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Objective of the talk

Generalization of the results of the pioneering work of Fleming and
Souganidis on zero-sum two-player SDGs:

• cost functionals defined through controlled BSDEs
• the admissible control processes can depend on events occurring
before the beginning of the game.

This latter extension has the consequence that the cost functionals
become random. However, by making use of Girsanov transformation
we prove that the upper and the lower value functions of the game
remain deterministic. This approach combined with the BSDE method
allows to get in a direct way:

upper and lower value functions are deterministic
−→ Dynamic Programming Principle
−→ Hamilton-Jacobi-Bellman-Isaacs equations.

At the end of the talk: some remarks on extensions of the above SDGs:
SDGs defined through reflected BSDEs.



Preliminaries. Framework

(Ω,F ,P) canonical Wiener space: for a given finite time horizon T > 0,

• Ω = C0([0,T ];Rd) (endowed with the supremum norm);

• Bt(ω) = ω(t), t ∈ [0,T ],ω ∈Ω - the coordinate process;

• P - the Wiener measure on (Ω,B(Ω)): unique probability measure
w.r.t. B is a standard BM;

• F = B(Ω)∨NP;

• F = (F )t)t∈[0,T ] with Ft = F B
t = σ{Bs,s≤ t}∨NP.

(Ω,F ,F,P;B) - the complete, filtered probability space on which we
will work.



Dynamics of the game:

Initial data: t ∈ [0,T ], ζ ∈ L2(Ω,Ft ,P;Rd);
associated doubly controlled stochastic system:

dX t,ζ;u,v
s = b(s,X t,ζ;u,v

s ,us,vs)ds+σ(s,X t,ζ;u,v
s ,us,vs)dBs,

X t,ζ;u,v
t = ζ, s ∈ [t,T ],

(1)

Player I: u ∈U =: L0
F(0,T ;U);

Player II: v ∈ V =: L0
F(0,T ;V ); U,V - compact metric spaces;

the mappings

b : [0,T ]×Rn×U×V → Rn,
σ : [0,T ]×Rn×U×V → Rn×d ,

are supposed to be continuous over Rn×U ×V (for simplicity); Lips-
chitz in x, uniformly w.r.t (t,u,v); b(t,0,u,v),σ(t,0,u,v) are bounded.
Existence and uniqueness of the solution X t,ζ,u,v ∈ S 2

F(t,T ;Rn).



Definition of the cost functionals

The cost functional is defined with the help of a backward SDE
(BSDE):

Associated with (t,ζ) ∈ [0,T ]×L2(Ω,Ft ,P;Rn),u ∈U and v ∈ V , we
consider the BSDE:

dY t,ζ;u,v
s = − f (s,X t,ζ;u,v

s ,Y t,ζ;u,v
s ,Zt,ζ;u,v

s ,us,vs)ds+Zt,xζ;u,v
s dBs,

Y t,ζ;u,v
T = Φ(X t,ζ;u,v

T ), s ∈ [t,T ],
(2)

where

� Final cost: Φ : Rn→ R Lipschitz

� Running cost: f : [0,T ]×Rn ×R×Rd ×U ×V → R, continuous;
Lipschitz in (x,y,z), uniformly w.r.t (t,u,v).

Under the above assumptions: existence and uniqueness of the solution
of BSDE (2): (Y t,ζ;u,v,Zt,ζ;u,v) ∈ S 2

F(t,T ;R)×L2
F(t,T ;Rd).



From standard estimates for BSDEs using the corresponding results for
the controlled stochastic system: ∃C ∈R+ independent of t,u,v, ζ,ζ′ ∈
L2(Ω,Ft ,P;Rn), s.t.

|Y t,ζ;u,v
t −Y t,ζ′;u,v

t | ≤C|ζ−ζ
′|, |Y t,ζ;u,v

t | ≤C(1+ |ζ|), P-a.s.

Let t ∈ [0,T ], ζ = x ∈ Rn - deterministic initial data; u ∈U, v ∈ V ;
associated Cost functional for the game over the time interval [t,T ] :

J(t,x;u,v) := Y t,x;u,v
t

(
∈ L2(Ω,Ft ,P)

)
.

Remark 1: (i) If f ≡ 0 : J(t,x;u,v) = E[Φ(X t,x;u,v
T )|Ft ];

(ii) If f doesn’t depend on (y, z):

J(t,x;u,v) = E
[

Φ(X t,x;u,v
T )+

∫ T

t
f (s,X t,x;u,v

s ,us,vs)ds|Ft

]
.



Which kind of game shall we study?

Objective of Player I: maximization of J(t,x,u,v);

Objective of Player II: minimization of J(t,x,u,v);

Game “Control against Control”?

• In general no value of the game, i.e., the result of the game depends
on which player begins, and this even if Isaacs’ condition is fulfilled
(condition is given later).

• Games “Control against Control” with value if, for n = d : the ma-
trix σ(x) is invertible and independent of (u,v): In this context Isaacs’
conditions guaranties the existence of saddle point feedback Nash equi-
librium controls (S.HAMADENE, J.-P.LEPELTIER, S.PENG).



More general situations can be treated with:

Game “Strategy against Control”:

This concept had been developed in the deterministic differential game
theory (A.FRIEDMAN, W.H.FLEMING,..) and was translated later by
W.H.FLEMING, P.E.SOUGANIDIS (1989) to the theory of stochastic
differential games.

Here: a generalization of the concept of W.H.FLEMING,
P.E.SOUGANIDIS (1989).

In recent papers by P.Cardaliaguet, C.Rainer:

Game “NSD against NSD”:

NSD - Nonanticipative Strategy with Delay; Advantage/beauty of this
concept: “symmetry” between both players.



Here: Game “Strategy against Control”:

Admissible controls, admissible strategies

Definition 1: (admissible controls for a game over the time interval
[t,T ])
• For Player I: Ut,T =: L0

F(t,T ;U);
• for Player II: Vt,T =: L0

F(t,T ;V ).

Notice: In difference to the concept by FLEMING, SOUGANIDIS, the
controls u ∈Ut,s,v ∈ Vt,s are not supposed to be independent of Ft .

Definition 2: (admissible strategies for a game over the time interval
[t,T ])
• For Player II: β : Ut,T −→ Vt,T non anticipating, i.e.,
for any F− stopping time S : Ω→ [t,T ] and any admissible controls
u1, u2 ∈Ut,T
(u1 = u2 dsdP-a.e. on [[t,S]] =⇒ β(u1) = β(u2) dsdP-a.e. on [[t,S]]).

Bt,T := {β : Ut,T → Vt,T |β is nonanticipating}.
Analogously we introduce



• for Player I: At,T := {α : Vt,T →Ut,T |α is nonanticipating}.

Value Functions:

Notice: For J(t,x,u,v) := Y t,x,u,v
t :

i) Y t,ζ,u,v
t = J(t,ζ,u,v)

(
:= J(t,x,u,v)∣∣x=ζ

)
, P-a.s., for all

ζ ∈ L2(Ft ;Rn);
ii) J(t,ζ,u,v) ∈ L2(Ω,Ft ,P) and:
|J(t,ζ,u,v)− J(t,ζ′,u,v)| ≤C|ζ−ζ′|, |J(t,ζ,u,v)| ≤C(1+ |ζ|),

P-a.s., for all ζ,ζ′ ∈ L2(Ft ;Rn), (t,u,v) ∈ [0,T ]×U×V ;

The above estimates for J(t,x,u,v) allow to introduce:

• Lower Value Function:
W (t,x) := essinfβ∈Bt,T esssupu∈Ut,T

J(t,x;u,β(u));
• Upper Value Function:

U(t,x) := esssupα∈At,T
essinfv∈Vt,T

J(t,x;α(v),v).

Remarks. • Justification of the names “upper” and “lower” value func-
tions: later we will see W ≤U ; the proof is far from being obvious and



uses the comparison principle for the associated Bellman-Isaacs equa-
tions, it will be given later.

• The esssup, essinf should be understood as ones w.r.t. a uniformly
bounded, indexed family of Ft -measurable r.v.; see: Dunford/Schwartz
(1957).

Although W,U ∈ L∞(Ω,Ft ,P) are a priori r.v., we have the following
crucial result:

Proposition 1: W (t,x) = E[W (t,x)], U(t,x) = E[U(t,x)], (t,x) ∈
[0,T ]×Rn, i.e., W and U admit a deterministic version (with which
we identify the both functions from now on).

From the estimates for J(t,x;u,v) = Y t,x;u,v
t :

Corollary. W,U : [0,T ]×Rn −→ R are such that

|W (t,x)−W (t,x′)|+ |U(t,x)−U(t,x′)| ≤C|x− x′|,
|W (t,x)|+ |U(t,x)| ≤C(1+ |x|), for all t ∈ [0,T ], x,x′ ∈ Rn.



Some Remarks preceding the proof of the proposition.

1) Concept of W.H.FLEMING, P.E.SOUGANIDIS (1989):

their running cost f (s,x,y,z) doesn’t depend on (y,z), i.e., their cost
functional is the classical one:

J(t,x;u,v) = E
[

Φ(X t,x;u,v
T )+

∫ T

t
f (s,X t,x;u,v

s ,us,vs)ds | Ft

]
More essential:

• admissible controls: u ∈ Ut
t,T := L0

Ft (t,T ;U), v ∈ Vt,T : V t
t,T :=

L0
Ft (t,T ;V ) are independent of Ft :

Ft = (F t
s )s∈[t,T ], F t

s := σ{Br−Bt , r ∈ [t,s]}∨NP, s ∈ [t,T ];

• admissible strategies: B t
t,T - the set of all non anticipating mappings

β : Ut
t,T −→ V t

t,T ; analogous definition of A t
t,T .



Their cost functional

J(t,x;u,v) := E
[

Φ(X t,x,u,v
T )+

∫ T

t
f (s,X t,x,u,v

s ,us,vs) |Ft

]
= E

[
Φ(X t,x,u,v

T )+
∫ T

t
f (s,X t,x,u,v

s ,us,vs)
]

is automatically deterministic, and so are their upper and lower value
functions:

W (t,x) := inf
β∈Bt,T

sup
u∈Ut,T

J(t,x;u,β(u)), U(t,x) := inf
α∈At,T

inf
v∈Vt,T

J(t,x;α(v),v).

We will see: if f (s,x,y,z,u,v) = f (s,x,u,v) then W = W , U = U .

Our approach in comparison with theirs:

• Proof that W, U are deterministic is not evident, but after:

• Straight forward approach without approximation by discrete
schemes, without further technical notions (like π-controls,
r-strategies), without using the Bellman-Isaacs equation for proving
the DPP:



- Direct deduction of the DPP from the definition of W,U (with the
help of Peng’s notion of backward semigroups);

- Direct deduction of the Bellman-Isaacs equations for W, U from
the DPP (with the help of a scheme of 3 BSDEs, the so-called Peng’s
BSDE method developed by him for control problems);

2) Proof that W is deterministic for control problems (see, e.g.,
S.Peng, 1997):

U ⊂ RM compact subset; σ, b, f depend only on one control;

W (t,x) := esssupu∈Ut,T
J(t,x,u)

Approximation de u ∈Ut,T in L2(Ω× [0,T ];U) by controls of the form
u0 = ∑

n
i=1 IAiu

i,(ui ∈Ut
t,T , (Ai)1≤i≤n ⊂ Ft partition of Ω);

and L2-continuity of (u→ J(t,x;u)) gives
W (t,x) := esssupu0J(t,x,u),



where
J(t,x;u0) = ∑

N
i=1 IAiJ(t,x,ui)≤ sup1≤i≤N J(t,x,ui) - deterministic.

This argument doesn’t work for SDG because of the presence of the
strategies.
New approach for the proof that W is deterministic has been needed;
even continuity of the coefficients in (u,v) is not needed anymore.

———————————————————

Proof that the lower value function is deterministic (analogous proof
for upper value function); for simplicity: f = 0, i.e.,

J(t,x;u,v) = E
[
Φ(X t,x;u,v

T ) | Ft
]

Main tool of the proof is a Girsanov transformation argument:

Ω = C0([0,T ];Rd);
Bt(ω) = ω(s), s ∈ [0,T ],ω ∈Ω, is the coordinate process.

Let Ht = {h ∈ L′20 ([0,T ];Rd) | h(s) = h(t), s ∈ [t,T ]};
for h ∈ Ht we define:



τh(ω) := ω+h, ω ∈Ω;

τh : Ω→Ω bijection; τ
−1
h = τ−h;

dPτh

dP
= Lh := exp{

∫ t

0
h′sdBs−

1
2

∫ t

0
|h′s|2ds}.

Observe: since

dX t,x;u,v
s ◦ τh = σ(X t,x;u,v

s ◦ τh,us(τh),vs(τh))dBs, s ∈ [t,T ],

we have X t,x;u,v
s ◦ τh = X t,x;u(τh),v(τh)

s , s ∈ [t,T ],u ∈Ut,T ,v ∈ Vt,T .
Consequently,

J(t,x;u,v)◦ τh = E
[
Φ(X t,x;u,v

T ◦ τh) | Ft
]

= E
[
Φ(X t,x;u(τh),v(τh)

T ) | Ft

]
= J(t,x;u(τh),v(τh)), P-a.s.

For β ∈ Bt,T : βh(u) := β(u(τh))◦ τ−h, u ∈Ut,T . Then βh ∈ Bt,T and
(u→ u(τh)) : Ut,T →Ut,T , (β→ βh) : Bt,T → Bt,T are bijections.



Hence,
W (t,x)◦ τh = essinfβ∈Bt,T esssupu∈Ut,T

(J(t,x;u,β(u))◦ τh)

= essinfβ∈Bt,T esssupu∈Ut,T
J(t,x;u(τh),β(u)◦ τh)

= essinfβ∈Bt,T esssupu∈Ut,T
J(t,x;u(τh),βh(u(τh)))

= essinfβ∈Bt,T esssupu∈Ut,T
J(t,x;u,βh(u)) = W (t,x), P-a.s.

Lemma: Let ζ ∈ L0(Ω,Ft ,P) be s.t. ζ ◦ τh = ζ, P-a.s., for all h ∈ Ht .
Then there is a real C ∈ R s.t. ζ = C, P-a.s. •
——————————————————–



Dynamic Programming Principle (DPP)

Some Preparation: Stochastic Backward Semigroup, S.Peng,1997:

Given
(t,ζ) ∈ [0,T ]×L2(Ω,Ft ,P;Rn), δ ∈ (0,T − t], u ∈Ut,t+δ, v ∈ Vt,t+δ,
we put

Gt,x;u,v
s,t+δ

[η] := Ỹs, s ∈ [t, t +δ], η ∈ L2(Ω,Ft+δ,P),
where:{

dỸs = − f (s,X t,x;u,v
s ,Ỹs, Z̃s,us,vs)ds+ Z̃t,x;u,v

s dBs, ∈ [t, t +δ],
Ỹt+δ = η;

X t,x;u,v is the solution of our doubly controlled forward SDE.

Remark:

(i) (The semigroup property) For 0≤ t ≤ s≤ s′ ≤ t +δ≤ T,

Gt,x;u,v
s,s′ [Gt,x;u,v

s′,t+δ
[η]] = Gt,x;u,v

s,t+δ
[η].

(ii) (The classical case) If f doesn’t depend on (y,z) we have the clas-
sical case of conditional expectation:



Gt,x;u,v
t,t+δ

[η] = E
[

η+
∫ t+δ

t
f (s,X t,x;u,v

s ,us,vs)ds|Ft

]
, P-a.s.

Taking now η = W (t + δ,X t,x;u,v
t+δ

) (resp., U(t + δ,X t,x;u,v
t+δ

)) it becomes
clear from the classical DPP from control problems that our DPP shall
write as follows:

Theorem 2 (DPP): For any 0≤ t < t +δ≤ T, x ∈ Rn, P-a.s.,

W (t,x) = essinf
β∈Bt,t+δ

esssup
u∈Ut,t+δ

Gt,x;u,β(u)
t,t+δ

[W (t +δ,X t,x;u,β(u)
t+δ

)];

U(t,x) = esssup
α∈At,t+δ

essinf
v∈Vt,t+δ

Gt,x;α(v),v
t,t+δ

[U(t +δ,X t,x;α(v),v
t+δ

)].

Remark: If f (x,y,z,u,v) is independent of (y,z) the above DPP writes:
W (t,x) =

essinf
β∈Bt,t+δ

esssup
u∈Ut,t+δ

E[W (t +δ,X t,x;u,β(u)
t+δ

)+
∫ t+δ

t
f (s,X t,x;u,β(u)

s ,us,vs)ds|Ft ]

analogous for U(t,x).



Proof of DPP: Direct (but rather lengthy) calculus.

With the help of the DPP and BSDE standard estimates we can prove:

Theorem 3. W (.,x) and U(.,x) are 1
2−Hölder continuous, for all x ∈

Rn: There is some C ∈ R+ such that, for every x ∈ Rn, t, t ′ ∈ [0,T ],

|W (t,x)−W (t ′,x)|+ |U(t,x)−U(t ′,x)| ≤C(1+ |x|)|t− t ′|
1
2 .

———————————————————-



Bellman-Isaacs equations. Existence theorem.

We consider the Hamiltonian

H(t,x,y, p,S,u,v)

:=
1
2

tr(σσ
T (t,x,u,v)S)+b(t,x,u,v).p+ f (t,x,y, p.σ(t,x,u,v),u,v),

(t,x,y, p,S,u,v) ∈ [0,T ]×Rn×R×Rn×Sn×U×V.

H−(t,x,y, p,S) :=supu∈U infv∈V H(t,x,y, p,S,u,v);
H+(t,x,y, p,S) :=infv∈V supu∈U H(t,x,y, p,S,u,v).

Then, in viscosity sense, we have the following Bellman-Isaacs equa-
tions:

∂tW (t,x)+H−(t,x,W,DW,D2W ) = 0, W (T,x) = Φ(x), Eq.(H−)

and
∂tU(t,x)+H+(t,x,U,DU,D2U) = 0, U(T,x) = Φ(x). Eq.(H+)

More precisely,

Theorem 4: W ∈ C`([0,T ]×Rn) is a viscosity solution of Eq.(H−),
and U ∈C`([0,T ]×Rn) is one of equation Eq.(H+).



We come after back to the proof of the existence theorem.

Theorem 5 (Comparison Principle): Let u1 ∈USC([0,T ]×Rn) be a
viscosity subsolution and u2 ∈LSC([0,T ]×Rn) a viscosity supersolu-
tion of Eq.(H−) (of Eq.(H−), resp.). Moreover, u1,u2 are supposed to
belong to the class of functions V with the following growth condition:

∃A > 0 such that, uniformly in t ∈ [0,T ],

V (t,x)exp{−A[ln |x|]2}
(

=
V (t,x)
|x|A ln |x|

)
−→ 0 as |x| →+∞.

Then u1 ≤ u2, on [0,T ]×Rn.

Corollary. Let u1 and u2 be continuous viscosity solutions of Eq.(H−)
(resp., of Eq.(H+)). Moreover, we suppose that both functions satisfy
the above growth condition. Then u1 = u2, on [0,T ]×Rn.

Remarks 1: Barles, Buckdahn, Pardoux (1997) proved that this growth
condition is the optimal one for the uniqueness of the (viscosity) solu-
tion of the heat equation.



Remarks 2: • W ∈ C`([0,T ]×Rn) (resp., U ∈ C`([0,T ]×Rn)) is the
unique viscosity solution of Eq.(H−) (resp., Eq.(H+)) in the class of
continuous functions with the above growth condition, and so in par-
ticular in Cp([0,T ]×Rn).

• Notice that H− ≤ H+; consequently, W is a viscosity subsolution of
Eq.(H+), and from the comparison principle: W ≤U . This justifies the
name “lower value function” for W and “upper value function” for U .

• If the Isaacs’ condition holds: H− = H+ on [0,T ]×Rn×R×Rn×
Sn, then the equations (H−) and (H+) are the same, and from the
uniqueness of the viscosity solution in Cp([0,T ]×Rn): W = U . One
says the game has a value.

• For f (s,x,y,z,u,v) = f (s,x,u,v), W.H.FLEMING, P.E.SOUGANIDIS
have the same Bellman-Isaacs equations as we have got. From the
uniqueness of the viscosity solutions in Cp([0,T ]×Rn):

W (t,x)
(

:= infβ∈Bt
t,T

supu∈Ut
t,T

J(t,x;u,β(u))
)

= W (t,x);

U(t,x)
(

:= infα∈At
t,T

infv∈V t
t,T

J(t,x;α(v),v)
)

= U(t,x).



Sketch of the proof of the existence theorem:

We prove that W is a continuous viscosity solution of the PDE

∂W
∂t

(t,x)+H−(t,x,W,DW,D2W ) = 0, W (T,x) = Φ(x), (3)

with
H−(t,x,y, p,S) := supu∈U infv∈V H(x,y, p,S,u,v),

H(x,y, p,S,u,v) :=
1
2

tr(σσ
T (x,u,v)S)+ f (x,y, p.σ(x,u,v),u,v),

(x,y, p,S,u,v) ∈ Rn×R×Rn×Sn×U×V (for shortness: b = 0; coeffi-
cients don’t depend on time s).

Let ϕ ∈ C3
`,b([0,T ]×Rn) be an arbitrary but fixed test function. We

define:

F(s,x,y,z,u,v) :=
∂

∂s
ϕ(s,x)+

1
2

tr(σσ
∗(x,u,v)D2

ϕ(s,x))

+ f (s,x,y+ϕ(s,x)),z+Dϕ(s,x)σ(x,u,v),u,v).



Notice:
∂

∂t
ϕ(t,x)+H−(t,x,(ϕ,Dϕ,D2

ϕ)(t,x)) =supu∈U infv∈V F(t,x,0,0,u,v).

So we have to prove that if W−ϕ≤ (resp., ≥)= (W−ϕ)(t,x) = 0 then
supu∈U infv∈V F(t,x,0,0,u,v)≥ 0 (−→ subsolution)

(resp., supu∈U infv∈V F(t,x,0,0,u,v)≤ 0 (−→ supersolution)).

Peng’s BSDE method: “Approximating BSDEs”

1st BSDE: For 0 < δ≤ T − t, u ∈Ut,t+δ, v ∈ Vt,t+δ:

dY 1,u,v,δ
s =−F(s,X t,x,u,v

s ,Y 1,u,v,δ
s ,Z1,u,v,δ

s ,us,vs)ds+Z1,u,v,δ
s dBs,

Y 1,u,v,δ
t+δ

= 0.

Notice: Y 1,u,v,δ
s = Gt,x,u,v

s,t+δ
[ϕ(t +δ,X t,x,u,v

t+δ
)]−ϕ(s,X t,x,u,v

s ), s ∈ [t, t +δ], P-
a.s.

The 1st BSDE translates the DPP into BSDE. Our objective: To ap-
proximate the 1st BSDE by the 2nd BSDE, and the 2nd BSDE by a
deterministic ordinary differential equation with terminal condition.



2nd BSDE: For 0 < δ≤ T − t small, u ∈Ut,t+δ, v ∈ Vt,t+δ:

dY 2,u,v,δ
s =−F(s,x,Y 2,u,v,δ

s ,Z2,u,v,δ
s ,us,vs)ds+Z2,u,v,δ

s dBs, s ∈ [t, t +δ],

Y 2,u,v,δ
t+δ

= 0.

Notice: ∃C ∈ R+ s.t., for all δ > 0, u ∈Ut,t+δ,v ∈ Vt,t+δ:

|Y 1,u,v,δ
t −Y 2,u,v,δ

t | ≤Cδ
3/2, P-a.s.

Let F0(s,x,y,z) = supu∈U infv∈V F(s,x,y,z,u,v).

3rd BSDE: For 0 < δ≤ T − t small:

dY 0,δ
s =−F0(s,x,Y

0,δ
s ,0)ds

(
+0dBs

)
, s ∈ [t, t +δ],

Y 0,δ
t+δ

= 0.

Notice: esssupu∈Ut,t+δ
essinfv∈Vt,t+δ

Y 2,u,v,δ
t = Y 0,δ

t .

————————————————–



These 3 BSDEs allow to prove that W is sub-and supersolution; here:
proof that W is a supersolution:

Let 0 = (W −ϕ)(t,x)≤W −ϕ. Then ϕ≤W and from DPP

0 = W (t,x)−ϕ(t,x)
=essinfβ∈Bt,T esssupu∈Ut,T

(
Gt,x,u,β(u)

t,t+δ
(W (t +δ,X t,x;u,β(u)

t+δ
))−ϕ(t,x)

)
≥essinfβ∈Bt,T esssupu∈Ut,T

(
(Gt,x,u,β(u)

t,t+δ
(ϕ(t +δ,X t,x;u,β(u)

t+δ
))−ϕ(t,x)

)
=essinfβ∈Bt,T esssupu∈Ut,T Y 1,δ,u,β(u)

t

≥essinfβ∈Bt,T esssupu∈Ut,T Y 2,δ,u,β(u)
t −Cδ3/2

≥essinfβ∈Bt,T

(
esssupu∈Ut,T essinfv∈Vt,T

Y 2,δ,u,v
t

)
−Cδ3/2

= Y 0,δ
t −Cδ3/2, from where

C
√

δ≥ 1
δ

Y 0,δ
t =

1
δ

∫ t+δ

t
F0(s,x,Y 0,δ

s ,0)ds

−→ F0(t,x,0,0) = sup
u∈U

inf
v∈V

F(s,x,0,0,u,v).

Consequently, W is a supersolution of Eq.(H−).



Some Remarks on Extensions

Above: cost functional J(t,x;u,v) = Y t,x;u,v
t is defined through the so-

lution of a BSDE.

Extensions:
i) J(t,x;u,v) = Y t,x;u,v

t is defined through the solution of a BSDE re-
flected at one barrier;
ii) J(t,x;u,v) = Y t,x;u,v

t is defined through the solution of a reflected
BSDE with two barriers.

Some Remarks on i): BSDEs with reflection (RBSDE) at one barrier,
El Karoui, Kapoudjian, Pardoux, Peng, Quenez (1997):

For (t,ζ) ∈ [0,T ]×L2(Ω,Ft ,P;Rn), (u,v) ∈Ut,T× ∈ Vt,T

dY t,ζ;u,v
s =− f (s,X t,ζ;u,v

s ,Y t,ζ;u,v
s ,Zt,ζ;u,v

s ,us,vs)ds+Zt,ζ;u,v
s dBs−dKt,ζ;u,v

s ,

Y t,ζ;u,v
s ≥ h(s,X t,ζ;u,v

s ), (Y t,ζ;u,v
s −h(s,X t,ζ;u,v

s ))dKt,ζ;u,v
s = 0,

Kt,ζ;u,v continuous increasing process, Kt,ζ;u,v
t = 0.

where h : [0,T ]×Rn→ R is continuous, Lipschitz in x, unif. in t;
compatibility assumption: Φ(x)≥ h(T,x), x ∈ Rn.



Main difficulties we had to solve:

• RBSDE standard estimates give only:

|Y t,ζ;u,v
t −Y t,ζ′;u,v| ≤C(1+ |ζ|+ |ζ′|)1/2|ζ−ζ′|1/2

Improvement of this standard estimate for RBSDEs with one and also
with two reflecting barriers:

|Y t,ζ;u,v
t −Y t,ζ′;u,v| ≤C|ζ−ζ′|;

(this sharper inequality: crucial for the proof of the DPP and of the
proof that the value functions are viscosity solutions of the associated
Bellman-Isaacs equations with obstacle)
Proof: combines estimates for RBSDEs with the same barrier and com-
parison theorem for BSDEs.

• Proof of the DPP: definition of the backward stochastic semigroup
with the help of the RBSDE imposes that the estimates inside the
backward stochastic semigroup have to respect the barrier (this makes
the proof for BSDEs with two reflecting barriers even more delicate)



• Proof that W is a viscosity solution of the Bellman-Isaacs equation
with obstacle.
min

(
W (t,x)−h(t,x),−∂tW (t,x)−H−(t,x,(W,DW,D2W )(t,x)

)
= 0,

W (T,x) = Φ(x), x ∈ Rn.

Proof:

- Penalization method: mY t,ζ;u,v
s ↑ Y t,ζ;u,v

s ; Jm(t,x;u,v) :=m Y t,ζ;u,v
t ;

- Wm(t,x) :=essinfβ∈Bt,T esssupu∈Ut,T Jm(t,x;u,v) unique viscosity solu-
tion of the associated penalized Bellman-Isaacs equation;
- W1 ≤W2 ≤ ·· · ≤Wm ↑ W̃ ≤W :
- W̃ ∈ LSC`([0,T ]×Rn) supersolution of the above Bellman-Isaacs
equation with obstacle;
- W ∈ C`([0,T ]×Rn) subsolution of the above equation with obsta-
cle: nontrivial combination of Peng’s BSDE method with DPP, the
approach differs from that for SDG without reflection;
- proof of the comparison principle; thus: W ≤ W̃ .
Consequently: W (= W̃ ) is the unique viscosity solution of the above
equation with obstacle.


