The Continuous Time Nonzero-sum Dynkin Game and Applications.

S. Hamadène

Univ. du Maine, Le Mans (Fr.)

J. Zhang

Univ. South California, L.A. (USA)

The Third Colloquim on Dynamical Games, Differential Games, Roscoff (Fr.), November 24-26, 2008.

Outlines

- 1. Introduction
- 2. The state of the art
- 3. The main result
- 4. Application in game options.

1. Introduction

- $(\Omega, \mathcal{F}, (F_t)_{t \leq T}, P)$ is a filtered probability space with $(F_t)_{t \leq T}$ complete and right continuous; T is the horizon of the problem.
- Two players a_1 and a_2 act on a system up to the time when one of them decides to stop controlling, at a stopping time τ_1 (resp. τ_2) for a_1 (resp. a_2).
- The reward for a_1 (resp. a_2) is given by $J_1(\tau_1,\tau_2)\stackrel{\triangle}{=} E\Big\{X^1_{\tau_1}1_{\{\tau_1\leq\tau_2\}}+Y^1_{\tau_2}1_{\{\tau_2<\tau_1\}}\Big\}$ (resp.

$$J_2(\tau_1, \tau_2) \stackrel{\triangle}{=} E \left\{ X_{\tau_2}^2 \mathbf{1}_{\{\tau_2 < \tau_1\}} + Y_{\tau_1}^2 \mathbf{1}_{\{\tau_1 \le \tau_2\}} \right\}).$$

<u>Definition</u>: A pair (τ_1^*, τ_2^*) of F_t -stopping times is called a Nash equilibrium point for the NZSDG if it satisfies: $\forall \tau_1, \tau_2 \in \mathcal{T}_0$,

$$J_1(\tau_1, \tau_2^*) \leq J_1(\tau_1^*, \tau_2^*)$$

and

$$J_2(\tau_1^*, \tau_2) \leq J_2(\tau_1^*, \tau_2^*).$$

<u>Particular case</u>: $J_1 + J_2 = 0$ corresponds to the zero-sum Dunkin game and a NEP for the game is just a saddle point for the ZSDG. It satisfies: $\forall \tau_1, \tau_2$,

$$J_1(\tau_1^*, \tau_2) \le J_1(\tau_1^*, \tau_2^*) \le J_1(\tau_1, \tau_2^*).$$

2. Known Results

A. PDE approach (Bens.-Fried., 77)

Assume:

- $\zeta := (\zeta_t)_{t \leq T}$ is a solution of a standard differential equation whose generator is \mathcal{A}
- $X_t^i=\varphi^i(t,\zeta_t)$ and $Y^i=\psi^i(t,\zeta_t)$ where ψ^i and φ^i deterministic functions
- **[H1]**: $X^i \le Y^i$
- [H2]: $\underline{Y^i}$ supermartingales.

Theorem: There exist two deterministic continuous bounded functions $u^1(t,x)$ and $u^2(t,x)$ solution of the following system:

$$\begin{cases} u^{i}(T,x) = \psi^{i}(T,x); \\ u^{i} \geq \varphi^{i}; \\ if \ u^{j}(t,x) = \varphi^{j}(t,x) \ \text{for} \ j \neq i \\ \text{and some} \ (t,x), \ \text{then} \ u^{i}(t,x) = \psi^{i}(t,x); \\ if \ \Sigma^{i} = \{(t,x), u^{j}(t,x) > \varphi^{j}(t,x) \ \text{for} \ j \neq i\}, \\ \text{then} \ \mathcal{A}u^{i}(t,x) \geq 0 \ \text{for} \ (t,x) \in \Sigma^{i}; \\ (u^{i} - \varphi^{i}).\mathcal{A}u^{i}(t,x) = 0 \ \text{in} \ \Sigma^{i} \end{cases}$$

$$(1)$$

and the following pair of stopping times,

 $\hat{\tau}_i = \inf\{s \geq 0, u^i(s, \zeta_s) = \varphi^i(s, \zeta_s)\} \land T; i = 1, 2$ is a NEP for the NZSDG.

B. The probabilistic approach (Etourn., 86)

Theorem: The processes are general and satisfy [H1]-[H2]. Then the NZSDG has a NEP.

The proof uses the notion of <u>Snell envelope</u> of processes which is the following:

Let U be an RCLL adapted stochastic process. The Snell envelope of U, denoted by R(U), is the smallest \mathcal{F}_t -supermartingale which dominates U, i.e, if \bar{W} is another RCLL supermartingale such that $\bar{W}_t \geq U_t$ for all $0 \leq t \leq T$, then $\bar{W}_t > W_t$ for any 0 < t < T.

It satisfies the following properties:

(i) For any \mathbf{F} -stopping time θ we have:

$$W_{\theta} = \operatorname*{esssup}_{\tau \geq \theta} E[U_{\tau} | \mathcal{F}_{\theta}] \ P - a.s.(W_{T} = U_{T});$$

(ii) Assume that U has only positive jumps. Then the stopping time

$$\tau^* \stackrel{\triangle}{=} \inf\{s \ge 0, W_s = U_s\} \wedge T$$

is optimal, i.e.,

$$E[W_0] = E[W_{\tau^*}] = E[U_{\tau^*}] = \sup_{\tau \in \mathcal{T}_0} E[U_{\tau}].$$

As a by-product we have $W_{\tau^*}=U_{\tau^*}$ and the process W is a martingale on the time interval $[0,\tau^*]$.

The main idea of Etourneau's proof is:

Let \mathcal{E}_1 (resp. \mathcal{E}_2) be the set of RCLL adapted processes V^1 (resp. V^2) such that $X^1 \leq V^1 \leq Y^1$ (resp. $X^2 \leq V^2 \leq Y^2$).

For
$$(i,j)=(1,2)$$
 and for $V^j\in\mathcal{E}_j$
$$D_j=\inf\{s\geq 0, V^j_s=X^j_s\}\wedge T$$

and

$$f_i(V^j) = R(X^i \mathbf{1}_{[[0,D_i[[} + Y^i \mathbf{1}_{[[D_i,T]]}).$$

Then [H2] makes that:

(i) f_i is a map from \mathcal{E}_j to \mathcal{E}_i ,

(ii)
$$f_i(V^j) = R(V^j) \mathbf{1}_{[[0,D_j[[+Y^i\mathbf{1}_{[D_j,T]]}$$

Therefore the mappings $f_1 o f_2$ and $f_2 o f_1$ have fixed points W^1 and W^2 which provide a NEP for the NZSDG whoce expression is:

$$\tau^1 = \inf\{s \ge 0, W_s^1 = X_s^1\} \wedge T$$

and

$$\tau^2 = \inf\{s \ge 0, W_s^2 = X_s^2\} \wedge T.$$

3. The main result: without [H2].

Theorem: Assume:

- [H1] i.e.
$$X^1 \leq Y^1$$
 and $X^2 \leq Y^2$

- for any stopping time au,

$$P[\{X_{\tau}^{1} < Y_{\tau}^{1}\} - \{X_{\tau}^{2} < Y_{\tau}^{2}\}] = 0$$

(assumption which is satisfied if $X^2 < Y^2$).

- $X_T^1 = Y_T^1$ (technical and can be removed).

Then the NZSDG has a NEP (τ_1^*, τ_2^*) .

Sketch of the proof:

Let $\tau_1=T$ and $\tau_2=T$. For $n=1,\cdots$, assume τ_{2n-1} and τ_{2n} defined, we then define τ_{2n+1} and τ_{2n+2} as: Let

$$W_t^{2n+1} = \operatorname*{esssup}_{\tau \geq t} E[X_{\tau}^1 1_{\{\tau < \tau_{2n}\}} + Y_{\tau_{2n}}^1 1_{\{\tau \geq \tau_{2n}\}} | F_t]$$

$$\tilde{\tau}_{2n+1} = \inf\{t \ge 0 : W_t^{2n+1} = X_t^1\} \land \tau_{2n}$$

and

$$\tau_{2n+1} \left\{ \begin{array}{ll} \tilde{\tau}_{2n+1}, & \text{if} & \tilde{\tau}_{2n+1} < \tau_{2n}; \\ \tau_{2n-1}, & \text{if} & \tilde{\tau}_{2n+1} = \tau_{2n}. \end{array} \right.$$

Next, let

$$\begin{split} W_t^{2n+2} &= \mathrm{esssup}_{\tau \geq t} \\ &\quad E[X_\tau^2 \mathbf{1}_{\{\tau < \tau_{2n+1}\}} + Y_{\tau_{2n+1}}^2 \mathbf{1}_{\{\tau \geq \tau_{2n+1}} | F_t], \end{split}$$

 $\tilde{\tau}_{2n+2} = \inf\{t \geq 0 : W_t^{2n+2} = X_t^2\} \wedge \tau_{2n+1}$ and

$$\tau_{2n+2} = \left\{ \begin{array}{ll} \tilde{\tau}_{2n+2}, & \text{if} \quad \tilde{\tau}_{2n+2} < \tau_{2n+1}; \\ \tau_{2n}, & \text{if} \quad \tilde{\tau}_{2n+2} = \tau_{2n+1}. \end{array} \right.$$

The sequences $(\tau_{2n})_{n\geq 0}$ and $(\tau_{2n+1})_{n\geq 0}$ are decreasing and converge respectively to τ_1^* and τ_2^* respectively and (τ_1^*, τ_2^*) is a NEP for the NZSDG.

Step 1: for any stopping time τ ,

$$J_1(\tau, \tau_{2n}) \le J_1(\tau_{2n+1}, \tau_{2n})$$

and

$$J_2(\tau_{2n+1},\tau) \leq J_2(\tau_{2n+1},\tau_{2n+2}).$$

By definition of W^{2n+1} ,

$$\bullet \ W_{\tau_{2n}}^{2n+1} = Y_{\tau_{2n}}^1$$

- $W_t^{2n+1} \ge X_t^1$ for any $t \in [0, \tau_{2n}]$
- W^{2n+1} is a supermartingale over $[0, \tau_{2n}]$.

Then, for any τ ,

$$J_{1}(\tau, \tau_{2n}) = E\left\{X_{\tau}^{1} 1_{\{\tau \leq \tau_{2n}\}} + Y_{\tau_{2n}}^{1} 1_{\{\tau_{2n} < \tau\}}\right\}$$

$$\leq E\left\{W_{\tau}^{2n+1} 1_{\{\tau \leq \tau_{2n}\}} + W_{\tau_{2n}}^{2n+1} 1_{\{\tau_{2n} < \tau\}}\right\}$$

$$= E\{W_{\tau_{2n} \wedge \tau}^{2n+1}\} \leq W_{0}^{2n+1}.$$

But

$$J_{1}(\tau_{2n+1}, \tau_{2n}) = E\left\{X_{\tau_{2n+1}}^{1} 1_{\{\tau_{2n+1} \leq \tau_{2n}\}} + Y_{\tau_{2n}}^{1} 1_{\{\tau_{2n} < \tau_{2n+1}\}}\right\}$$
$$= E\left\{X_{\tau_{2n+1}}^{1} 1_{\{\tau_{2n+1} < \tau_{2n}\}} + Y_{\tau_{2n}}^{1} 1_{\{\tau_{2n} \leq \tau_{2n+1}\}}\right\}.$$

Then

$$J_{1}(\tau_{2n+1}, \tau_{2n}) = E\left\{X_{\tilde{\tau}_{2n+1}}^{1} 1_{\{\tilde{\tau}_{2n+1} < \tau_{2n}\}} + W_{\tau_{2n}}^{2n+1} 1_{\{\tilde{\tau}_{2n+1} = \tau_{2n}\}}\right\} = E\{W_{\tilde{\tau}_{2n+1}}^{2n+1}\} = W_{0}^{2n+1}.$$

Therefore

$$J_2(\tau_{2n+1},\tau) \leq J_2(\tau_{2n+1},\tau_{2n+2}).$$

In the same way we have the other inequality.

Step 2: Take the limit to obtain the desired result.

4. Application in game options

Assume we have an American game contingent claim whose payoff is:

$$\Gamma(\tau,\sigma) = L_{\sigma} \mathbf{1}_{[\sigma \leq \tau,\sigma < T]} + U_{\tau} \mathbf{1}_{[\tau < \sigma]} + \xi \mathbf{1}_{[\tau = \sigma = T]}.$$

 \cdot $L \leq U$ and the difference U-L is the compensation that a_1 pays to a_2 for the decision to terminate the contract before maturity date T.

In a complete market the value of the GCC is given by :

$$V_0 = \sup_{\sigma \ge 0} \inf_{\tau \ge 0} E^*[\Gamma(\tau, \sigma)]$$
$$= \inf_{\tau \ge 0} \sup_{\sigma \ge 0} E^*[\Gamma(\tau, \sigma)].$$

In incomplete markets another point of view is related to utility maximization of the agents (Kuhn, 03).

Let $\varphi_1, \varphi_2 : \mathbb{R} \to \mathbb{R}$ be two utility functions of the seller, respectively, the buyer of the GCC. The seller a_1 (resp. the buyer a_2) chooses a stopping time τ (resp. σ) in order to maximize

$$J_1(\tau,\sigma) := E[\varphi_1(-\Gamma(\tau,\sigma))]$$

(resp.

$$J_2(\tau,\sigma) := E[\varphi_2(\Gamma(\tau,\sigma))].$$

Therefore if the NZSDG associated with J_1 and J_2 has a NEP point (σ^*, τ^*) , i.e.,

$$J_1(\tau^*, \sigma^*) \ge J_1(\tau, \sigma^*) \text{ and } J_2(\tau^*, \sigma^*) \ge J_2(\tau^*, \sigma)$$

then $-\varphi_1^{-1}(J_1(\tau^*, \sigma^*))$ (resp. $\varphi_2^{-1}(J_2(\tau^*, \sigma^*))$) is a seller (resp. buyer) price of the GCC.

Theorem: Assume that:

- (i) The utility functions φ_1 and φ_2 are non-decreasing;
- (ii) L , U are continuous and $L_t \leq U_t$ and $L_T \leq \xi \leq U_T$, P-a.s.;

Then the nonzero-sum Dynkin game associated with the GCC has a Nash equilibrium point (τ^*, σ^*) .

Thanks a lot for your attention.