each other
whenever m is not so large. This idea already appeared in the context of extreme

1In the literature, the words clustering and clumping are both used to refer to observations that
appear in groups. Cluster is more used in the extreme Value Theory. Clump is used in Poisson

analysis of such observations. See for instance Aldous, D. (1989.) ”Probability Approximations
via the Poisson Clumping Heuristic”, Applied Mathematical Sciences, 7, Springer.
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value theory in [9] (see Proposition 1 and Theorem 1) and in [11] (see Proposi-
tion 2.7), where the extremal index is shown to characterize also the clustering of
maxima in a stochastic process.

We recall that the connection between hitting/return time laws and Extreme
Value Theory was already well studied. Besides the two aforementioned papers,
[8] establishes some links between the two subjects in the context of non-uniformly
hyperbolic systems in the case of generic points. Furthermore, [10] does the same
in the case of periodic points, considering the extremal index as a quantification
of the clustering properties around a periodic point the process has. So that the
extremal index plays a similar role to the one that the the clustering factor plays
in our case.

We also prove a lower an upper bound for λ(A). Following [2] we show that it can
be well approximated by the arithmetic mean of escape time probabilities. These
escape times range between two appropriate explicit scales. Since the escape rate
are monotonic on the scale values, we obtain upper and lower bounds as functions
of the endpoint of this scale. Typically, the smaller endpoint is larger or equal than
the first possible return to A and the bigger one is much smaller that µ(A)−1.

In Section 4 we consider systems with an appropriate decay of the mixing func-
tion α. Under this condition, we show what is the precise scale that must be taken
for m in order to have λ(A) replaced by the escape probability.

2. Result

Let A be a finite or countable set and let Σ = AN be the set of sequences. We
endow Σ with the shift map T . Given non negative integers m ≤ n and a point
x ∈ Σ we denote by [xm . . . xn] the cylinder of rank (m,n) containing x, that is

[xm . . . xn] := {y ∈ Σ: ym = xm, . . . , yn = xn}.
Axn = [x1 . . . xn] denotes the n-cylinder about x. We denote by Fnm the σ-algebra
generated by the collection of cylinders of rank (m,n). Let F be the σ-algebra
generated by the Fnm’s and µ be a T -invariant probability measure on (Σ,F). Let

α(g) = sup
m,n

sup
A∈Fn

0 ,B∈F
m+g
n+g

|µ(A ∩B)− µ(A)µ(B)|

for any integer g. We assume that the system (Σ, T, µ) is α-mixing, that is α(g)→ 0
as g →∞. We say that the rate of α-mixing is algebraic if for some p > 0 one has

(1) lim
n→∞

α(n)np = 0 .

Let A ∈ Σ be a measurable set. We define the hitting time to A by

τA(x) = inf{k ≥ 1: T kx ∈ A}, x ∈ Σ.

We are interested in the distribution of the hitting time τA on the probability space
(Σ, µ), and the return time, defined with the same formula but on the probability
space (A,µA) where µA denotes the conditional measure on A.

We recall the following result valid for any α-mixing system

Theorem 1 (Theorem 1 and Example 3 in [4]). For any sequence An ∈ Fn0 such
that µ(An) > 0 and µ(τAn ≤ n) → 0 there exists a normalizing constant λ(An)
such that

(2) sup
k∈N
|µ(τAn > k)− exp(−kλ(An)µ(An))| → 0
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as n→∞. Specializing to cylinders we get that for any x ∈ X

(3) sup
k∈N

∣∣µ(τAx
n
> k)− exp(−kλ(Axn)µ(Axn))

∣∣→ 0.

Theorem 2. If the rate of α-mixing is algebraic the exponential law for return and
hitting time holds, with parameter one, for typical cylinders.

Proof. Indeed we prove that for µ-a.e. x the normalizing constant λ(Axn) in Theo-
rem 1 can be chosen so that it converges to one as n → ∞. To do this, instead of
using the parameter s given by [4, Lemma 10], we define it constructively and then
do the proof of [4, Theorem 8] with it.

Let h be the entropy of the process. Let p > 0 be such that (1) holds.
Take a < h such that (1 + p)a > h and choose ε > 0 so small that a+ ε < h and

−(1 + p)a+ h+ (3p+ 1)ε < 0. Let b = a− 3ε.
Let us fix some x such that the (7) in Lemma 4 holds and such that for n

sufficiently large

e−n(h+ε) ≤ µ(Axn) ≤ e−n(h−ε).
Let Nn = benbc and Sn = benac. We claim that as n→∞,

(4) µ(τAx
n
≤ Sn)→ 0 and

µ(τAx
n
≤ 2Nn) + α(Nn)

µ(τAx
n
≤ Sn − 2Nn)

→ 0.

The first statement is simply because by invariance one has

µ(τAx
n
≤ Sn) ≤ Snµ(Axn) ≤ enae−n(h−ε) → 0.

For the second statement, the numerator is bounded above by

µ(τAx
n
≤ 2Nn) + α(Nn) ≤ 2ebne−n(h−ε) + (ebn − 1)−p

while for the denominator is bounded from below by

µ(τAx
n
≤ Sn − 2Nn) =

Sn−2Nn∑
j=1

µ(Axn)µAx
n
(τAx

n
≥ j)

≥ (Sn − 2Nn)µ(Axn)µAx
n
(τAx

n
≥ Sn − 2Nn)

≥ 1

2
(ean − 2ebn)e−n(h+ε)

where in the last expression we used (7).
Following the proof of [4, Theorem 8], with s replaced by Sn, n replaced by

Nn (observe that Axn ∈ F
Nn−1
0 since Nn ≥ n) and the constant λ(Axn) defined

accordingly by

λ(Axn) = −
logµ(τAx

n
≥ Sn − 2Nn)

Snµ(Axn)

we get that

(5) sup
k∈N

∣∣∣µ(τAx
n
> k)− e−λ(A

x
n)µ(A

x
n)k
∣∣∣→ 0

as n→∞.
It remains to show that λ(Axn)→ 1 as n→∞. Since µ(τAx

n
≤ Sn − 2Nn)→ 0 it

suffices to show that
µ(τAx

n
≤ Sn − 2Nn)

Snµ(Axn)
→ 1.
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Using previous computations we get the double inequality

(6) µAx
n
(τAx

n
≥ Sn − 2Nn)

Sn − 2Nn
Sn

≤
µ(τAx

n
≤ Sn − 2Nn)

Snµ(Axn)
≤ Sn − 2Nn

Sn

and the conclusion follows by our choice of Sn and Nn and (7). �

Remark 3. The speed of convergence to zero in (5) is exponentially small in n.
Indeed, it is directly related to the speed of convergence in (4) (See the proof of [4,
Theorem 8]) which is clearly exponential.

Recall that h > 0 is the entropy of the system.

Lemma 4. Let a < h. For µ-a.e. x we have

(7) lim
n→∞

µAx
n
(τAx

n
≤ ean) = 0.

Proof. By Ornstein-Weiss theorem about the repetition time Rn, we have

lim
n→∞

1

n
logRn = h µ− a.e.

Consider for some integer n0 the set Y (n0) = {x ∈ X : ∀n ≥ n0, Rn(x) > ean}.
Let X(n0) ⊂ Y (n0) be the set of Lebesgue density points of Y (n0), that is for any
x ∈ X(n0)

lim
n→∞

µAx
n
(Y (n0)) = 1.

Whenever y ∈ Axn we have Rn(y) = τAx
n
(y), therefore

Axn ∩ {τAx
n
≤ ean} ⊂ Y (n0)c

as soon as n ≥ n0. Thus, the conclusion holds for any x ∈ X(n0). By Lebesgue
density theorem, this set has the same measure as Y (n0). The latter, taking n0
arbitrarily large, has a measure arbitrarily close to one. �

3. Presence of cluster

Given a measurable set A with µ(A) > 0 and an integer m we can define a
coefficient related to the probability of escape from A before time m:

(8) θm(A) := µA(τA > m).

Proposition 5. Let (An) be a sequence of sets An ∈ Fn0 such that µ(τAn
≤ n)→ 0.

Let (mn) be a sequence of integers mn ≤ n. Then the scaling factors satisfy the
relation

λ(An) ∼ θmn(An)λ(An ∩ {τAn > mn}).
In particular we have the estimate

lim sup
n

λ(An)

θmn(An)
≤ 1.

Proof. Since An ∈ Fn0 and µ(τAn ≤ n) → 0, by Theorem 1 there exists a factor
λ(An) such that

sup
k
|µ(τAn

≤ k)− 1 + e−kλ(An)µ(An)| → 0 .

Let us write for simplicity A′n = An \ {τAn
≤ mn}. Since A′n ∈ F2n

0 and

µ(τA′
n
≤ 2n) ≤ µ(τAn

≤ 2n) ≤ 2µ(τAn
≤ n)→ 0,
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by Theorem 1 there exists λ(A′n) such that lim supλ(A′n) ≤ 1 and

sup
k
|µ(τA′

n
≤ k)− 1 + e−kλ(A

′
n)µ(A

′
n)| → 0.

By definition of θmn
(An) we have

µ(A′n) = µ(An ∩ {τAn > mn}) = θmn(An)µ(An)

from which follows

sup
k
|µ(τA′

n
≤ k)− 1− e−kλ(A

′
n)θmn (An)µ(An)| → 0.

We now show that the distributions of τAn and τA′
n

are close. We first claim that

Uk = {τAn ≤ k} \ {τA′
n
≤ k} ⊂ T−k{τAn ≤ mn}.

Indeed, if x ∈ Uk then there exists j1 ≤ k such that T j1x ∈ An \ A′n. Hence
τAn(T j1x) ≤ mn. Hence there exists j2 > j1, j2 − j1 ≤ mn such that T j2x ∈ An.
If j2 ≤ k then T j2x 6∈ A′n, hence one can construct j3, ... At the end there exists
jr−1 ≤ k < jr ≤ k +mn such that T jrx ∈ An, proving the claim. This gives that

sup
k
|µ(τA′

n
≤ k)− µ(τAn

≤ k)| ≤ µ(τAn
≤ mn)→ 0.

Combining this estimate with the previous one, taking k ≈ 1/(λ(A′n)θmn
(An)µ(An)),

we get

exp(− λ(An)

θmn
(An)λ(A′n)

)− exp(−1)→ 0

which proves the first assertion. The conclusion follows since lim supn λ(A′n) ≤
1. �

We now specialize to sequence of cylinder sets. Denote the period of the cylinder
Axn by

τ(Axn) = inf{τAx
n
(y) : y ∈ Axn}

and the potential well by

ρ(Axn) = µAx
n
(τAx

n
> τ(Axn)) = θτ(Ax

n)
(Axn).

Corollary 6. For any x we have λ(Axn) ≤ (1 + o(1))ρ(Axn).

We emphasize that this formula is sharp for the binary renewal stochastic process
[2]. In particular this holds for the Markov chain model of the Pommeau-Manneville
intermittent map.

Let now

θ̄(Axn) =

Sn−2Nn∑
Nn

µAx
n
(τAx

n
> j)

be the mean escape time between Nn and Sn − 2Nn (we avoid the dependence on
Nn and Sn to simplify notation). The next proposition shows that λ(Axn) can be
replaced by the arithmetic mean of the escape times of some neighborhood smaller
that the inverse of µ(Axn).

Proposition 7. Suppose the rate of α-mixing is algebraic. For every x

λ(Axn)

θ̄(Axn)
− 1→ 0 .
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Proof. The proof is identical to that of Theorem 3.1 in [2] changing both T (Axn)
and n by Nn, and s by Sn, as we did here in Theorem 2. Actually we only need to
show the approximation between λ(Axn) and λ3(Axn) there defined. By stationarity
θ̄(Axn) = λ3(Axn). To get our result we only need, with these choices of Nn and Sn,
to show that µ(τAx

n
≤ Sn) → 0 and µ(τAx

n
≤ Nn)/µ(τAx

n
≤ Sn − 2Nn) → 0. These

two conditions were proved right after (4). �

Observe in the definition of θ̄(Axn) that µAx
n
(τAx

n
> j) are decreasing. Therefore

we get that there exists (εn) such that

(1− εn)θNn
≤ λ(Axn) ≤ (1 + εn)θSn−2Nn

.

4. Estimation of the clustering factor

In principle the clustering factor λ appears only for macroscopic times, of the
order µ(Axn)−1. For example from (2) we get that λ(Axn) ≈ − logµ(τAx

n
> µ(Axn)−1).

The result below shows that when the mixing is sufficiently fast, the factor λ can
be computed with the distribution of return times of much smaller orders. This
could be of practical interest when one wants to estimate the clustering factor for
the occurrence of a rare event A, since it suffices to know the distribution of return
times until a time of order much less than the inverse of the probability of the
event A.

Proposition 8. We suppose that α(n) = O(1/nβ) for some β > 1. Let γ∗ =
1− 1/β > 0. For any γ ∈ (0, γ∗) we have

λ(Axn)− µAx
n
(τAx

n
> µ(Axn)−1+γ)→ 0.

We recall here again the connection between the extremal index of the maxima
distribution which also measure the amount of clustering and our clustering factor
for hitting times. Consider for instance the paper [15] about Extreme Value Theory.
Specifically, in formula (1.2), the exponent of the approximating law of the maxima
distribution resembles µAx

n
(τAx

n
> µ(Axn)−1). This is because both parameters

measure the probability the process has to run along the complement of the starting
set.

Proof. Let A ∈ Fn0 , m, q integers and set A′ = A∩{τA > m}. Note that {τA′ ≤ m}
is the disjoint union T−i(A′) for i = 1, . . . ,m, therefore µ(τA′ ≤ m) = mµ(A′). We
have by Poincaré inequality

µ(τA′ ≤ mq) = µ(

q−1⋃
i=0

T−im{τA′ ≤ m})

≥
q−1∑
i=0

µ(τA′ ≤ m)−
∑
i 6=j

µ(T−im{τA′ ≤ m} ∩ T−jm{τA′ ≤ m}).

The first term is equal to mqµ(A′) and we will find some conditions which ensure
that this is the leading term. The contribution of each couple (i, j) such that
|i− j| > 2 is

µ(T−im{τA′ ≤ m} ∩ T−jm{τA′ ≤ m}) ≤ (mµ(A′))2 + α(m− n)).

Their total contribution is thus bounded by

(9) m2q2µ(A′)2 + q2α(m− n)
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[rem: one could get
∑q
i=1 α(im − k) instead of qα(m − n)]. The contribution of

each couple (i, j) such that |i− j| = s = 1, 2 is

µ({τA′ ≤ m} ∩ T−sm{τA′ ≤ m}).

This event implies an entrance in A at a time r = 1, . . . ,m, followed by an entrance
in A′ at a time ≥ r +m, which has measure bounded by

m∑
r=1

µ(T−r(A ∩ {τA′ ≤ m})) ≤ m(µ(A)µ(τA′ ≤ m) + α(m− n)) .

Therefore the contribution of these couples is bounded by

(10) 2mqµ(A′)mµ(A) + 2mqα(m− n).

We now apply this with a cylinder An and choose the parametersm = mn, q = qn
such that the conditions mnµ(An) → 0, α(mn − n) = o(µ(A′n)) and qn ≤ mn are
satisfied2. We suppose for the moment that θmn(An) is bounded from below.

This gives by (9) and (10) that

(11) µ(τA′
n
≤ pn) ∼ pnµ(A′n),

for any integers pn ≤ mnqn (it follows directly when pn = mnqn and by a convexity
argument it has to be true for any smaller integer). Now we take Sn = mnqn and
Nn = mn + n and proceed as in the proof of Theorem 2, but with the sets A′n.
Using (11) we see that if qn →∞ sufficiently slowly then we have

(12) µ(τA′
n
≤ Sn)→ 0 and

µ(τA′
n
≤ 2Nn) + α(Nn)

µ(τA′
n
≤ Sn − 2Nn)

→ 0.

Finally, by (6) again we get that

µ(τA′
n
≤ Sn − 2Nn)

Snµ(A′n)
→ 1,

proving that λ(A′n) → 1. The first assertion of Proposition 5 (applied with Nn
instead of n) then gives

λ(An) ∼ θmn
(An).

We emphasize that if we only have a subsequence for which θmn
(An) is bounded

from below then the equivalence above is still true for that subsequence.
To finish, we remark that if θmn(An)→ 0 along a subsequence, it follows imme-

diately from the second assertion of Proposition 5 that also λ(An)→ 0 along that
subsequence. �
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2This is possible since if θmn (An) ≥ a > 0, then µ(A′n) ≥ aµ(An) so pn = µ(An)−1+γ is fine.
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