Schouten curvature functions on conformally flat manifolds

Udo Simon (joint work with Z. Hu and H. Li)

Roscoff, July 2008

Notation

Conn. Riem. mfd. (M, g), dim. $n \ge 3$, Ric Ricci, κ normed scalar curvature

Schouten tensor and Schouten curvature

 $S := \frac{1}{n-2}(Ric - \frac{n}{2} \kappa \cdot g)$ Schouten tensor the g-associated operator S is selfadjoint and has eigenvalues k_i ; their elementary symmetric function $\sigma_i(S)$ of order j is the Schouten curvature function of order j:

Theorem 1.

 (M^n, g) compact loc. conf. flat mfd., $\sigma_k(S) = const > 0$ for some $k \in \{2, \dots, n\}$; if S is semi-pos. def., then (M^n, g) is a space form of pos. sect. curvature.

Theorem 2.

 (M^n, g) compact loc. conf. flat mfd., $\sigma_2(S_g) = const > 0$ and $Ric \ge 0$; then: $\mathbf{n} = \mathbf{3} : (M^n, g)$ is a space form $\mathbf{n} \ge \mathbf{4} : (M^n, g)$ is either a space form or is $\mathbb{S}^1 \times N^{n-1}$ with N a space form.

Theorem 3 (Isometric Classification)

 (M^n, g) complete loc. conf. flat mfd., $\kappa = const$, $Ric \ge 0$ then the univ. cover (\tilde{M}^n, \tilde{g}) of (M^n, g) is isometric to $\mathbb{S}^n(c)$, \mathbb{R}^n or $\mathbb{R} \times \mathbb{S}^{n-1}(c)$.

Wew give applications to complete centroaffine Tchebychev hypersurfaces. They are affine spheres or conformally flat.