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1. Introduction

- (Ω,F , (Ft)t≤T , P ) is a filtered probability
space with (Ft)t≤T complete and right contin-
uous ; T is the horizon of the problem.

- Two players a1 and a2 act on a system up
to the time when one of them decides to stop
controlling, at a stopping time τ1 (resp. τ2)
for a1 (resp. a2).

- The reward for a1 (resp. a2) is given by

J1(τ1, τ2)
4
= E

{
X1

τ1
1{τ1≤τ2} + Y 1

τ2
1{τ2<τ1}

}

(resp.

J2(τ1, τ2)
4
= E

{
X2

τ2
1{τ2<τ1} + Y 2

τ1
1{τ1≤τ2}

}
).
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Definition: A pair (τ∗1, τ∗2) of Ft-stopping times
is called a Nash equilibrium point for the
NZSDG if it satisfies: ∀τ1, τ2 ∈ T0,

J1(τ1, τ∗2) ≤ J1(τ
∗
1, τ∗2)

and

J2(τ
∗
1, τ2) ≤ J2(τ

∗
1, τ∗2).

Particular case: J1 + J2 = 0 corresponds to
the zero-sum Dunkin game and a NEP for the
game is just a saddle point for the ZSDG. It
satisfies: ∀ τ1, τ2,

J1(τ
∗
1, τ2) ≤ J1(τ

∗
1, τ∗2) ≤ J1(τ1, τ∗2).
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2. Known Results

A. PDE approach (Bens.-Fried., 77)

Assume:

- ζ := (ζt)t≤T is a solution of a standard differ-
ential equation whose generator is A

- Xi
t = ϕi(t, ζt) and Y i = ψi(t, ζt) where ψi and

ϕi deterministic functions

- [H1]: Xi ≤ Y i

- [H2]: Y i supermartingales.
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Theorem: There exist two deterministic con-
tinuous bounded functions u1(t, x) and u2(t, x)

solution of the following system:




ui(T, x) = ψi(T, x);

ui ≥ ϕi;

if uj(t, x) = ϕj(t, x) for j 6= i

and some (t, x), then ui(t, x) = ψi(t, x);

if Σi = {(t, x), uj(t, x) > ϕj(t, x) for j 6= i},
then Aui(t, x) ≥ 0 for (t, x) ∈ Σi;

(ui − ϕi).Aui(t, x) = 0 in Σi

(1)
and the following pair of stopping times,

τ̂i = inf{s ≥ 0, ui(s, ζs) = ϕi(s, ζs)} ∧ T ; i = 1,2

is a NEP for the NZSDG.
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B. The probabilistic approach (Etourn., 86)

Theorem: The processes are general and sat-
isfy [H1]-[H2]. Then the NZSDG has a NEP.

The proof uses the notion of Snell envelope of
processes which is the following:

Let U be an RCLL adapted stochastic pro-
cess. The Snell envelope of U , denoted by
R(U), is the smallest Ft-supermartingale which
dominates U , i.e, if W̄ is another RCLL super-
martingale such that W̄t ≥ Ut for all 0 ≤ t ≤ T ,
then W̄t ≥ Wt for any 0 ≤ t ≤ T .

It satisfies the following properties:

(i) For any F-stopping time θ we have:

Wθ = esssup
τ≥θ

E[Uτ |Fθ] P − a.s.(WT = UT );
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(ii) Assume that U has only positive jumps.
Then the stopping time

τ∗ 4= inf{s ≥ 0, Ws = Us} ∧ T

is optimal, i.e.,

E[W0] = E[Wτ∗] = E[Uτ∗] = sup
τ∈T0

E[Uτ ].

As a by-product we have Wτ∗ = Uτ∗ and the
process W is a martingale on the time interval
[0, τ∗].
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The main idea of Etourneau’s proof is:

Let E1 (resp. E2) be the set of RCLL adapted
processes V 1 (resp. V 2) such that X1 ≤ V 1 ≤
Y 1 (resp. X2 ≤ V 2 ≤ Y 2).

For (i, j) = (1,2) and for V j ∈ Ej

Dj = inf{s ≥ 0, V j
s = Xj

s} ∧ T

and

fi(V
j) = R(Xi1[[0,Dj[[

+ Y i1[[Dj,T ]]).

Then [H2] makes that:

(i) fi is a map from Ej to Ei,

(ii) fi(V
j) = R(V j)1[[0,Dj[[

+ Y i1[[Dj,T ]]
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Therefore the mappings f1of2 and f2of1 have
fixed points W1 and W2 which provide a NEP
for the NZSDG whoce expression is:

τ1 = inf{s ≥ 0, W1
s = X1

s } ∧ T

and

τ2 = inf{s ≥ 0, W2
s = X2

s } ∧ T.
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3. The main result: without [H2].

Theorem: Assume:

- [H1] i.e. X1 ≤ Y 1 and X2 ≤ Y 2

- for any stopping time τ ,

P [{X1
τ < Y 1

τ } − {X2
τ < Y 2

τ }] = 0

(assumption which is satisfied if X2 < Y 2).

- X1
T = Y 1

T (technical and can be removed).

Then the NZSDG has a NEP (τ∗1, τ∗2).
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Sketch of the proof:

Let τ1 = T and τ2 = T . For n = 1, · · · , assume
τ2n−1 and τ2n defined, we then define τ2n+1

and τ2n+2 as: Let

W2n+1
t = esssup

τ≥t
E[X1

τ 1{τ<τ2n}+Y 1
τ2n

1{τ≥τ2n
|Ft]

τ̃2n+1 = inf{t ≥ 0 : W2n+1
t = X1

t } ∧ τ2n

and

τ2n+1

{
τ̃2n+1, if τ̃2n+1 < τ2n;
τ2n−1, if τ̃2n+1 = τ2n.
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Next, let

W2n+2
t = esssupτ≥t

E[X2
τ 1{τ<τ2n+1} + Y 2

τ2n+1
1{τ≥τ2n+1

|Ft],

τ̃2n+2 = inf{t ≥ 0 : W2n+2
t = X2

t } ∧ τ2n+1

and

τ2n+2 =

{
τ̃2n+2, if τ̃2n+2 < τ2n+1;
τ2n, if τ̃2n+2 = τ2n+1.
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The sequences (τ2n)n≥0 and (τ2n+1)n≥0 are
decreasing and converge respectively to τ∗1 and
τ∗2 respectively and (τ∗1, τ∗2) is a NEP for the
NZSDG.

Step 1: for any stopping time τ ,

J1(τ, τ2n) ≤ J1(τ2n+1, τ2n)

and

J2(τ2n+1, τ) ≤ J2(τ2n+1, τ2n+2).

By definition of W2n+1,

• W2n+1
τ2n = Y 1

τ2n

• W2n+1
t ≥ X1

t for any t ∈ [0, τ2n]

• W2n+1 is a supermartingale over [0, τ2n].
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Then, for any τ ,

J1(τ, τ2n) = E

{
X1

τ 1{τ≤τ2n} + Y 1
τ2n

1{τ2n<τ}
}

≤ E

{
W2n+1

τ 1{τ≤τ2n} + W2n+1
τ2n 1{τ2n<τ}

}

= E{W2n+1
τ2n∧τ } ≤ W2n+1

0 .

But

J1(τ2n+1, τ2n) =

E

{
X1

τ2n+1
1{τ2n+1≤τ2n} + Y 1

τ2n
1{τ2n<τ2n+1}

}

= E

{
X1

τ2n+1
1{τ2n+1<τ2n} + Y 1

τ2n
1{τ2n≤τ2n+1}

}
.

Then

J1(τ2n+1, τ2n) =

E

{
X1

τ̃2n+1
1{τ̃2n+1<τ2n} + W2n+1

τ2n 1{τ̃2n+1=τ2n}
}

= E{W2n+1
τ̃2n+1

} = W2n+1
0 .

Therefore

J2(τ2n+1, τ) ≤ J2(τ2n+1, τ2n+2).

In the same way we have the other inequality.
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Step 2: Take the limit to obtain the desired
result.

4. Application in game options

Assume we have an American game contingent
claim whose payoff is:

Γ(τ, σ) =
Lσ1[σ≤τ,σ<T ] + Uτ1[τ<σ] + ξ1[τ=σ=T ].

· L ≤ U and the difference U − L is the com-
pensation that a1 pays to a2 for the decision
to terminate the contract before maturity date
T .

In a complete market the value of the GCC is
given by :

V0 = supσ≥0 infτ≥0 E∗[Γ(τ, σ)]

= infτ≥0 supσ≥0 E∗[Γ(τ, σ)].
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In incomplete markets another point of view
is related to utility maximization of the agents
(Kuhn, 03).

Let ϕ1, ϕ2 : IR → IR be two utility functions of
the seller, respectively, the buyer of the GCC.
The seller a1 (resp. the buyer a2) chooses a
stopping time τ (resp. σ) in order to maximize

J1(τ, σ) := E[ϕ1(−Γ(τ, σ))]

(resp.

J2(τ, σ) := E[ϕ2(Γ(τ, σ))]).

Therefore if the NZSDG associated with J1

and J2 has a NEP point (σ∗, τ∗), i.e.,

J1(τ
∗, σ∗) ≥ J1(τ, σ∗) and J2(τ

∗, σ∗) ≥ J2(τ
∗, σ)



then −ϕ−1
1 (J1(τ

∗, σ∗)) (resp. ϕ−1
2 (J2(τ

∗, σ∗)))
is a seller (resp. buyer) price of the GCC.

Theorem: Assume that:

(i) The utility functions ϕ1 and ϕ2 are non-
decreasing;

(ii) L , U are continuous and Lt ≤ Ut and LT ≤
ξ ≤ UT , P-a.s.;

Then the nonzero-sum Dynkin game associ-
ated with the GCC has a Nash equilibrium
point (τ∗, σ∗).
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Thanks a lot for your attention.
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