RECURRENCE RATES AND HITTING-TIME DISTRIBUTIONS FOR
RANDOM WALKS ON THE LINE

FRANCOISE PENE, BENOIT SAUSSOL AND ROLAND ZWEIMULLER

ABsTRACT. We consider random walks on the line given by a sequence of independent iden-
tically distributed jumps belonging to the strict domain of attraction of a stable distribution,
and first determine the almost sure exponential divergence rate, as € — 0, of the return time to
(—e,e). We then refine this result by establishing a limit theorem for the hitting-time distribu-
tions of (x — e,z + ¢) with arbitrary « € R.

1. INTRODUCTION AND RESULTS

We consider a recurrent random walk on R, Sy := 0 and S, := X1+ .-+ X,,, n > 1, where
the X; are i.i.d. random variables on (€2, F,P) such that 1% converges, for positive real numbers
Ay, in distribution to a stable random variable X with index . Necessarily (due to recurrence),
a € [1,2], and the sequence (A;),>1 is regularly varying of index é, satisfying >, <4 Ain = 0.

To capture the speed at which recurrence appears, it is possible to specify, for such a walk,
some deterministic sequences (€,) such that S, € (—¢&,,ey) infinitely often, or S, & (—en,en)
eventually, almost surely. This classical question was addressed, for example, in [7] and [5], the
results of which have recently been extended in [6].

Here, we are going to study the number of steps it takes to return to some small neighborhood
of the origin (or to hit a different small interval for the first time). For related work on random
walks in the plane, intimately related to the e = 1 case of the present paper, we refer to [12].

As an additional standing assumption on our walk, we will always require the distribution of
the jumps X; to satisfy the Cramer condition

lim sup |E[eX1]] < 1. (1)

[t| =00

This readily implies, in particular, that the event Q* := {S,, # 0 Vn > 1} has positive probability,
and Q* has probability one if and only if no individual path returning to the origin has positive
probability.

As a warm-up we first determine the a.s. rate at which the variables
T.:=min{n>1 : |S,|<e}, >0,
diverge on Q* as ¢ — 0. Let 3 € [2,00] be the exponent conjugate to a, that is, o=t + 371 = 1.

Theorem 1. In the present setup,

. log T, o %
gl_r}% log e =—fF as. on €. (2)
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Our main objective then is to determine the precise order of magnitude, and to study the as-
ymptotic distributional behaviour, as e — 0, of the more general hitting times of e-neighbourhoods
of arbitrary given points z on the line. We shall, in fact, do so for the walk S}, := Sj+ S, n > 0,
with random initial position S, independent of (S, ),>0 and having an arbitrary fixed distribu-
tion P on R. For any x € R we thus let

T? :=inf{m >1 : |S], —z| <e}
and QF := {S], # x Vn > 1}. Outside Q% we clearly have lim._,o T? = min{m >1 : S|, = z}.
It is convenient to state the results in terms of, and work with, the strictly increasing continuous
function G : [0, +00) — [0, +00) with G(0) = 0 which affinely interpolates the values G(n) =
pya A%c’ n > 1. We denote by G~ its inverse function. Evidently, G(n) = o(n). Moreover, by

the direct half of Karamata’s theorem (cf. Propositions 1.5.8 and 1.5.9a of [2]), G is regularly
varying with index %, and satisfies
n n G(n)

o o(G(n)) if « =1, while o

in case o € (1,2]. (3)

We establish a result on convergence in distribution for ¢ G(T?) conditioned on 2} (while
e G(T%) — 0 outside this set). In the case a = 1, the limit distribution is the same as for square
integrable random walk on the plane, cf. [12]. Recall that X has a density fx. For simplicity
we set v := 2fx(0) P(2%).
Theorem 2. Assume that o =1, and fix any x € R. Conditioned on %, the variables € G(TY)

converge in law,

t
.[[l z < * = — .
;LOP(’Y“;(Ia)fﬂQx) Tt Vit >0

For o € (1, 2], different limits distributions arise, and we obtain convergence in law of T? to
the %-stable subordinator at an independent exponential time:

Theorem 3. Assume that « € (1,2], and fix any x € R. Conditioned on U, the variables
e G(TZ) converge in law,

: L\~ z " 1

lim P (r<ﬂ> 5EG(T <t ‘ Qm> = Pr (ggljg < t) Vt >0,

or, equivalently,

: 1\7\’? T¢ | _
2 F <<F<ﬁ>ﬁ) aTfe) = ‘9> =Py <t) w0

where € and Gy,3 are independent random variables, Pr(€ > t) = et, and G1/ having the

one-sided stable law of index % with Laplace transform E[e_sgl/ﬁ] = 6_51/5, s> 0.

In particular, we have:

Corollary 1. If (Xy)n>1 is an i.i.d. sequence of centered random variables with variance 1,
satisfying the Cramer condition, and © € R, then

£
1 * T < *) = — <
lim P<2P(Qz)s Tz _t’Qx) Pr<|N| _t> Wt > 0,

or, equivalently,

£\?
. *\2 _2 T ) <
lim P (4P(Q})* *T <t | Q) Pr<<|m> _t) vt > 0,
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where £ and N are independent variables, N having a standard Gaussian distribution N(0,1).

As Cheliotis does in [6], we will use the following extension of Stone’s local limit theorem [13].

Proposition 1. Let 6 be such that lim supy_ |E[e?X1]| < @ < 1, and let ¢ > 1. Then there
exist a real number hg > 0 and an integer ng > 1 such that, for any n > ng, for any interval 1
contained in [—hg, hol, of length larger than 6™, we have

(O] < P (j e I) < efx (O)]1].

2. ALMOST SURE CONVERGENCE : PROOF OF THEOREM 1

Proof of Theorem 1. To begin with, choose 0, ¢, and hgy as in Proposition 1.

To first establish an estimate from below, we fix any ¢ > 1 and set &, := G(n)~¢. This makes
the series }, P(|S,| < e,) summable: Indeed, by regular variation and (3), we have = > 6"

for n large, while
_ _ n !
€n :O<G(n) G(n 1)> :0( (t) dt))

Ay G(n —1)% n_1 G(t)¢
L. ) > G'(t) G(iﬁ)l_S o . —e, €
— . —=n =n —
which is summable since /1 Glt)E dt = [ ¢ ]1 < oo. In particular, ( A, 4n) C [~ho, ho]

for large n. Proposition 1 therefore applies to these intervals, and shows that P(|S,| < &,) =
O(F~) is summable as well. Hence, by the Borel-Cantelli lemma, P(|S,| < & i0.) = 0.
Since €, \, 0, we can conclude that T, > n eventually, almost surely on Q*, and we get

log G(Tey) % a.s. on Q. Using monotonicity of log G(T:) and the fact that

—logen -
En+1 ~ Ep, this extends from the &, to the full limit as ¢ — 0, and since £ > 1 was arbitrary, we
conclude that

lim inf,,— o

lim inf 7log G(T:)

> 8. "
A0 L v >1 as.onf (4)

To control the corresponding lim sup, we now fix any ¢ € (0,1). From Proposition 1, using
intervals (==, §~) and regular variation of (A,),>1, we see that there exists a constant ¢’ > 0
such that for every € € (0,1) there is some m. satisfying

de
P(|Sk| <e) > —  for k > m..

Ay
More precisely, the dependence of m. on e comes from the requirement 2e/A4; > 6% for k > m,
on the length of intervals, which is met by taking m. := k(—loge) with a suitable constant

k > 0. Next, choose integers n. in such a way that G(n.) < eE < G(ne + 1). Inspired
by a decomposition used by Dvoretski and Erdos [8], we consider the pairwise disjoint events
Ef ={|Sk| <eandVj =k+1,...,nc:|S; —Sk| > 2}, 1 <k < n.. By independence and
stationarity we have

n n n
€ € € 1
/
1> kzgm P(E;) > k:Em P(|Sk| < €)P(Ta: > ne — k) > e P(Ta: > ne) kzgm i

Combining this with G(m.) = o(G(n.)) (note that G(m.) is slowly varying), we obtain

P<G(T25) > 5_%) < P(G(TQE) > G(né)) = P(T% > na) < ce (G(na)l_ G(ms)) - 61/
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=

2 _
Therefore, if we let €, := p 7-¢, p > 1 the Borel-Cantelli lemma implies G(Ta,) < &p°
G(Tae . -
% < % Using monotonicity as
before, we can extend this from the €, to the full limit ¢ — 0, and since this is true for any
€ € (0,1), we obtain

eventually almost surely, showing that limsup, .|

1 T
lim sup log G(T<) <1 as. on{. (5)
=0 —log(e)
To conclude the proof, we note that for any o € [1,2] we have
iy 108G 17
n—oo logmn I}

which follows readily from regular variation of G (compare Fact 2 in [6]). Together with (4) and
(5), this entails

. logT. ) logT. logG(T,)
lim = lim .
e—0 —loge =0 logG(T.) —loge

=03 a.s. on Q¥

as required. O

The first argument can easily be adapted to prove the lower bound (4) also for T? with x # 0.

3. CONVERGENCE IN DISTRIBUTION FOR AUXILIARY PROCESSES

We need to introduce auxiliary processes. Let (M§).>0 be a family of random variables,
independent of (Sy,)n>0, such that M§ has uniform distribution on the interval (—¢,¢). For each
e > 0 we define the walk (Mg),>0 with random initial position M§, that is, MS := M§ + S,,.

A major step towards Theorems 2 and 3 will be to prove a version which applies to the variables
Te :=min{n > 1: [M;| <e}, €>0.

That is, we are interested in the limiting behaviour, as € — 0, of the first return time distribution
of the walk (MF),>0 to the interval (—¢,e). The goal of the present section is to establish

Theorem 4. Assume that o = 1. Conditioned on ¥, the variables € G(1:) converge in law,

t
. < s _ _t .
ili% P(ve G(1:) <t ]QF) 11 vVt >0 (6)
Theorem 5. Assume that o € (1,2]. Conditioned on Q¥*, the variables € G(1.) converge in law,
. 1\~ . 1/6
I < = < .
lim P<F<ﬁ>ﬁ cG(r) <t Q> Pr (591/5 _t) vt >0 (7)

FEquivalently,

. 1 Y A Te * _ B
g%uv((r(ﬂ)ﬂ) Wgt’ﬁ)ﬁ(ﬁ Giyp<t) V>0,

Again we start with considerations valid for any « € [1,2]. To begin with, we define, for ¢ > 0,
R > 0, and integers K > 0, auxiliary events

FE,R,K = {Wzl,...,K:Si;éOand ‘Mﬂ SR},

which asymptotically exhaust Q*, and on which we can work conveniently. As ¢ — 0 we have
P(F&R?K) — P(FR,K) and P(FE,R,K \ Q*) — P(FR,K \ Q*), where FR,K = {VZ = 1, . .,K 0 <
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|Si| < R} (except, perhaps, for a countable set of R’s which we are going to avoid). Let n € N.
Using again a decomposition similar to that of Dvoretski and Erdos in [8], we find, for € € (0, %),

n n
P(Teri) =Y Py =D i (8)
k=0 k=0

with pi =pf, _p i =PCerr N{IM;| <e+22 and VW =Fk+1,...,n:|Mj| > e+ 2?}) for
1<k<n,and p5 = pén@R’K =P rrx N{Vl=1,...,n: |M;| > e+ 2e?}). The following
estimates are the basis of the argument to follow.

Lemma 1. For arbitrary R, K, and 0 < v < 2fx(0) < «", there is some &1 such that for
0<e<ep and ne >m. > (loge)?,

Ne
P(Te i) > P > no) + PCerr)ye Y P(re > ne — k)
’ ’ ’ ) Ak:

k=mc
K

— P(Ie,r x)87'€%(G(ne) — G(m2)) — B(({|IM;| > R}),
=1

and

Ne

P(Terri) <P(r: > ne) + P(Ter i)Y 'e Z

k=m.

+P(Te 1 )87 (G(ne) — G(me)) + P(Q* N {73 < me}).

P(1: > n. — k)

4 T PTeri \ Q")

Proof. For the course of this proof, we simplify notations by suppressing the parameters ¢, R,

and K in m., n., Mf, and T g rc. We will apply (8) with n = n.. Also, let v := £2.

70
(i) Starting with the & = 0 term, we see that
pg 2PIN{Vl=1,...,n:|My| >¢}) >P(I'N{7. > n}).

We now consider the case where m < k <n. Let A:= (20vZ)N(—e+3v,e —3v). Notice that the
sets Qq := (a — v,a + v) with a € A are disjoint and contained in (—¢ + 2v,& — 2v). Therefore
the kth term in equation (8) satisfies

Py =Y PON{M,€Qaand V¥l =k+1,...,n: |M)>e—2v})

acA

EZP(FQ{MkEQa andVl=k+1,....,n:|S,— Sk +al] >e—vr}) 9)
acA

=) PON{Mp € Qu})P(V=1,....n—k:|S;+a| >c—v)
acA

by independence (where we assume that ¢ is so small that (loge)* > K). Note that

PN {My € Qu}) = P(Sk—r € Qu — zK) dP(ary,...00) (T05 - - - TK),

/[Vi:wﬁéxoyﬂﬁiKR}
with dP(py,,... m,) denoting the distribution of (Mo, ..., Mk). Now fix 6 as in Proposition 1,
and ¢ € (0,1) such that v/ < 2fx(0)/c. Elementary considerations (based on our condition on
m = m,) show that Proposition 1 applies to I = ﬁ(@a —xg) if € is sufficiently small, and in

this case gives

P(D N {M; € Qa}) > P(N) LY. (10)
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Using this, plus the observation that conditioning on {My € Q,} amounts to looking at M} :=
M§ 4+ Sp, n > 0, with M{ uniformly distributed on @),, we can continue to estimate, for small ¢,

WZP voon—k:|Si+a| >e—v})
aGA
WZP V=1, n— kM > e} | (Mo € Qu))
aGA
ZP (V0=1,...,n—k:|My|>e}n{M e Qa}) (11)
aGA
>p(r)15( (Ve=1,....n—k:|M)| >e)—Ple — v < |My| <))
k
P 2LE (P(r. > 1 — k) — 80).

Ay,

Putting together these estimates via Equation (8) gives

T5>n

P(T'N{r. >n}) +P(I)ye Z Ple>n-k) < P(T) + P(I"8Yev(G(n) — G(m)).

Since I'* N {7. > n} C U2:1{|M1] > R} for € so small that n = n. > K, this proves the first
assertion of the lemma.

(ii) We only provide a sketch of the proof of the second point since the arguments are very
similar to the above. Using Equation (8) gives

PI) <PTN{r>n})+PT\ Q) +PQ" N {m. <m})+ Xn: Py

k=m

since Y pt pi < P(I'N {m3: < m}). Next, take A = (2vZ) N (—¢ — 3v,e + 3v) and intervals
Qo :=[a —v,a+ V], a € A, which cover (—e — 2v, e + 2v). We can then use arguments parallel
to those of part (i) to obtain

Zp;<ZZPFm{MkeQaandw_kz+1 n: |My| >e+2v)})

= k=mac A

P(re >n—k
<BO)ye Y TR psyen(Gn) — Glm)),
Ak
k=m

which proves our claim. O

Suitable choice of the n. then enables us to derive an asymptotic bound for the tails of the
distributions of the eG(r;) as ¢ — 0.

Lemma 2. For all a € [1,2] and any t > 0 we have

li P(~neG >1) < .
i sup (veG(7e) > 1) < T+1

Proof. Fix t, R, K, and 0 < o/ < 2fx(0). For ¢ > 0 we take m. := (loge)* and choose n. so
that G(n.) < % < G(ne +1), whence P(eyG(7:) > t) ~ P(7= > n.). As in the proof of Theorem
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1 we see that G(m.) = o(G(n¢)). Therefore

P(r. > ng -k t
€ Z Plre > ne — k) > e(G(ng) — G(me))P(1e > ng) ~ 5 P(7. > ne). (12)
k=me.
Together with the first part of Lemma 1, this yields
P(T Pl <i< K :|S; -1
limsup P(evG(r:) > t) < (Cr.) + P _,Z — |9 > R —1)
e—0 1+ t%P(FRjK)

)

since 87/3(G(n.) — G(me)) — 0.

Taking successively R — oo, then K — oo, and finally 4/ — 2fx(0), we obtain the lemma. [

When o = 1, this upper bound actually is the limit:
Lemma 3. If a =1, then for any t > 0 we have
P(Q*)
1+t

lim iélfP(’Y&‘G(Ta) >t) >

Proof. Fix t, R, K, and " > 2fx(0), and choose m. and n. as in the previous proof. Similar to
that situation we have P(T'z g x)8Y"e3(G(n:) — G(m:)) — 0, and, as a consequence of Theorem
1, also P(2* N {73 < m.}) — 0.

Since aw = 1 means that G is slowly varying, we have G(2n.) — G(n.) = o(G(n.)). Hence

2n
X Pl > 2n. — k
P(TE > 2”5) =+ P(Fa,R,K)'Y”g Z (Ta e )

k=mc¢ Ak
> P(r, > n e
<P(re > ne) + PTopp)ye | Y, — 3 + > Ak (13)
k=me¢ k=nc

< P(1e > ne) + P(Te g k)Y"'eG(ne)[P(7e > ne) + o(1)]

<P(r. >n.) + t%P(I‘QR,K)P(Te > n.) + o(1).

Combining these observations with the second estimate of Lemma 1 (replacing n. by 2n.) entails

PCrx) —PTrx \ Q")

liminf P(7. > ne) >

e—0 1+ t’y P(FR K)
We conclude by successively taking R — oo, K — oo, and 7/ — 2fx(0). O
Proof of Theorem 4. Immediate from Lemmas 2 and 3, as eG(7.) — 0 outside Q*. O

When a € (1,2], Lemma 1 does not yet give the limit distribution. Still, it immediately
implies the tightness of the family of distributions with the normalisation given there:

Lemma 4. The family of distributions of the random variables eG(7:), € € (0,1), is tight.

Hence it will be enough to prove that the advertised limit law is the only possible accumulation
point of our distributions. We henceforth abbreviate

7o = % eG(r.), &> 0.
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Lemma 5. Suppose that o € (1,2]. Let (ep)p>1 be a positive sequence with limy .o e, = 0,
and such that the conditional distributions of the Z., on {0* converge to the law of some random
variable Y. Then its tail satisfies the integral equation

UPr(Y > t(1 —u)?
1:Pr(Y>t)+t/ (Y > =07 b v s o
0 U

Proof. (i) We write f(t) := Pr(Y > t), and first prove that

V>0, 1> f(t) +t/1uif(t(1 —w)7) du.
0

Let us only consider € belonging to {€,, p > 1}. Note that by monotonicity and right continuity
of f it suffices to prove the inequality for all ¢ € (0,00) such that, for all N > 1 and all

1
r=20,...,N — 1, the function f is continuous at ¢ (1 - %) 8. Henceforth such a t will be fixed.
Now take some 6 > 0, and choose N5 > 1 such that for all N > N,

1—u1 LR = (r/N))P)
; ((r+1)/N)a

Now fix integers N > Ns, K > 1, and some 0 < 7' < 2fx(0). For £ > 0 small enough take n.
such that G(n.) < % < G(ne + 1) (and hence G(ng) ~ %) Finally, let m. := n./N.
According to the first point of Lemma 1, we have

Ne

P(Te i) > P(Ze > t) + POeri)ye Y

k=m¢

P(r. > n. — k)
Ay,

K
— P(le 1,5)87'€°(G(ne) — G(me)) — P(U{\Mﬂ > R}),

Due to our assumption on the Z., and ¢, we see that P(Z. > t) — P(Q*)f(t) as €, — 0. Next,
by monotonicity,

3 Brezneh), = P > e — k= (rng/N))
k=n. /N A i Al (rne/N)
N—1
r+ 1 T r
> - NT IEE— .
=3 (6 (5t ) =6 (7)) 2 (> (1= 5) )

By regular variation, the first term of the product is asymptotically equivalent to

(5 - ()] 2

as €, — 0. On the other hand, the second term is equal to

p(7><de (1= 5)n)) ~re s (- 1)),

G(ne)
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since G ((1 - %) ne) ~ (1 - )E G(ne). As a consequence, we see that

2\

n _1
T P(re, > ne, — k) Lt 1 N (-5
liminfe, > ——r=—— 2 PS5 ((mNi
el o (14)
1 _ .12
[[D(Q*)E / f(t(l—lu))du_(; '
Y 0 U«

Furthermore, we again have P(I'c g )87'e3(G(n:) — G(m:)) — 0. Moreover, P(UfilﬂMﬂ >
R}) — P(UK,{|Si| > R}). Combining all these asymptotic estimates and taking the limit
ep — 0, we end then up with

) + 2 /t</f A —uy ‘“>du_>

Successively letting R — oo, K — 00, 7' — 2fx(0) and § — 0 we obtain the desired inequality.

P(Tr,x) > P(Q")

K
—P(J{ISil > Rr}).
=1

(i) The converse inequality is proved analogously, using the other half of Lemma 1 and the
fact that P(Q* N {73 < mc}) =o0(1). O

Now let us identify the limit distribution satisfying the equality given by Lemma 5. To this

end we consider the variables
B
7=(1) = __ >
: (ﬂ) G1(1/e) ©

Lemma 6. The conditional distributions of the Z., converge to a random variable Y iff the
conditional distributions of the Zép converge to YP. The latter then satisfies

EPr(YP >t —
1:Pr(Y5>t)+/ ut >1 ”)dv Vi > 0.

0 Va

Proof. The equivalence of the two conditional distributional convergence statements follows from
regular variation of G~1, see e.g. Lemma 1 of [4]. Suppose that they hold. Then, according to
Lemma 5, for any ¢t > 0, we have

1 B _
1 Pr(Y t(1
1= Pr(yﬁ > 1) —|—té / r( > 1( u)) du,
0 U
and the conclusion follows by a change of variables, v = tu. O

Lemma 7. Let W be a random variable with values in [0,00) satisfying

EPr(W >t —
Pr(W <t) = / PriW>t=0) 4 v s, (15)
0 Vo
Then
1
E [e‘sw} =—— Vs>0,
1 —|—cﬁsﬁ

with cg 1= F( ) . In particular, the distribution of W coincides with that of cﬁgﬁgl , where the

independent vamables E and Q% are as in the statement of Theorem 3.
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Proof. Let s > 0. We have

400 400 1 +o0
E[eV] = / Pr(e™*W > u)du = / Pr (W < - ogs(u)> du = / Pr (W <w)se * dv.
0 0 0

Hence, for any s > 0, we find

+oo v P > —
E[e—sW] :/ |:/ I“(W _121 w) dw] se” 5V dw
0 0

wa

oo q +oo
— / — [/ Pr(W > v —w)se* dv] dw
0 W w

+00 e~ Sw +oo
= / - {/ Pr(W > z)se™** dz] dw
0 a 0

w «
too ,—sw +o0
:/ — [1 —/ Pr(W < z)se™** dz] dw
0 W 0
too p—sw L
= —dw- [1-E[e"]],
0 we

and our claim about the Laplace transform of W follows since

+o0o ,—sw +o0o 1 1
/ C dw= ﬁl e dz = - with cg:=
0

1
wa 55 Jo csP I'(

}
Given this, a routine calculation (cf. XIII.11.10 of [9]) shows that W indeed has the same Laplace
transform as cgé’ﬁ g % . O

@

Proof of Theorem 5. According to Lemma 4 the family of distributions of the Z., ¢ € (0, 1), is
tight. By Lemma 5, Lemma 6 and Lemma 7, the law of cg 591%3 is the only possible accumulation
point of these distributions. O

4. CONVERGENCE IN DISTRIBUTION FOR T%?

To complete the proof of Theorems 2 and 3 we now utilize Theorems 4 and 5. Note first that
it suffices to prove Theorems 2 and 3 under the additional assumption that S = 0, in which case

T =T :=inf{n > 1:(S, — 2| <&} and Qf = QO :={S, # z Vn}.
Indeed, in the situation of Theorem 2, with arbitrary distribution P of Sj;, we then have

t

POeGr <0 = [ T

P(reGEz ) <) drw) — [ B(9,) P

R R

by the P = 9y case of Theorem 2 and dominated convergence. Analogously for Theorem 3.
Therefore, for the remainder of this section we assume that S = 0.

Next, we observe that our key lemma (Lemma 1) can be adapted as follows. Let I'}, - be the
event defined by

R ={Vi=1,...,K: 8 #rand [S;] < R}.
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Lemma 8. For arbitrary R, K, and 0 < ~' < 2fx(0) < ~", there is some €1 > 0 such that for
0<e<ep and ne > me > (loge)?,

Ne IP) _ k
B(T) > B(TE > na) + BT o)/ S o= h)
bl , Ak

k=m.

K
— P(T'f, )87'e*(G(ne) — G(me)) = P({ISi] > R}),
=1

and
- - - P >ne — k . .
P(Th i) < P(TZ > n.) +P(T g )y'e Z <EA:) +P(TR  \ Q)
k=m¢

+ P(I'} 1)87"e%(G(ne) — G(me)) + P( N {Ts. < m.}).

Proof of Lemma 8. We have the following analogue of formula (8),

Ne Ne
PR k)= by~ = 0i™, (16)
k=0 k=0
with
pot =PI e NV =1, e |Sp — x| > e +£262))
and

pi’i = P(T'% x N {|S — | <ex2®and VW =k+1,...,n.:|S— x| >e+2?}).
We follow the proof of Lemma 1.

(i) Observe first that
Py = BT N {TE > n.}).
Now consider indices with m, < k < n.. With the same set A as in the proof of Lemma 1, we
find, arguing as in (9), that
py > ZP(F%’KH{Sk—x €EQuand Vl=Fk+1,...,n.: |Sg— x| >e—2v})
acA
> PThxN{Sh—2€Qu}) P(VL=1,....nc —k:|Sp+a| >e—v).
acA
A proof parallel to that of (10) shows that
z x YV
Pk x N{Sk — 7 € Qa}) > P( R,K)Tk

if € is sufficiently small. Therefore,

/
_ v
poT > P %K)%ZP(W: 1,...one—k:|Se+a| >e—v})
k acA
A
> P(I'z k) (P(7e > ne — k) —8v),
) Ak
where the second step uses an estimate contained in (11). Continuing as in the proof of Lemma
1, we obtain the first assertion of our lemma.

(#) Similar adaptations give the second assertion of the lemma. g

We can now complete the proofs of our main distributional limit theorems:
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Proof of Theorem 2. We go back to Lemmas 2 and 3, observing that we already have (6) at our
disposal. Take t € (0,00), R, K > 1, and 7/ < 2fx(0) < 4”. For € > 0 let m. := (loge)* and
choose ng, such that G(n.) < % < G(ne + 1), meaning that P(eyG(T%) > t) ~ P(TZ > n,).

In view of (6), the estimate (12) of Lemma 2 becomes

. NPl >ne—k) _ P(QY) t
liminfe ) > .
minf € A, > o

e—0
k=m.

Combining this with the first part of Lemma 8 leads to

! t
limsup P(T7 > ne) < P(I'y ) <1 7 > +PEI<i<K:|S]|>R-1).

e—0 C2fx(0) 1+t
Successively letting R — oo, then K — oo, and finally v/ — 2fx(0), we obtain
i P2
llr?jélp P(TY > n.) < 1(—|—xt)'

To get the corresponding lower bound, recall that P(Q* N {T5, < m.}) — 0 by Theorem 1.
Parallel to (13) we have

2ne

P(T? > 2n.) + P(Th )7 Y

k=me.

]P) 2 _ i
= e 5 < p(1z > n) +’%P( ki )B(7e > 1) +o(1).
k

Together with the second part of Lemma 8 (with n. replaced by 2n.) and (6), this implies
P(Q)
lim inf P(T? > 77
I P(TE > ne) 2 777
completing the proof. O

Proof of Theorem 3. We fix t € (0,00), and choose n. such that G(n.) < % < G(ne+1).

According to the proof of Theorem 5 (see, in particular, (14) in Lemma 5), we know that for
me with m. = o(n.),

] CN Pl >ne— k) P(QY)
= > =
;1_{%8 A 5 Pr(Y > t) =4,

k=m¢

where Y =T'(5)” is the limiting random variable of the v8~ " eG(7:). erefore, if we
here Y r;lgg}//g'hl"' d iable of the v3~ G Therefore, if

take m. := (loge)?, then Lemma 8 implies that for R, K > 1 and 7/ < 2fx(0) < ",

K
limsup P(T? > n.) < BT, ) (1 — 7') + P (U{rsw > R})

e—0 i—1

and

lim inf P(TE > n.) = BT x0) (1= 7"0) =P (Tr \ 2).
e— ’

Since Hmg . joo imp oo P(T% 1) = P(Q) and limp oo limp_. o0 B (Ufi A1Si] > R}) — 0,
we get
P(Q%) (1 —+"¢) < lim i(l]lf P(TZ > n.) <limsupP(T? > n.) < P(Q) (1 — %),
e—

e—0
and hence
lim B(T? > n2) = B(3) (1 - 2fx (0)4) = B(Q%) Pr(Y > 1),
£—

as required. O
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Proof of Corollary 1. This is an a = 2 case with A, = y/n and fx(0) = \/% Recalling that

Gi/2 = gxz in distribution (cf. XIIL3.b of [9]) proves our claim. O
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