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Solving classical differential games Description of the game

Dynamics

We investigate a stochastic differential game defined by{
dXt = f (Xt ,ut , vt )dt + σ(Xt ,ut , vt )dBt , t ∈ [t0,T ],
Xt0 = x0,

where
B is a d-dimensional standard Brownian motion
f : RN × U × V → RN and σ : Rn × U × V → RN×d are Lipschitz
continuous and bounded,
the processes u (controlled by Player I) and v (controlled by
Player II) take their values in some compact sets U and V .
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Solving classical differential games Description of the game

The terminal payoff

Let g : RN → R a terminal payoff,

Player I tries to minimise the terminal payoff E[g(XT )]

Player II tries to maximise the terminal payoff E[g(XT )]

The players observe the position of the state.
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Solving classical differential games Formalisation

Admissible controls

For t0 ∈ [0,T [, we set

Ft0,s = σ{Br − Bt0 , r ∈ [t , s]} ∨ P,

where P is the set of all null-sets of P.

An admissible control for player I on [t0,T ] is a process
u : [t0,T ]→ U progressively measurable with respect to
(Ft0,s, s ≥ t0).

U(t0) = {u admissible control on [t0,T ] } .

the set of admissible controls of Player II is defined symmetrically
and denoted by V(t0).
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Solving classical differential games Formalisation

Controls and dynamics

For (u, v) ∈ U(t0)× V(t0) and an initial data x0 ∈ RN at time t0, we
denote by

t → X t0,x0,u,v
t

the solution to{
dXt = f (t ,Xt ,ut , vt )ds + σ(t ,Xt ,ut , vt )dBt , t ∈ [t0,T ],
Xt0 = x0,
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Solving classical differential games Formalisation

Pure strategies

A pure strategy for Player I is a Borel measurable map
α : [t0,T ]× C0([t0,T ],RN)→ U such that there is τ > 0 with

f1 = f2 on [t0, t ] ⇒ α(s, f1) = α(s, f2) for s ∈ [t0, t + τ ]

The set of pure strategies for Player I is denoted by A(t0).
The set of pure strategies for Player II is defined symmetrically
and denoted by B(t0).
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Solving classical differential games Formalisation

Playing pure strategies together

Lemma
For all (t0, x0) ∈ [0,T ]× RN , for all (α, β) ∈ A(t0)× B(t0), there exists a
unique couple of controls (u, v) ∈ U(t0)× V(t0) that satisfies

(∗) (u, v) ≡ (α(·,X t0,x ,u,v
· ), β(·,X t0,x ,u,v

· )) on [t0,T ].

Notation : X t0,x0,α,β
t := X t0,x0,u,v

t where (u, v) is given by (∗).
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Solving classical differential games Formalisation

Upper and lower value functions

The upper value function is

V +(t0, x0) = inf
α∈A(t0)

sup
β∈B(t0)

E
[
g(X t0,x0,α,β

T )
]

while the lower value function is

V−(t0, x0) = sup
β∈B(t0)

inf
α∈A(t0)

E
[
g(X t0,x0,α,β

T )
]
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Solving classical differential games Existence of the value
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Solving classical differential games Existence of the value

Isaacs’ condition

We assume that Isaacs’condition holds : for all (t , x) ∈ [0,T ]× Rn,
ξ ∈ Rn, and all A ∈ Sn :

H(x , ξ,A) :=

inf
u

sup
v
{< f (x ,u, v), ξ > +

1
2

Tr(Aσ(x ,u, v)σ∗(x ,u, v))}

= sup
v

inf
u
{< f (x ,u, v), ξ > +

1
2

Tr(Aσ(x ,u, v)σ∗(x ,u, v))}
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Solving classical differential games Existence of the value

Existence of a value

Theorem (Fleming-Souganidis, 1989)
Under Isaacs’ condition, the game has a value :

V +(t , x) = V−(t , x) ∀(t , x) ∈ [0,T ]× RN .
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Solving classical differential games Existence of the value

Sketch of proof (1)

Lemma
The value functions V + and V− are Hölder continuous in [0,T ]× RN .

Lemma (Dynamic programming)

For (t0, x0) ∈ [0,T ]× RN and h > 0,

V +(t0, x0) ≥ inf
α∈A(t0)

sup
β∈B(t0)

E
[
V +

(
t0 + h,X t0,x0,α,β

t0+h

)]
and

V−(t0, x0) ≤ sup
β∈B(t0)

inf
α∈A(t0)

E
[
V−

(
t0 + h,X t0,x0,α,β

t0+h

)]
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Solving classical differential games Existence of the value

Sketch of proof (2)

Let ϕ = ϕ(t , x) be a smooth test function such that V− − ϕ has a
minimum at (t0, x0). Then

V−(t , x)− V−(t0, x0) ≥ ϕ(t , x)− ϕ(t0, x0) ∀(t , x) .

From dynamic programming :

0 ≥ sup
β∈B(t0)

inf
α∈A(t0)

E
[
V−

(
t0 + h,X t0,x0,α,β

t0+h

)]
− V−(t0, x0)

≥ sup
β∈B(t0)

inf
α∈A(t0)

E
[
ϕ
(

t0 + h,X t0,x0,α,β
t0+h

)
− ϕ(t0, x0)

]

≈ sup
β∈B(t0)

inf
α∈A(t0)

{
hϕt +

∫ t0+h

t0
Dϕ.f (α, β) +

1
2

Tr(σσ∗(α, β)D2ϕ)ds

}
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Solving classical differential games Existence of the value

Sketch of proof (3)

So

0 ≥ ϕt + sup
v∈V

inf
u∈U

{
< Dϕ, f (x0,u, v) > +

1
2

Tr(σσ∗(x ,u, v)Dϕ)

}
= ϕt + H(x0,Dϕ,D2ϕ) at (t0, x0) .

Definition
A continuous map w : [0,T ]× RN → R is a viscosity supersolution of
the Hamilton-Jacobi equation

(HJI) wt + H(x ,Dw ,D2w) = 0

if, for any smooth test function ϕ = ϕ(t , x) such that w − ϕ has a
minimum at (t0, x0),

ϕt + H(x0,Dϕ,D2ϕ) ≤ 0 at (t0, x0) .
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Solving classical differential games Existence of the value

Sketch of proof (4)

Definition
A continuous map w : [0,T ]× RN → R is a viscosity subsolution of
(HJI) if, for any smooth test function ϕ = ϕ(t , x) such that w − ϕ has a
maximum at (t0, x0),

ϕt + H(x0,Dϕ,D2ϕ) ≥ 0 at (t0, x0) .

Finally w is a viscosity solution if w is a super- and a sub-solution.

Proposition
V + is a subsolution and V− is a supersolution of (HJI) and

V +(x ,T ) = V−(x ,T ) = g(x) ∀x ∈ RN .
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Solving classical differential games Existence of the value

Sketch of proof (5)

Theorem (Comparison principle)
If w1 is a subsolution and w2 is a supersolution and if

w1(T , x) ≤ w2(T , x) ∀x ∈ RN ,

then
w1(t , x) ≤ w2(t , x) ∀(t , x) ∈ [0,T ]× RN ,

Proof of the existence of a value : By comparison principle,

V + ≤ V− .

Since V− ≤ V + always holds, V + = V−. Note that V + = V− is the
unique solution of the HJI equation.
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Differential games with lack of information Description of the game

Dynamics

As before the stochastic differential game is defined by{
dXt = f (Xt ,ut , vt )dt + σ(Xt ,ut , vt )dBt , t ∈ [t0,T ],
Xt0 = x0,

where
B is a d-dimensional standard Brownian motion
f : RN × U × V → RN and σ : Rn × U × V → RN×d are Lipschitz
continuous and bounded,
the processes u (controlled by Player I) and v (controlled by
Player II) take their values in some compact sets U and V .
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Differential games with lack of information Description of the game

The terminal payoffs

Let

gij : RN → R a family of terminal payoffs,
i = 1, . . . , I, j = 1, . . . , J
p ∈ ∆(I) be a probability on {1, . . . , I}.
q ∈ ∆(J) be a probability on {1, . . . , J}.
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Differential games with lack of information Description of the game

Organization of the game

The game is played in two steps :
At initial time t0 the pair (i , j) is chosen at random according to
probability p ⊗ q.
Index i is communicated to Player I only, while
index j is communicated to Player II only.
Then
- Player I tries to minimise the terminal payoff E[gij(XT )]
- Player II tries to maximise the terminal payoff E[gij(XT )]
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Differential games with lack of information Description of the game

Key assumptions on the game
The Players observe the state (Xt ).

This game was introduced in the 60s by Aumann and Maschler for
repeated games.

P. Cardaliaguet (Univ. Brest) Differential games 26 / 72



Differential games with lack of information Description of the game

Key assumptions on the game
The Players observe the state (Xt ).

This game was introduced in the 60s by Aumann and Maschler for
repeated games.

P. Cardaliaguet (Univ. Brest) Differential games 26 / 72



Differential games with lack of information Formalisation
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Differential games with lack of information Formalisation

Random strategies

A random strategy for Player I is R−uple

α = (α1, . . . αR; r1, . . . , rR) ,

with R ∈ N∗, α1, . . . , αR ∈ A(t), (r1, . . . , rR) ∈ ∆(R).

Interpretation : Player I choses at random according to probability
r = (r1, . . . , rR) a strategy α1, . . . , αR.

Notations : The set of random strategies for Player I (resp. Player
II) is denoted by Ar (t) (resp. Br (t)).

P. Cardaliaguet (Univ. Brest) Differential games 28 / 72



Differential games with lack of information Formalisation

Admissible strategies

Remark : Since Player I knows i , he can chose a strategy which
depends on i .

So an admissible strategy for Player I is an element
α̂ = (α1, . . . , αI) ∈ (Ar (t))I .

Symmetrically an admissible strategy for Player II is an element
β̂ = (β1, . . . , βJ) ∈ (Br (t))J
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Differential games with lack of information Formalisation

Payoff associated with two admissible strategies

• For (α, β) ∈ Ar (t)× Br (t), with

α = ((α1, . . . αR; r1, . . . , rR) and β = ((β1, . . . βS; s1, . . . , sS)

we set
Jij(t0, x0, α, β) =

∑
k ,l

r kslE
[
gij(X

t0,x0,α
k ,β l

T )
]

• For p ∈ ∆(I), q ∈ ∆(J), α̂ ∈ (Ar (t))I and β̂ ∈ (Br (t))J with

α̂ = (α1, . . . , αI) and β̂ = (β1, . . . , βJ)

we set
J(t0, x0, α̂, β̂,p,q) =

∑
i,j

piqjJij(t0, x0, αi , β j)
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Differential games with lack of information Formalisation

Upper- and lower value functions

The upper value function is

V +(t0, x0,p,q) = inf
α̂∈(Ar (t0))I

sup
β̂∈(Br (t0))J

J(t0, x0, α̂, β̂,p,q)

while the lower value function is

V−(t0, x0,p,q) = sup
β̂∈(Br (t0))J

inf
α̂∈(Ar (t0))I

J(t0, x0, α̂, β̂,p,q)
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Differential games with lack of information Existence and characterization of the value

Outline

1 Solving classical differential games
Description of the game
Formalisation
Existence of the value

2 Differential games with lack of information
Description of the game
Formalisation
Existence and characterization of the value

3 A new formulation for dual solutions
A strange HJ equation
Illustration by a simple game

4 Appendix : without Isaacs’ condition
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Differential games with lack of information Existence and characterization of the value

Isaacs’ condition

We assume that Isaacs’condition holds : for all (t , x) ∈ [0,T ]× Rn,
ξ ∈ Rn, and all A ∈ Sn :

H(x , ξ,A) :=

inf
u

sup
v
{< f (x ,u, v), ξ > +

1
2

Tr(Aσ(x ,u, v)σ∗(x ,u, v))}

= sup
v

inf
u
{< f (x ,u, v), ξ > +

1
2

Tr(Aσ(x ,u, v)σ∗(x ,u, v))}

P. Cardaliaguet (Univ. Brest) Differential games 33 / 72



Differential games with lack of information Existence and characterization of the value

Existence of a value

Theorem (C.-Rainer, To appear)
Under Isaacs’ condition, the game has a value :
∀(t , x ,p,q) ∈ [0,T ]× RN ×∆(I)×∆(J)

V +(t , x ,p,q) = V−(t , x ,p,q) .
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Differential games with lack of information Existence and characterization of the value

Main difficulties for the proof

Existence of a value for classical differential games is based on
- a dynamic programming implying that both value functions
satisfy the same HJI equation
- uniqueness of this equation

In our game, Players learn a part of their missing information
along the time :

⇒ no classical dynamic programming
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Differential games with lack of information Existence and characterization of the value

Regularity and convexity of the value functions

Lemma
V + and V− are bounded, Lipschitz continuous with respect to x and
Hölder continuous with respect to t .

Proposition
For all (t , x) ∈ [0,T ]× Rn, the maps (p,q)→ V +(t , x ,p,q) and
(p,q)→ V−(t , x ,p,q) are convex in p and concave in q.

Proof : Splitting method.
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Differential games with lack of information Existence and characterization of the value

Fenchel conjugates

As in [De Meyer, 1996] we introduce the Fenchel conjugates of V + and
V− :

(V±)∗(t , x , p̂,q) = sup
p∈∆(I)

(
p.p̂ − V±(t , x ,p,q)

)
and

(V±)](t , x ,p, q̂) = inf
q∈∆(J)

(
q.q̂ − V±(t , x ,p,q)

)
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Differential games with lack of information Existence and characterization of the value

Reformulation for the conjugates

Lemma
For all (t , x , p̂,q) ∈ [0,T ]× Rn × RI ×∆(J), we have

V−∗(t , x , p̂,q) = inf
β̂∈(Br (t))J

sup
α∈A(t)

max
i∈{1,...,I}

{
p̂i −

∑
j

qjJij(t , x , α, β j)
}
.
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Differential games with lack of information Existence and characterization of the value

Subdynamic programming for V−∗

Proposition

For all 0 ≤ t0 ≤ t1 ≤ T , x0 ∈ RN , p̂ ∈ RI ,q ∈ ∆(J),

V−∗(t0, x0, p̂,q) ≤ inf
β∈B(t0)

sup
α∈A(t0)

E[V−∗(t1,X
t0,x0,α,β
t1 , p̂,q)]

Idea of proof : If Player II plays a pure strategy β independant of j
between t0 and t1,

his payoff is larger,

but he reveals nothing on j

So the game can be restarted at t1 without loss of information.
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Differential games with lack of information Existence and characterization of the value

Equation satisfied by V−∗

Corollary

For any (p̂,q) ∈ RI ×∆(J), (t , x)→ V−∗(t , x , p̂,q) is a subsolution in
viscosity sense of

(HJI∗) wt − H(x ,−Dw ,−D2w) = 0,

Definition (Supersolution in the dual sense)
We say that w = w(t , x ,p,q) is a viscosity supersolution of

(HJI) wt + H(x ,Dw ,D2w) = 0 in (0,T )× RN

in the dual sense if for any (p̂,q) ∈ RI ×∆(J), (t , x)→ w∗(t , x , p̂,q) is
a subsolution of (HJI∗).
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Differential games with lack of information Existence and characterization of the value

Superdynamic programming for V +]

Proposition

For all 0 ≤ t0 ≤ t1 ≤ T , x0 ∈ RN ,p ∈ ∆(I), q̂ ∈ RJ ,

V +](t0, x0,p, q̂) ≥ sup
α∈A(t0)

inf
β∈B(t0)

E [V +](t1,X
t0,x0,α,β
t1 ,p, q̂)].

Hence V +] is a supersolution of (HJI∗).

Definition (Subsolution in the dual sense)
We say that w = w(t , x ,p,q) is a viscosity subsolution of

(HJI) wt + H(x ,Dw ,D2w) = 0 in (0,T )× RN

in the dual sense if for any (p, q̂) ∈ ∆(I)× RJ , (t , x)→ w ](t , x ,p, q̂) is
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Differential games with lack of information Existence and characterization of the value

Comparison principle

Theorem
Let w1,w2 : [0,T ]× RN ×∆(I)×∆(J)→ R be bounded, Hölder
continuous, and uniformly Lipschitz continuous with respect to p and q.
If

w1 is a subsolution of (HJI)in the dual sense,
w2 be a supersolution of (HJI) in the dual sense,
w1(T , x ,p,q) ≤ w2(T , x ,p,q) ∀(x ,p,q) ,

then
w1(t , x ,p,q) ≤ w2(t , x ,p,q) ∀(t , x ,p,q) .
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Differential games with lack of information Existence and characterization of the value

Proof of the existence of the value

We have V− ≤ V + by construction.

We have seen that
(i) V− is a supersolution in the dual sense of (HJI)

(ii) V + is a subsolution in the dual sense of (HJI)

(iii) V−(T , x ,p,q) = V +(T , x ,p,q) =
∑

i,j piqjgij (x)

Comparison principle⇒ V + ≤ V−.
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Differential games with lack of information Existence and characterization of the value

Extensions and miscellaenous

Extensions The above results have been extended to

stochastic differential games with running payoff,
(C. and Rainer)

infinite horizon problem
(As Soulaimani)

Representation formulas for deterministic differential games
(C., Souquière)
Approximation of the value function, ε−optimal strategies for
deterministic differential games
(C., Souquière)
Open problem : Pursuit-evasion games with lack of information.
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A new formulation for dual solutions

Outline

1 Solving classical differential games
Description of the game
Formalisation
Existence of the value

2 Differential games with lack of information
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Formalisation
Existence and characterization of the value

3 A new formulation for dual solutions
A strange HJ equation
Illustration by a simple game

4 Appendix : without Isaacs’ condition
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A new formulation for dual solutions A strange HJ equation

Up to now, the value function V = V + = V− is characterized by the
fact that V ∗ and V ] are sub- and super-solutions of some dual HJI
equation.

What about a direct characterization of V ?
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A new formulation for dual solutions A strange HJ equation

Reformulation of the HJ equation

Theorem (C., 2008)
A map w is a dual solution of

wt + H(x ,Dw ,D2w ,p,q) = 0

if and only if w is a viscosity solution of the strange HJ equation

max
{

min
{

wt + H(x ,Dw ,D2w ,p,q) ; λmin(
∂2w
∂p2 )

}
; λmax(

∂2w
∂q2 )

}
= 0

where
λmax(A) is the maximal eigenvalue of a matrix A ∈ Sk

λmin(A) is the minimal eigenvalue of A
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A new formulation for dual solutions A strange HJ equation

In particular,

Corollary
The value function V of the game with lack of information is the unique
viscosity solution of

max
{

min
{

wt + H(x ,Dw ,D2w ,p,q) ; λmin(
∂2w
∂p2 )

}
; λmax(

∂2w
∂q2 )

}
= 0
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A new formulation for dual solutions A strange HJ equation

Remarks on the strange equation :
1) From the min-max Theorem we have

max {min {. . . ; . . . } ; . . . } = min {max {. . . ; . . . } ; . . . }

2) Heuristically this equation says that

the map V = V(t , x ,p,q) is convex in p and concave in q,
at points where V = V(t , x ,p,q) is strictly convex in p and strictly
concave in q, V satisfies the Hamilton-Jacobi equation

wt + H(x ,Dw ,D2w) = 0
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A new formulation for dual solutions A strange HJ equation

Example 1 : convex case

Let g : ∆(I)→ R be Lipschitz continuous. Then the unique solution to

max
{

w − g ; −λmin

(
∂2w
∂p

)}
= 0

is just the convex hull of g.
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A new formulation for dual solutions A strange HJ equation

Example 2 : Mertens-Zamir Φ operator

Let g : ∆(I)×∆(J)→ R be Lipschitz continuous. Then the unique
solution of

(∗) min
{

max
{

w − g ; −λmin

(
∂2w
∂p

)}
; −λmax

(
∂2w
∂q

)}
= 0

is Φ(g), i.e., the unique solution u to

u = Vexp(max{u ; g}) = Cavq(min{u ; g})

Equation (∗) is just the formulation of [Laraki, 2001] for Φ.

P. Cardaliaguet (Univ. Brest) Differential games 52 / 72



A new formulation for dual solutions A strange HJ equation

Example 2 : Mertens-Zamir Φ operator

Let g : ∆(I)×∆(J)→ R be Lipschitz continuous. Then the unique
solution of

(∗) min
{

max
{

w − g ; −λmin

(
∂2w
∂p

)}
; −λmax

(
∂2w
∂q

)}
= 0

is Φ(g), i.e., the unique solution u to

u = Vexp(max{u ; g}) = Cavq(min{u ; g})

Equation (∗) is just the formulation of [Laraki, 2001] for Φ.

P. Cardaliaguet (Univ. Brest) Differential games 52 / 72



A new formulation for dual solutions A strange HJ equation

Example 2 : Mertens-Zamir Φ operator

Let g : ∆(I)×∆(J)→ R be Lipschitz continuous. Then the unique
solution of

(∗) min
{

max
{

w − g ; −λmin

(
∂2w
∂p

)}
; −λmax

(
∂2w
∂q

)}
= 0

is Φ(g), i.e., the unique solution u to

u = Vexp(max{u ; g}) = Cavq(min{u ; g})

Equation (∗) is just the formulation of [Laraki, 2001] for Φ.

P. Cardaliaguet (Univ. Brest) Differential games 52 / 72



A new formulation for dual solutions A strange HJ equation

Accordingly, the strange equation

max
{

min
{

wt + H(x ,Dw ,D2w ,p,q) ; λmin(
∂2w
∂p2 )

}
; λmax(

∂2w
∂q2 )

}
= 0

is between a standard HJ equation and a characterization of convexity.

Questions
1 Is there an interpretation of the strange equation in terms of

dynamic programming ?
2 What is the set where

wt + H(x ,Dw ,D2w ,p,q) = 0

holds ?
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A new formulation for dual solutions Illustration by a simple game
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A new formulation for dual solutions Illustration by a simple game

Definition of the simple game

In this game,
- no dynamics
- J = 1.

The players optimize one of the integral payoffs∫ T

t0
`i(s,u(s), v(s))ds (i ∈ {1, . . . , I}).
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A new formulation for dual solutions Illustration by a simple game

Rules of the game

At time t0, i is chosen by nature in {1, . . . , I} according to
probability p,
the choice of i is communicated to Player 1 only,
Player 1 minimizes the integral payoff∫ T

t0
`i(s,u(s), v(s))ds.

Player 2 maximizes it.

This is a version of Aumann-Maschler game in continuous time, finite
horizon.
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A new formulation for dual solutions Illustration by a simple game

Isaacs’condition

Isaacs’condition takes the form :

H(t ,p) = inf
u∈U

sup
v∈V

I∑
i=1

pi`i(t ,u, v) = sup
v∈V

inf
u∈U

I∑
i=1

pi`i(t ,u, v)

for all (t ,p) ∈ [0,T ]×∆(I).
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A new formulation for dual solutions Illustration by a simple game

Existence of a value

Theorem (C.-Rainer, 2008)
Under Isaacs’ condition, the game has a value

V(t0,p) = inf
(αi )∈(Ar (t0))I

sup
β∈Br (t0)

I∑
i=1

piEαiβ

[∫ T

t0
`i(s, αi(s), β(s))ds

]

= sup
β∈Br (t0)

inf
(αi )∈(Ar (t0))I

I∑
i=1

piEαiβ

[∫ T

t0
`i(s, αi(s), β(s))ds

]
Furthermore V is the unique viscosity solution of :

min
{

wt + H(t ,p) ; λmin

(
∂2w
∂p2

)}
= 0 in [0,T ]×∆(I) .
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A new formulation for dual solutions Illustration by a simple game

A set of admissible martingales

Let P(t0,p0) be the set of càdlàg martingale processes

p : [t−0 ,T ]→ ∆(I)

such that

p(t−0 ) = p0 and p(T ) ∈ {e1, . . . ,eI} ,

where {e1, . . . ,eI} is the canonical basis of RI .

P. Cardaliaguet (Univ. Brest) Differential games 59 / 72



A new formulation for dual solutions Illustration by a simple game

Representation of the solution

Theorem

V(t0,p0) = inf
p∈P(t0,p0)

E

[∫ T

t0
H(s,p(s))ds

]
∀(t0,p0) ∈ [0,T ]×∆(I) ,

Remark : A similar result in discrete time appears in [De Meyer, 2008].
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A new formulation for dual solutions Illustration by a simple game

Sketch of the proof

Let

W (t0,p0) = inf
p∈P(t0,p0)

E

[∫ T

t0
H(s,p(s))ds

]
∀(t0,p0) ∈ [0,T ]×∆(I)

Lemma
W is convex with respect to p0 and Lipschitz continuous in all variables.

Lemma
For any stopping time θ ∈ [t0,T ],

W (t0,p0) = inf
p∈P(t0,p0)

E
[∫ θ

t0
H(s,p(s))ds + W (θ,p(θ))

]
.
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A new formulation for dual solutions Illustration by a simple game

Sketch of the proof (2)

Lemma
W is a solution of

min
{

wt + H(t ,p) ; λmin

(
∂2w
∂p2

)}
= 0 in [0,T ]×∆(I) .

Heuristic idea : At a point (t0, x0) at which “λmin

(
∂2w
∂p2

)
> 0", the

martingale process cannot “go too far from x0" and the classical
dynamic programming holds.
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A new formulation for dual solutions Illustration by a simple game

Consequences

Characterization of the optimal strategy of the informed player.

Characterization of the optimal martingale process.
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A new formulation for dual solutions Illustration by a simple game

Some open problems for differential games with lack
of information

One can prove the existence of a value when i and j belong to
some continuous probability spaces.

- What becomes the HJ equation in this setting ?

More complex information structure

- What happens if the players have a private information which is
revealed along the time ?
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Appendix : without Isaacs’ condition

Random strategies

Fix an initial time t0 and a delay τ >.
A pure strategy with delay τ for Player I is a Borel measurable
map α : [t0,T ]× C0([t0,T ],RN)→ U such that

f1 = f2 on [t0, t ] ⇒ α(s, f1) = α(s, f2) for s ∈ [t0, t + τ ]

Notation : Aτ (t0).
A random strategy with delay with delay τ for Player I is R−uple

α = (α1, . . . αR; r1, . . . , rR) ,

with R ∈ N∗, α1, . . . , αR ∈ Aτ (t0), (r1, . . . , rR) ∈ ∆(R).
Notations : The set of random strategies with delay τ for Player I
(resp. Player II) is denoted by Aτ r (t0) (resp. Bτ r (t0)).
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Appendix : without Isaacs’ condition

Upper and lower value functions

The upper value function is

V +(t0, x0) = lim
τ→0

inf
α∈Aτ r (t0)

sup
β∈Bτ r (t0)

E
[
g(X t0,x0,α,β

T )
]

while the lower value function is

V−(t0, x0) = lim
τ→0

sup
β∈Bτ r (t0)

inf
α∈Aτ r (t0)

E
[
g(X t0,x0,α,β

T )
]

P. Cardaliaguet (Univ. Brest) Differential games 70 / 72



Appendix : without Isaacs’ condition

Existence of a value

Theorem
Under Isaacs’ condition, the game has a value :

V +(t , x) = V−(t , x) ∀(t , x) ∈ [0,T ]× RN .

Krasovskii-Subbotin, 1988, for the determinist case (σ ≡ 0).

P. Cardaliaguet (Univ. Brest) Differential games 71 / 72



Appendix : without Isaacs’ condition

Characterization of the value

Let

H(x ,p,A)

= inf
µ∈∆(U)

sup
ν∈∆(V )

∫
U×V

< p, f (x ,u, v) > +
1
2

Tr(Aσσ∗(x ,u, v)) dµ(u)dν(v)

= sup
ν∈∆(V )

inf
µ∈∆(U)

∫
U×V

< p, f (x ,u, v) > +
1
2

Tr(Aσσ∗(x ,u, v)) dµ(u)dν(v)

Theorem
V + = V− is the unique solution of{

wt + H(x ,Dw ,D2w) = 0 in (0,T )× RN

w(T , x) = g(x) ∀x ∈ RN
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