Repeated games and evolution equations in discrete and continuous time

G. Vigeral

Équipe Combinatoire et Optimisation Université Pierre et Marie Curie

CEREMADE Université de Paris-Dauphine

24 novembre 2008 Dynamic games, Differential games III

Table of contents

Introduction

- Stochastic Games
- Operator Approach
- Statement of the main problem

- The case of v_n
- The case of v_λ

Table of contents

Introduction

- Stochastic Games
- Operator Approach
- Statement of the main problem

2 Discrete/continuous
 • The case of ν_n
 • The case of ν_λ

- Ω is the set of states
- A (resp. B) is the action state of J_1 (resp. J_2)
- $g: A \times B \times \Omega \rightarrow \mathbb{R}$ is the payoff function, which will be assumed bounded.
- $\rho : A \times B \times \Omega \rightarrow \Delta(\Omega)$ is the transition probability.

Ω is the set of states

- A (resp. B) is the action state of J_1 (resp. J_2)
- $g: A \times B \times \Omega \rightarrow \mathbb{R}$ is the payoff function, which will be assumed bounded.
- $\rho : A \times B \times \Omega \rightarrow \Delta(\Omega)$ is the transition probability.

- Ω is the set of states
- A (resp. B) is the action state of J_1 (resp. J_2)
- $g: A \times B \times \Omega \rightarrow \mathbb{R}$ is the payoff function, which will be assumed bounded.
- $\rho : A \times B \times \Omega \rightarrow \Delta(\Omega)$ is the transition probability.

- Ω is the set of states
- A (resp. B) is the action state of J_1 (resp. J_2)
- $g: A \times B \times \Omega \rightarrow \mathbb{R}$ is the payoff function, which will be assumed bounded.
- $\rho : A \times B \times \Omega \rightarrow \Delta(\Omega)$ is the transition probability.

- Ω is the set of states
- A (resp. B) is the action state of J_1 (resp. J_2)
- $g: A \times B \times \Omega \rightarrow \mathbb{R}$ is the payoff function, which will be assumed bounded.
- $\rho: A \times B \times \Omega \rightarrow \Delta(\Omega)$ is the transition probability.

- the players observe the current state ω_i .
- According to the past history, J₁ (resp. J₂) choose a mixed strategy x_i in Δ(A) (resp. y_i in Δ(B)).
- An action *a_i* of player 1 (resp. *b_i* of player 2) is drawn according to his mixed strategy *x_i* (resp. *y_i*).
- This gives the payoff at stage $i g_i = g(a_i, b_i, \omega_i)$.
- A new state ω_{i+1} is drawn according to $\rho(a_i, b_i, \omega_i)$.

- the players observe the current state ω_i .
- According to the past history, J₁ (resp. J₂) choose a mixed strategy x_i in Δ(A) (resp. y_i in Δ(B)).
- An action *a_i* of player 1 (resp. *b_i* of player 2) is drawn according to his mixed strategy *x_i* (resp. *y_i*).
- This gives the payoff at stage $i g_i = g(a_i, b_i, \omega_i)$.
- A new state ω_{i+1} is drawn according to $\rho(a_i, b_i, \omega_i)$.

- the players observe the current state ω_i .
- According to the past history, J₁ (resp. J₂) choose a mixed strategy x_i in Δ(A) (resp. y_i in Δ(B)).
- An action a_i of player 1 (resp. b_i of player 2) is drawn according to his mixed strategy x_i (resp. y_i).
- This gives the payoff at stage $i g_i = g(a_i, b_i, \omega_i)$.
- A new state ω_{i+1} is drawn according to $\rho(a_i, b_i, \omega_i)$.

- the players observe the current state ω_i .
- According to the past history, J₁ (resp. J₂) choose a mixed strategy x_i in Δ(A) (resp. y_i in Δ(B)).
- An action a_i of player 1 (resp. b_i of player 2) is drawn according to his mixed strategy x_i (resp. y_i).
- This gives the payoff at stage $i g_i = g(a_i, b_i, \omega_i)$.
- A new state ω_{i+1} is drawn according to $\rho(a_i, b_i, \omega_i)$.

- the players observe the current state ω_i .
- According to the past history, J₁ (resp. J₂) choose a mixed strategy x_i in Δ(A) (resp. y_i in Δ(B)).
- An action a_i of player 1 (resp. b_i of player 2) is drawn according to his mixed strategy x_i (resp. y_i).
- This gives the payoff at stage $i g_i = g(a_i, b_i, \omega_i)$.
- A new state ω_{i+1} is drawn according to $\rho(a_i, b_i, \omega_i)$.

- the players observe the current state ω_i .
- According to the past history, J₁ (resp. J₂) choose a mixed strategy x_i in Δ(A) (resp. y_i in Δ(B)).
- An action a_i of player 1 (resp. b_i of player 2) is drawn according to his mixed strategy x_i (resp. y_i).
- This gives the payoff at stage $i g_i = g(a_i, b_i, \omega_i)$.
- A new state ω_{i+1} is drawn according to $\rho(a_i, b_i, \omega_i)$.

Example

Example

There are several ways of evaluating a payoff for a given infinite history :

- $\frac{1}{n}\sum_{i=1}^{n}g_{i}$ is the payoff of the *n*-stage game
- $\lambda \sum_{i=1}^{+\infty} (1-\lambda)^{i-1} g_i$ is the payoff of the λ -discounted game.

If those games have a value for a given initial state ω , we denote them by $v_n(\omega)$ and $v_\lambda(\omega)$ respectively. Thus v_n and v_λ are functions from Ω into \mathbb{R} .

There are several ways of evaluating a payoff for a given infinite history :

• $\frac{1}{n}\sum_{i=1}^{n}g_i$ is the payoff of the *n*-stage game

• $\lambda \sum_{i=1}^{+\infty} (1-\lambda)^{i-1} g_i$ is the payoff of the λ -discounted game. If those games have a value for a given initial state ω , we denote them by $v_n(\omega)$ and $v_{\lambda}(\omega)$ respectively. Thus v_n and v_{λ} are functions from Ω into \mathbb{R} .

There are several ways of evaluating a payoff for a given infinite history :

- $\frac{1}{n}\sum_{i=1}^{n}g_{i}$ is the payoff of the *n*-stage game
- $\lambda \sum_{i=1}^{+\infty} (1-\lambda)^{i-1} g_i$ is the payoff of the λ -discounted game.

If those games have a value for a given initial state ω , we denote them by $v_n(\omega)$ and $v_\lambda(\omega)$ respectively. Thus v_n and v_λ are functions from Ω into \mathbb{R} .

There are several ways of evaluating a payoff for a given infinite history :

• $\frac{1}{n}\sum_{i=1}^{n}g_{i}$ is the payoff of the *n*-stage game

• $\lambda \sum_{i=1}^{+\infty} (1-\lambda)^{i-1} g_i$ is the payoff of the λ -discounted game.

If those games have a value for a given initial state ω , we denote them by $v_n(\omega)$ and $v_\lambda(\omega)$ respectively. Thus v_n and v_λ are functions from Ω into \mathbb{R} . The main problem which arises is the study of the behavior of v_n when $n \to +\infty$ and of v_λ when $\lambda \to 0$. Does the limits exist, and are they the same ?

We know that the answers to both questions are positive in several cases :

- Finite stochastic games (Ω , *A* and *B* finite)
- Absorbing games
- Recursive games
- Games with incomplete information and standard signaling

The main problem which arises is the study of the behavior of v_n when $n \to +\infty$ and of v_λ when $\lambda \to 0$. Does the limits exist, and are they the same ? We know that the answers to both questions are positive in several cases :

- Finite stochastic games (Ω , A and B finite)
- Absorbing games
- Recursive games
- Games with incomplete information and standard signaling

Table of contents

Introduction

- Stochastic Games
- Operator Approach
- Statement of the main problem

2 Discrete/continuous
 • The case of v_n
 • The case of v_λ

Let $\Gamma = (\Omega, A, B, g, \rho)$ be a stochastic game and let \mathscr{F} be a set of bounded functions from Ω into \mathbb{R} . The Shapley operator Ψ of the game is defined by

$$\Psi(f)(\boldsymbol{\omega}) = Val_{\Delta(A) \times \Delta(B)} \left\{ g(x, y, \boldsymbol{\omega}) + E_{\rho(x, y, \boldsymbol{\omega})}(f) \right\}$$

=
$$\sup_{x \in \Delta(A)} \inf_{y \in \Delta(B)} \left\{ g(x, y, \boldsymbol{\omega}) + E_{\rho(x, y, \boldsymbol{\omega})}(f) \right\}$$

=
$$\inf_{y \in \Delta(B)} \sup_{x \in \Delta(A)} \left\{ g(x, y, \boldsymbol{\omega}) + E_{\rho(x, y, \boldsymbol{\omega})}(f) \right\}.$$

We will assume that Ψ is well defined by these equations and maps \mathscr{F} into itself.

Let $\Gamma = (\Omega, A, B, g, \rho)$ be a stochastic game and let \mathscr{F} be a set of bounded functions from Ω into \mathbb{R} . The Shapley operator Ψ of the game is defined by

$$\Psi(f)(\boldsymbol{\omega}) = Val_{\Delta(A) \times \Delta(B)} \left\{ g(x, y, \boldsymbol{\omega}) + E_{\rho(x, y, \boldsymbol{\omega})}(f) \right\}$$

=
$$\sup_{x \in \Delta(A)} \inf_{y \in \Delta(B)} \left\{ g(x, y, \boldsymbol{\omega}) + E_{\rho(x, y, \boldsymbol{\omega})}(f) \right\}$$

=
$$\inf_{y \in \Delta(B)} \sup_{x \in \Delta(A)} \left\{ g(x, y, \boldsymbol{\omega}) + E_{\rho(x, y, \boldsymbol{\omega})}(f) \right\}.$$

We will assume that Ψ is well defined by these equations and maps $\mathscr F$ into itself.

The family of operators $\Phi(\alpha, \cdot)$

From Ψ we can define a family of operators $\Phi(\alpha,\cdot)$ for $\alpha\in]0,1]$ by the formula

$$\Phi(\alpha, f)(\omega) = \alpha \Psi\left(\frac{1-\alpha}{\alpha}f\right)(\omega)$$

$$= Val_{\Delta(A) \times \Delta(B)} \left\{ \alpha g(x, y, \omega) + (1-\alpha)E_{\rho(x, y, \omega)}(f) \right\}$$

$$= \sup_{x \in \Delta(A)} \inf_{y \in \Delta(B)} \left\{ \alpha g(x, y, \omega) + (1-\alpha)E_{\rho(x, y, \omega)}(f) \right\}$$

$$= \inf_{y \in \Delta(B)} \sup_{x \in \Delta(A)} \left\{ \alpha g(x, y, \omega) + (1-\alpha)E_{\rho(x, y, \omega)}(f) \right\}$$

The family of operators $\Phi(\alpha, \cdot)$

From Ψ we can define a family of operators $\Phi(\alpha,\cdot)$ for $\alpha\in]0,1]$ by the formula

$$\Phi(\alpha, f)(\omega) = \alpha \Psi\left(\frac{1-\alpha}{\alpha}f\right)(\omega)$$

$$= Val_{\Delta(A) \times \Delta(B)} \left\{ \alpha g(x, y, \omega) + (1-\alpha)E_{\rho(x, y, \omega)}(f) \right\}$$

$$= \sup_{x \in \Delta(A)} \inf_{y \in \Delta(B)} \left\{ \alpha g(x, y, \omega) + (1-\alpha)E_{\rho(x, y, \omega)}(f) \right\}$$

$$= \inf_{y \in \Delta(B)} \sup_{x \in \Delta(A)} \left\{ \alpha g(x, y, \omega) + (1-\alpha)E_{\rho(x, y, \omega)}(f) \right\}$$

Properties of Ψ and $\Phi(\alpha, \cdot)$

The operator $\boldsymbol{\Psi}$ is topical : it satisfies the two following properties :

- Monotonicity $f_1 \leq f_2 \implies \Psi(f_1) \leq \Psi(f_2)$ • Homogeneity $c \in \mathbb{R} \implies \Psi(f+c) = \Psi(f) + c$
- These two properties implies that Ψ is nonexpansive for the

nfinite norm

 $\|\Psi(f) - \Psi(g)\|_{\infty} \le \|f - g\|_{\infty}$

$$\|\Phi(\alpha, f) - \Phi(\alpha, g)\|_{\infty} \le (1 - \alpha) \|f - g\|_{\infty}$$

Properties of Ψ and $\Phi(\alpha, \cdot)$

The operator $\boldsymbol{\Psi}$ is topical : it satisfies the two following properties :

- Monotonicity $f_1 \leq f_2 \implies \Psi(f_1) \leq \Psi(f_2)$
- Homogeneity $c \in \mathbb{R} \implies \Psi(f+c) =$

These two properties implies that Ψ is nonexpansive for the infinite norm

 $|\Psi(f) - \Psi(g)||_{\infty} \le ||f - g||_{\infty}$

$$\|\Phi(\alpha, f) - \Phi(\alpha, g)\|_{\infty} \le (1 - \alpha) \|f - g\|_{\infty}$$

The operator $\boldsymbol{\Psi}$ is topical : it satisfies the two following properties :

Introduction

• Monotonicity $f_1 \leq f_2 \implies \Psi(f_1) \leq \Psi(f_2)$

Operator Approach

• Homogeneity $c \in \mathbb{R} \implies \Psi(f+c) = \Psi(f) + c$

These two properties implies that Ψ is nonexpansive for the infinite norm

$$\|\Psi(f) - \Psi(g)\|_{\infty} \le \|f - g\|_{\infty}$$

$$\|\Phi(\alpha, f) - \Phi(\alpha, g)\|_{\infty} \le (1 - \alpha) \|f - g\|_{\infty}$$

The operator $\boldsymbol{\Psi}$ is topical : it satisfies the two following properties :

Introduction

• Monotonicity $f_1 \leq f_2 \implies \Psi(f_1) \leq \Psi(f_2)$

Operator Approach

• Homogeneity $c \in \mathbb{R} \implies \Psi(f+c) = \Psi(f) + c$

These two properties implies that $\boldsymbol{\Psi}$ is nonexpansive for the infinite norm

$$\|\Psi(f)-\Psi(g)\|_{\infty}\leq \|f-g\|_{\infty}$$

$$\|\Phi(\alpha, f) - \Phi(\alpha, g)\|_{\infty} \le (1 - \alpha) \|f - g\|_{\infty}$$

The operator $\boldsymbol{\Psi}$ is topical : it satisfies the two following properties :

Introduction

• Monotonicity $f_1 \leq f_2 \implies \Psi(f_1) \leq \Psi(f_2)$

Operator Approach

• Homogeneity $c \in \mathbb{R} \implies \Psi(f+c) = \Psi(f) + c$

These two properties implies that Ψ is nonexpansive for the infinite norm

$$\|\Psi(f) - \Psi(g)\|_{\infty} \le \|f - g\|_{\infty}$$

$$\|\Phi(\alpha, f) - \Phi(\alpha, g)\|_{\infty} \le (1 - \alpha) \|f - g\|_{\infty}$$

$$v_n = \Phi\left(\frac{1}{n}, v_{n-1}\right) = \frac{\Psi^n(0)}{n}$$

 $v_{\lambda} = \Phi(\lambda, v_{\lambda}) = \Phi^{\infty}(\lambda, 0)$

$$v_n = \Phi\left(\frac{1}{n}, v_{n-1}\right) = \frac{\Psi^n(0)}{n}$$

 $v_{\lambda} = \Phi(\lambda, v_{\lambda}) = \Phi^{\infty}(\lambda, 0)$

$$v_n = \Phi\left(\frac{1}{n}, v_{n-1}\right) = \frac{\Psi^n(0)}{n}$$

$$v_{\lambda} = \Phi(\lambda, v_{\lambda}) = \Phi^{\infty}(\lambda, 0)$$

$$v_n = \Phi\left(\frac{1}{n}, v_{n-1}\right) = \frac{\Psi^n(0)}{n}$$

$$v_{\lambda} = \Phi(\lambda, v_{\lambda}) = \Phi^{\infty}(\lambda, 0)$$
Table of contents

Introduction

- Stochastic Games
- Operator Approach
- Statement of the main problem

2 Discrete/continuous
 • The case of v_n
 • The case of v_λ

Generalization of framework

Let (X, ||||) be a Banach space, and let $\Psi : X \to X$ be an nonexpansive operator.

Let us define the family of contracting operators $\Phi(\alpha, \cdot) : X \to X$ by the formula

$$\Phi(\alpha, f) = \alpha \Psi\left(\frac{1-\alpha}{\alpha}f\right)$$

and then let us define the elements v_n and v_λ of X by the formulas

$$v_n = \Phi\left(\frac{1}{n}, v_{n-1}\right) = \frac{\Psi^n(0)}{n}$$
$$v_\lambda = \Phi(\lambda, v_\lambda) = \Phi^\infty(\lambda, 0)$$

Generalization of framework

Let (X, ||||) be a Banach space, and let $\Psi : X \to X$ be an nonexpansive operator.

Let us define the family of contracting operators $\Phi(\alpha, \cdot): X \to X$ by the formula

$$\Phi(\alpha, f) = \alpha \Psi\left(\frac{1-\alpha}{\alpha}f\right)$$

and then let us define the elements v_n and v_λ of X by the formulas

$$v_n = \Phi\left(\frac{1}{n}, v_{n-1}\right) = \frac{\Psi^n(0)}{n}$$
$$v_\lambda = \Phi(\lambda, v_\lambda) = \Phi^\infty(\lambda, 0)$$

Generalization of framework

Let (X, ||||) be a Banach space, and let $\Psi : X \to X$ be an nonexpansive operator.

Let us define the family of contracting operators $\Phi(\alpha,\cdot):X\to X$ by the formula

$$\Phi(\alpha, f) = \alpha \Psi\left(\frac{1-\alpha}{\alpha}f\right)$$

and then let us define the elements v_n and v_λ of *X* by the formulas

$$v_n = \Phi\left(\frac{1}{n}, v_{n-1}\right) = \frac{\Psi^n(0)}{n}$$
$$v_\lambda = \Phi(\lambda, v_\lambda) = \Phi^\infty(\lambda, 0)$$

Questions

We now settle the three following questions :

- Does $\lim_{n \to +\infty} v_n$ exist ?
- Does $\lim_{\lambda \to 0} v_{\lambda}$ exist ?
- Are those two limits equal ?

- when Ψ is a topical function from \mathbb{R}^2 into itself
- and so in particular when Ψ is the Shapley operator of any 2 state game
- when Ψ is the Shapley operator of any 3 state compact game.

- when Ψ is a topical function from \mathbb{R}^2 into itself
- and so in particular when Ψ is the Shapley operator of any 2 state game
- when Ψ is the Shapley operator of any 3 state compact game.

- when Ψ is a topical function from \mathbb{R}^2 into itself
- and so in particular when Ψ is the Shapley operator of any 2 state game
- when Ψ is the Shapley operator of any 3 state compact game.

- when Ψ is a topical function from \mathbb{R}^2 into itself
- and so in particular when Ψ is the Shapley operator of any 2 state game
- when Ψ is the Shapley operator of any 3 state compact game.

Positive results

There are also positive results about the convergence of the norm of the values :

Theorem (Kohlberg Neyman)

It is always true that

$$\lim_{n \to +\infty} \|v_n\| = \lim_{\lambda \to 0} \|v_\lambda\| = \inf_{x \in X} \|\Psi(x) - x\|$$

Theorem (Gaubert Gunawardena)

Furthermore, if Ψ is the Shapley operator of a game, then

$$\lim_{n \to +\infty} \mathbf{t}(v_n) = \lim_{\lambda \to 0} \mathbf{t}(v_\lambda) = \inf_{x \in X} \mathbf{t}(\Psi(x) - x)$$

where $\mathbf{t}(x) = \sup_{\boldsymbol{\omega} \in \Omega} x(\boldsymbol{\omega})$.

Positive results

There are also positive results about the convergence of the norm of the values :

Theorem (Kohlberg Neyman)

It is always true that

$$\lim_{n \to +\infty} \|v_n\| = \lim_{\lambda \to 0} \|v_\lambda\| = \inf_{x \in X} \|\Psi(x) - x\|$$

Theorem (Gaubert Gunawardena)

Furthermore, if Ψ is the Shapley operator of a game, then

$$\lim_{n \to +\infty} \mathbf{t}(v_n) = \lim_{\lambda \to 0} \mathbf{t}(v_\lambda) = \inf_{x \in X} \mathbf{t}(\Psi(x) - x)$$

where $\mathbf{t}(x) = \sup_{\boldsymbol{\omega} \in \Omega} x(\boldsymbol{\omega})$.

Positive results

There are also positive results about the convergence of the norm of the values :

Theorem (Kohlberg Neyman)

It is always true that

$$\lim_{n \to +\infty} \|v_n\| = \lim_{\lambda \to 0} \|v_\lambda\| = \inf_{x \in X} \|\Psi(x) - x\|$$

Theorem (Gaubert Gunawardena)

Furthermore, if Ψ is the Shapley operator of a game, then

$$\lim_{n \to +\infty} \mathbf{t}(v_n) = \lim_{\lambda \to 0} \mathbf{t}(v_\lambda) = \inf_{x \in X} \mathbf{t}(\Psi(x) - x)$$

where $\mathbf{t}(x) = \sup_{\boldsymbol{\omega} \in \Omega} x(\boldsymbol{\omega})$.

The answer to one of the three question may be negative, for example :

- if the norm of X* isn't Fréchet-differentiable, then there is Ψ such that both v_n and v_λ diverge.
- In particular, there is a 3 state game (but with non-bounded payoff) such that neither v_n nor v_λ converge.
- There is a one-player game, with $\Omega = \mathbb{N}^2$ and |A| = 2 such that v_n and v_λ converge, but to two different limits.

The answer to one of the three question may be negative, for example :

- if the norm of X* isn't Fréchet-differentiable, then there is Ψ such that both v_n and v_λ diverge.
- In particular, there is a 3 state game (but with non-bounded payoff) such that neither v_n nor v_λ converge.
- There is a one-player game, with $\Omega = \mathbb{N}^2$ and |A| = 2 such that v_n and v_λ converge, but to two different limits.

The answer to one of the three question may be negative, for example :

- if the norm of X* isn't Fréchet-differentiable, then there is Ψ such that both v_n and v_λ diverge.
- In particular, there is a 3 state game (but with non-bounded payoff) such that neither v_n nor v_λ converge.
- There is a one-player game, with Ω = N² and |A| = 2 such that v_n and v_λ converge, but to two different limits.

If we put in ordinate the dimension of *X* (that is the number of states if we are in the case of a game), then we have the following answer :

	Nonexpansive	Shapley	Compact game	Finite game
1	Y	Y	Y	Y
2	N	Y	Y	Y
3	N	N	Y	Y
4+	N	N	?	Y
$+\infty$	N	N	N	N

Table of contents

1) Introduction

- Stochastic Games
- Operator Approach
- Statement of the main problem

Discrete/continuous
 The case of v_n

• The case of v_{λ}

Evolution equation related to V_n

Let us denote $V_n = nv_n = \Psi^n(0) = \Psi(V_{n-1})$ and $A = I - \Psi$ We consider the differential equation

$$U(t) + U'(t) = \Psi(U(t)) \quad ; \quad U(0) = U_0 \in X.$$
(1)

that is

$$U'(t) = -A(U(t))$$
; $U(0) = U_0 \in X.$ (2)

Notice that A is a maximal monotone operator. Equation A is usually studied in Hilbert space and assuming that $A^{-1}(0) \neq \emptyset$ but here this is not the case.

The case of v_n

Evolution equation related to V_n

Let us denote $V_n = nv_n = \Psi^n(0) = \Psi(V_{n-1})$ and $A = I - \Psi$ We consider the differential equation

$$U(t) + U'(t) = \Psi(U(t)) \quad ; \quad U(0) = U_0 \in X.$$
(1)

$$U'(t) = -A(U(t))$$
; $U(0) = U_0 \in X.$ (2)

Evolution equation related to V_n

Let us denote $V_n = nv_n = \Psi^n(0) = \Psi(V_{n-1})$ and $A = I - \Psi$ We consider the differential equation

$$U(t) + U'(t) = \Psi(U(t)) \quad ; \quad U(0) = U_0 \in X.$$
(1)

that is

$$U'(t) = -A(U(t))$$
; $U(0) = U_0 \in X.$ (2)

Notice that *A* is a maximal monotone operator. Equation *A* is usually studied in Hilbert space and assuming that $A^{-1}(0) \neq \emptyset$ but here this is not the case.

Evolution equation related to v_n

Proposition

The solution of (1) satisfies

$$||U(n) - V_n|| \le ||U_0|| + \sqrt{n} \cdot ||\Psi(0)||.$$

$$\left\|\frac{U(n)}{n}-v_n\right\|\to 0.$$

Corollary

Let $\tau(t) = t + \ln(1+t)$, and let *u* be the solution of the evolution equation

$$u(t) + u'(t) = \Phi\left(\frac{1}{2 + \tau^{-1}(t)}, u(t)\right).$$

Then $||u(n) - v_n|| \to 0$.

The case of v_n

Evolution equation related to v_n

Proposition

The solution of (1) satisfies

$$||U(n) - V_n|| \le ||U_0|| + \sqrt{n} \cdot ||\Psi(0)||.$$

$$\left\|\frac{U(n)}{n}-v_n\right\|\to 0.$$

Corollary

Let $\tau(t) = t + \ln(1+t)$, and let *u* be the solution of the evolution equation

$$u(t) + u'(t) = \Phi\left(\frac{1}{2 + \tau^{-1}(t)}, u(t)\right).$$

Then $||u(n) - v_n|| \to 0$.

Eulerian exponential formula

In addition to the traditional exponential formula for maximal monotone operators

$$U(t) = \lim_{n \to +\infty} \left(Id + \frac{t}{n}A \right)^{-n} (U_0)$$

we also get an "Eulerian" exponential formula

Proposition

$$\forall t \ge 0, \ U(t) = \lim_{n \to +\infty} \left(Id - \frac{t}{n} A \right)^n (U_0)$$

If λ_n is a sequence of reals in]0,1], let us define W_n by

$$\frac{W_n - W_{n-1}}{\lambda_n} = -A(W_{n-1}).$$

$$W_n = (1 - \lambda_n) W_{n-1} + \lambda_n \Psi(W_n)$$

We denote $\sigma_n = \sum_{i=1}^n \lambda_i$; $\tau_n = \sum_{i=1}^n \lambda_i^2$.

Proposition

If W_n and \widetilde{W}_n are defined from λ_n and $\widetilde{\lambda}_n$, then

$$\begin{aligned} \left\| W_k - \widetilde{W}_l \right\| &\leq \| W_0 \| + \| \widetilde{W}_0 \| + \| \Psi(0) \| \sqrt{(\sigma_k - \widetilde{\sigma}_l)^2 + \tau_k + \widetilde{\tau}_l} \\ \frac{W_k - U(\sigma_k) \|}{\sigma_k} &\leq \frac{\| W_0 \| + \| U_0 \|}{\sigma_k} + \frac{\| \Psi(0) \|}{\| \sqrt{\sigma_k} \|}. \end{aligned}$$

If λ_n is a sequence of reals in]0,1], let us define W_n by

$$\frac{W_n - W_{n-1}}{\lambda_n} = -A(W_{n-1}).$$

$$W_n = (1 - \lambda_n) W_{n-1} + \lambda_n \Psi(W_n)$$

We denote $\sigma_n = \sum_{i=1}^n \lambda_i$; $\tau_n = \sum_{i=1}^n \lambda_i^2$.

Proposition

If W_n and \widetilde{W}_n are defined from λ_n and $\overline{\lambda}_n$, then

$$\begin{aligned} \left\| W_k - \widetilde{W}_l \right\| &\leq \| W_0 \| + \| \widetilde{W}_0 \| + \| \Psi(0) \| \sqrt{(\sigma_k - \widetilde{\sigma}_l)^2 + \tau_k + \widetilde{\tau}_l} \\ \frac{W_k - U(\sigma_k) \|}{\sigma_k} &\leq \frac{\| W_0 \| + \| U_0 \|}{\sigma_k} + \frac{\| \Psi(0) \|}{\| \sqrt{\sigma_k} \|}. \end{aligned}$$

If λ_n is a sequence of reals in]0,1], let us define W_n by

$$\frac{W_n - W_{n-1}}{\lambda_n} = -A(W_{n-1}).$$

$$W_n = (1 - \lambda_n) W_{n-1} + \lambda_n \Psi(W_n)$$

We denote $\sigma_n = \sum_{i=1}^n \lambda_i$; $\tau_n = \sum_{i=1}^n \lambda_i^2$.

Proposition

If W_n and \widetilde{W}_n are defined from λ_n and $\widetilde{\lambda}_n$, then

$$\begin{aligned} \left\| W_k - \widetilde{W}_l \right\| &\leq \| W_0 \| + \| \widetilde{W}_0 \| + \| \Psi(0) \| \sqrt{(\sigma_k - \widetilde{\sigma}_l)^2 + \tau_k + \widetilde{\tau}_l} \\ \frac{\| W_k - U(\sigma_k) \|}{\sigma_k} &\leq \frac{\| W_0 \| + \| U_0 \|}{\sigma_k} + \frac{\| \Psi(0) \|}{\| \sqrt{\sigma_k} \|}. \end{aligned}$$

If λ_n is a sequence of reals in]0,1], let us define W_n by

$$\frac{W_n - W_{n-1}}{\lambda_n} = -A(W_{n-1}).$$

$$W_n = (1 - \lambda_n) W_{n-1} + \lambda_n \Psi(W_n)$$

We denote $\sigma_n = \sum_{i=1}^n \lambda_i$; $\tau_n = \sum_{i=1}^n \lambda_i^2$.

Proposition

If W_n and \widetilde{W}_n are defined from λ_n and $\widetilde{\lambda}_n$, then

$$\frac{\left\|W_{k}-\widetilde{W}_{l}\right\| \leq \|W_{0}\|+\|\widetilde{W}_{0}\|+\|\Psi(0)\|\sqrt{(\sigma_{k}-\widetilde{\sigma}_{l})^{2}+\tau_{k}+\widetilde{\tau}_{l}} \\ \frac{\|W_{k}-U(\sigma_{k})\|}{\sigma_{k}} \leq \frac{\|W_{0}\|+\|U_{0}\|}{\sigma_{k}}+\frac{\|\Psi(0)\|}{\|\sqrt{\sigma_{k}}\|}.$$

The case of v_{λ}

Table of contents

- Stochastic Games
- Operator Approach
- Statement of the main problem

• The case of v_{λ}

When λ is fixed

Proposition

When λ is fixed, the solution *u* of the evolution equation

$$u(t) + u'(t) = \Phi(\lambda, u(t))$$
; $u(0) = u_0 \in X$ (3)

satisfies

$$\lim_{t\to+\infty}u(t)=v_{\lambda}$$

Sketch of proof

Lemma

The solution of (3) satisfies
$$||u(t) - v_{\lambda}|| \le \frac{||u'(t)||}{\lambda}$$

_emma

If *f* satisfies $||f(t) + f'(t)|| \le (1 - \lambda(t))||f(t)||$, then

 $||f(T)|| \le ||f(0)|| e^{-\int_0^T \lambda(t) dt}.$

Let us apply the second lemma to $f_h = \frac{u(t+h)-u(t)}{h}$, so that $||f_h(t)|| \le ||f_h(0)||e^{-\lambda t}$. We then let *h* go to 0 and we use the first lemma.

Sketch of proof

Lemma

The solution of (3) satisfies
$$||u(t) - v_{\lambda}|| \le \frac{||u'(t)||}{\lambda}$$

Lemma

If *f* satisfies $||f(t) + f'(t)|| \le (1 - \lambda(t))||f(t)||$, then

 $||f(T)|| \le ||f(0)|| e^{-\int_0^T \lambda(t)dt}.$

Let us apply the second lemma to $f_h = \frac{u(t+h)-u(t)}{h}$, so that $||f_h(t)|| \le ||f_h(0)||e^{-\lambda t}$. We then let *h* go to 0 and we use the first lemma.

Sketch of proof

Lemma

The solution of (3) satisfies
$$||u(t) - v_{\lambda}|| \le \frac{||u'(t)||}{\lambda}$$

Lemma

If *f* satisfies $||f(t) + f'(t)|| \le (1 - \lambda(t))||f(t)||$, then

$$||f(T)|| \le ||f(0)|| e^{-\int_0^T \lambda(t)dt}.$$

Let us apply the second lemma to $f_h = \frac{u(t+h)-u(t)}{h}$, so that $||f_h(t)|| \le ||f_h(0)||e^{-\lambda t}$. We then let *h* go to 0 and we use the first lemma.

Non autonomous case

We are now interested in the equation of the type

$$u(t) + u'(t) = \Phi(\lambda(t), u(t))$$
; $u(0) = u_0 \in X$ (4)

where λ is a continuous function from \mathbb{R}^+ into]0,1[.

Proposition

If $\lambda \notin \mathscr{L}^1$, then the asymptotic behavior of the solution of (4) doesn't depend of u_0 .

Non autonomous case

We are now interested in the equation of the type

$$u(t) + u'(t) = \Phi(\lambda(t), u(t))$$
; $u(0) = u_0 \in X$ (4)

where λ is a continuous function from \mathbb{R}^+ into]0,1[.

Proposition

If $\lambda \notin \mathscr{L}^1$, then the asymptotic behavior of the solution of (4) doesn't depend of u_0 .

Hypothesis on $\Phi(\cdot, x)$

From now on we make the following hypothesis : $\exists C \in \mathbb{R}, \ \forall (\lambda, \mu) \in]0, 1[^2, \ \forall x \in X,$

$$\|\Phi(\lambda, x) - \Phi(\mu, x)\| \le C|\lambda - \mu|(1 + \|x\|) \tag{(\mathscr{H})}$$

This hypothesis is satisfied as soon as Ψ is the Shapley operator of any bounded-payoff game.

Hypothesis on $\Phi(\cdot, x)$

From now on we make the following hypothesis : $\exists C \in \mathbb{R}, \ \forall (\lambda, \mu) \in]0, 1[^2, \ \forall x \in X,$

$$\|\Phi(\lambda, x) - \Phi(\mu, x)\| \le C|\lambda - \mu|(1 + \|x\|) \tag{(\mathscr{H})}$$

This hypothesis is satisfied as soon as Ψ is the Shapley operator of any bounded-payoff game.
Consequences (I)

Proposition

Let λ and $\widetilde{\lambda}$ be two parametrization, and let u and \widetilde{u} be the corresponding solutions of (4). If $\lambda \notin \mathscr{L}^1$, if u is bounded and if $\lambda(t) \sim \widetilde{\lambda}(t)$ then $\lim_{t \to +\infty} ||u(t) - \widetilde{u}(t)|| = 0$

Corollary

- If $\lambda(t) \rightarrow \lambda_0 > 0$ then $u(t) \rightarrow v_{\lambda_0}$.
- If $\lambda(t) \sim \frac{1}{t}$ then $||u(n) v_n|| \to 0$.

Consequences (I)

Proposition

Let λ and $\widetilde{\lambda}$ be two parametrization, and let u and \widetilde{u} be the corresponding solutions of (4). If $\lambda \notin \mathscr{L}^1$, if u is bounded and if $\lambda(t) \sim \widetilde{\lambda}(t)$ then $\lim_{t \to +\infty} ||u(t) - \widetilde{u}(t)|| = 0$

Corollary

• If
$$\lambda(t) \rightarrow \lambda_0 > 0$$
 then $u(t) \rightarrow v_{\lambda_0}$.

• If $\lambda(t) \sim \frac{1}{t}$ then $||u(n) - v_n|| \to 0$.

Consequences (I)

Proposition

Let λ and $\widetilde{\lambda}$ be two parametrization, and let u and \widetilde{u} be the corresponding solutions of (4). If $\lambda \notin \mathscr{L}^1$, if u is bounded and if $\lambda(t) \sim \widetilde{\lambda}(t)$ then $\lim_{t \to +\infty} ||u(t) - \widetilde{u}(t)|| = 0$

Corollary

• If
$$\lambda(t) \rightarrow \lambda_0 > 0$$
 then $u(t) \rightarrow v_{\lambda_0}$.

• If
$$\lambda(t) \sim \frac{1}{t}$$
 then $||u(n) - v_n|| \to 0$.

Consequences(II)

Proposition

If $\lambda \downarrow 0$ is in \mathscr{C}^1 and if $\lim_{t \to +\infty} \frac{\lambda'(t)}{\lambda^2(t)} = 0$, then $||u(t) - v_{\lambda(t)}|| \to 0$ If $\lim_{t \to +\infty} \frac{\lambda''(t)}{\lambda(t)\lambda'(t)} = 0$ then the rate of convergence is in $O\left(\frac{\lambda'(t)}{\lambda^2(t)}\right)$

Corollary

If $\lambda(t) \sim \frac{1}{t^{\alpha}}$ for an $\alpha \in]0,1[$ then $||u(t) - v_{\lambda(t)}|| \to 0$. In particular v_{λ} converges when $\lambda \to 0$ if and only if u(t) converges when $t \to +\infty$.

Consequences(II)

Proposition

If
$$\lambda \downarrow 0$$
 is in \mathscr{C}^1 and if $\lim_{t \to +\infty} \frac{\lambda'(t)}{\lambda^2(t)} = 0$, then $||u(t) - v_{\lambda(t)}|| \to 0$
If $\lim_{t \to +\infty} \frac{\lambda''(t)}{\lambda(t)\lambda'(t)} = 0$ then the rate of convergence is in $O\left(\frac{\lambda'(t)}{\lambda^2(t)}\right)$.

Corollary

If $\lambda(t) \sim \frac{1}{t^{\alpha}}$ for an $\alpha \in]0,1[$ then $||u(t) - v_{\lambda(t)}|| \to 0$. In particular v_{λ} converges when $\lambda \to 0$ if and only if u(t) converges when $t \to +\infty$.

Consequences(II)

Proposition

If
$$\lambda \downarrow 0$$
 is in \mathscr{C}^1 and if $\lim_{t \to +\infty} \frac{\lambda'(t)}{\lambda^2(t)} = 0$, then $||u(t) - v_{\lambda(t)}|| \to 0$
If $\lim_{t \to +\infty} \frac{\lambda''(t)}{\lambda(t)\lambda'(t)} = 0$ then the rate of convergence is in $O\left(\frac{\lambda'(t)}{\lambda^2(t)}\right)$.

Corollary

If $\lambda(t) \sim \frac{1}{t^{\alpha}}$ for an $\alpha \in]0,1[$ then $||u(t) - v_{\lambda(t)}|| \to 0$. In particular v_{λ} converges when $\lambda \to 0$ if and only if u(t) converges when $t \to +\infty$.

Back to discrete time

For every λ_n sequence of numbers in]0,1[let us define the sequence w_n of element of *X* by

$$w_n = \Phi(\lambda_n, w_{n-1})$$

Proposition

If
$$\lambda_n \to 0$$
 and $\frac{1}{\lambda_n} - \frac{1}{\lambda_{n+1}} \to 0$, then $||w_n - v_{\lambda_n}|| \to 0$

Corollary

If $\lambda_n \to 0$, $\frac{1}{\lambda_n} - \frac{1}{\lambda_{n+1}} \to 0$, and if w_n converges, then v_λ converges to the same limit.

Back to discrete time

For every λ_n sequence of numbers in]0,1[let us define the sequence w_n of element of *X* by

$$w_n = \Phi(\lambda_n, w_{n-1})$$

Proposition

If
$$\lambda_n \to 0$$
 and $\frac{1}{\lambda_n} - \frac{1}{\lambda_{n+1}} \to 0$, then $||w_n - v_{\lambda_n}|| \to 0$

Corollary

If $\lambda_n \to 0$, $\frac{1}{\lambda_n} - \frac{1}{\lambda_{n+1}} \to 0$, and if w_n converges, then v_λ converges to the same limit.

Back to discrete time

For every λ_n sequence of numbers in]0,1[let us define the sequence w_n of element of *X* by

$$w_n = \Phi(\lambda_n, w_{n-1})$$

Proposition

If
$$\lambda_n \to 0$$
 and $\frac{1}{\lambda_n} - \frac{1}{\lambda_{n+1}} \to 0$, then $||w_n - v_{\lambda_n}|| \to 0$

Corollary

If $\lambda_n \to 0$, $\frac{1}{\lambda_n} - \frac{1}{\lambda_{n+1}} \to 0$, and if w_n converges, then v_λ converges to the same limit.

Summary

- We can express the dynamic structure of stochastic games by the mean of a nonexpansive operator defined on a Banach space.
- The asymptotic behavior of values of those games is related to the asymptotic behavior of the solutions of certain evolution equations.
- Perspectives
 - What is the asymptotic behavior of those solutions ?
 - We haven't used the monotonicity of Ψ at all.
 - The derived game.

Références

 Gaubert & Gunawardena (2004)
 The Perron-Frobenius Theorem for homogeneous, monotone functions,
 Trans. of the AMS, 356(12), 4931-4950.

- Kohlberg & Neyman (1981)
 Asymptotic behavior of nonexpansive mappings in normed linear spaces,
 Israel Journal of Mathematics, 38, 269-275.
- Rosenberg & Sorin (2001)
 An operator approach to zero-sum repeated games, Israel Journal of Mathematics, 121, 221-246.

Références

Sorin (2004)

Asymptotic properties of monotonic nonexpansive mappings, Discrete Events Dynamical Systems, **14**, 109-122.

Attouch & Cominetti (1996) A dynamical approach to convex minimization coupling approximation with the steepest descent method, Journal of Differential Equations, **128**, 269-275.

Barbu (1976)

Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing.