Polyharmonic maps in the critical dimension

Andreas GASTEL

Friedrich-Alexander Universität

Polyharmonic maps $u : M \to N$ between Riemannian manifolds can be defined as critical points of the *m*-polyenergy $E_m(u) := \int_M |D^m u|^2$. Depending on whether we read $D^m u$ as the covariant derivative with respect to N or as the full derivative with respect to some Euclidean space in which N is embedded, we speak of "intrinsically" or "extrinsically" polyharmonic maps. They satisfy a higher order elliptic PDE system with critical nonlinearities. In the special case $M = \mathbb{R}^{2m} \to N$, the polyenergy E_m coincides with a conformally invariant "Paneitz energy" $\int_M \langle P_{2m} u, u \rangle$ where P_{2m} denotes the 2*m*-th order Paneitz-type operator.

We establish smoothness (away from the boundary) of weakly polyharmonic maps $\mathbb{R}^{2m} \supseteq \Omega \to N$ in the critical dimension 2m (joint work with Christoph Scheven). Moreover, for the extrinsic case and dim M = 2m, the heat flow admits eternal solutions with finitely many singular times.