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Introduction Stochastic Games

Definition

A zero-sum stochastic game is a 5-tuple (Ω,A,B,g,ρ) where :
Ω is the set of states
A (resp. B) is the action state of J1 (resp. J2)
g : A×B×Ω→R is the payoff function, which will be
assumed bounded.
ρ : A×B×Ω→ ∆(Ω) is the transition probability.
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Introduction Stochastic Games

How the Game is played

An initial state ω1 is given, known by each player.
During each stage i :

the players observe the current state ωi.
According to the past history, J1 (resp. J2) choose a mixed
strategy xi in ∆(A) (resp. yi in ∆(B)).
An action ai of player 1 (resp. bi of player 2) is drawn
according to his mixed strategy xi (resp. yi).
This gives the payoff at stage i gi = g(ai,bi,ωi).
A new state ωi+1 is drawn according to ρ(ai,bi,ωi).
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Introduction Stochastic Games

Payoff of the repeated game

There are several ways of evaluating a payoff for a given infinite
history :

1
n ∑

n
i=1 gi is the payoff of the n−stage game

λ ∑
+∞

i=1(1−λ )i−1gi is the payoff of the λ−discounted game.
If those games have a value for a given initial state ω, we
denote them by vn(ω) and vλ (ω) respectively.
Thus vn and vλ are functions from Ω into R.
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Introduction Stochastic Games

Asymptotic behavior

The main problem which arises is the study of the behavior of
vn when n→+∞ and of vλ when λ → 0. Does the limits exist,
and are they the same ?
We know that the answers to both questions are positive in
several cases :

Finite stochastic games (Ω, A and B finite)
Absorbing games
Recursive games
Games with incomplete information and standard signaling
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Introduction Operator Approach

The Shapley operator Ψ

Let Γ = (Ω,A,B,g,ρ) be a stochastic game and let F be a set of
bounded functions from Ω into R. The Shapley operator Ψ of
the game is defined by

Ψ(f )(ω) = Val∆(A)×∆(B)
{

g(x,y,ω)+Eρ(x,y,ω)(f )
}

= sup
x∈∆(A)

inf
y∈∆(B)

{
g(x,y,ω)+Eρ(x,y,ω)(f )

}
= inf

y∈∆(B)
sup

x∈∆(A)

{
g(x,y,ω)+Eρ(x,y,ω)(f )

}
.

We will assume that Ψ is well defined by these equations and
maps F into itself.
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Introduction Operator Approach

The family of operators Φ(α, ·)

From Ψ we can define a family of operators Φ(α, ·) for α ∈]0,1]
by the formula

Φ(α, f )(ω) = αΨ

(
1−α

α
f
)

(ω)

= Val∆(A)×∆(B)
{

αg(x,y,ω)+(1−α)Eρ(x,y,ω)(f )
}

= sup
x∈∆(A)

inf
y∈∆(B)

{
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Introduction Operator Approach

Properties of Ψ and Φ(α, ·)

The operator Ψ is topical : it satisfies the two following
properties :

Monotonicity f1 ≤ f2 =⇒ Ψ(f1)≤Ψ(f2)
Homogeneity c ∈R =⇒ Ψ(f + c) = Ψ(f )+ c

These two properties implies that Ψ is nonexpansive for the
infinite norm

‖Ψ(f )−Ψ(g)‖∞ ≤ ‖f −g‖∞

and thus that Φ(α, ·) is 1−α contracting for the infinite norm

‖Φ(α, f )−Φ(α,g)‖∞ ≤ (1−α)‖f −g‖∞
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Introduction Operator Approach

Recursive formulas

The utility of these operators lies in the fact that vn and vλ ,
providing that they are well defined, satisfies the following
formulas :

vn = Φ

(
1
n
,vn−1

)
=

Ψn(0)
n

vλ = Φ(λ ,vλ ) = Φ
∞(λ ,0)
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Introduction Statement of the main problem

Generalization of framework

Let (X,‖‖) be a Banach space, and let Ψ : X→ X be an
nonexpansive operator.
Let us define the family of contracting operators Φ(α, ·) : X→ X
by the formula

Φ(α, f ) = αΨ

(
1−α

α
f
)

and then let us define the elements vn and vλ of X by the
formulas

vn = Φ
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1
n
,vn−1
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n
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Introduction Statement of the main problem

Questions

We now settle the three following questions :
Does lim

n→+∞
vn exist ?

Does lim
λ→0

vλ exist ?

Are those two limits equal ?



Introduction Statement of the main problem

Positive results

Besides the positive results already exposed in the section
about stochastic games, we know that the three questions can
be answered positively

when Ψ is a topical function from R2 into itself
and so in particular when Ψ is the Shapley operator of any
2 state game
when Ψ is the Shapley operator of any 3 state compact
game.
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Positive results

There are also positive results about the convergence of the
norm of the values :

Theorem (Kohlberg Neyman)
It is always true that

lim
n→+∞

‖vn‖= lim
λ→0
‖vλ‖= inf

x∈X
‖Ψ(x)− x‖

Theorem (Gaubert Gunawardena)
Furthermore, if Ψ is the Shapley operator of a game, then

lim
n→+∞

t(vn) = lim
λ→0

t(vλ ) = inf
x∈X

t(Ψ(x)− x)

where t(x) = sup
ω∈Ω

x(ω).



Introduction Statement of the main problem

Positive results

There are also positive results about the convergence of the
norm of the values :

Theorem (Kohlberg Neyman)
It is always true that

lim
n→+∞

‖vn‖= lim
λ→0
‖vλ‖= inf

x∈X
‖Ψ(x)− x‖

Theorem (Gaubert Gunawardena)
Furthermore, if Ψ is the Shapley operator of a game, then

lim
n→+∞

t(vn) = lim
λ→0

t(vλ ) = inf
x∈X

t(Ψ(x)− x)

where t(x) = sup
ω∈Ω

x(ω).



Introduction Statement of the main problem

Positive results

There are also positive results about the convergence of the
norm of the values :

Theorem (Kohlberg Neyman)
It is always true that

lim
n→+∞

‖vn‖= lim
λ→0
‖vλ‖= inf

x∈X
‖Ψ(x)− x‖

Theorem (Gaubert Gunawardena)
Furthermore, if Ψ is the Shapley operator of a game, then

lim
n→+∞

t(vn) = lim
λ→0

t(vλ ) = inf
x∈X

t(Ψ(x)− x)

where t(x) = sup
ω∈Ω

x(ω).



Introduction Statement of the main problem

Negative results

The answer to one of the three question may be negative, for
example :

if the norm of X∗ isn’t Fréchet-differentiable, then there is Ψ

such that both vn and vλ diverge.
In particular, there is a 3 state game (but with non-bounded
payoff) such that neither vn nor vλ converge.
There is a one-player game, with Ω =N2 and |A|= 2 such
that vn and vλ converge, but to two different limits.
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Summary table

If we put in ordinate the dimension of X (that is the number of
states if we are in the case of a game), then we have the
following answer :

Nonexpansive Shapley Compact game Finite game
1 Y Y Y Y
2 N Y Y Y
3 N N Y Y

4+ N N ? Y
+∞ N N N N
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Discrete/continuous The case of vn

Evolution equation related to Vn

Let us denote Vn = nvn = Ψn(0) = Ψ(Vn−1) and A = I−Ψ

We consider the differential equation

U(t)+U′(t) = Ψ(U(t)) ; U(0) = U0 ∈ X. (1)

that is
U′(t) =−A(U(t)) ; U(0) = U0 ∈ X. (2)

Notice that A is a maximal monotone operator. Equation A is
usually studied in Hilbert space and assuming that A−1(0) 6= /0
but here this is not the case.
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Discrete/continuous The case of vn

Evolution equation related to vn

Proposition
The solution of (1) satisfies

‖U(n)−Vn‖ ≤ ‖U0‖+
√

n · ‖Ψ(0)‖.∥∥∥∥U(n)
n
− vn

∥∥∥∥→ 0.

Corollary

Let τ(t) = t + ln(1+ t), and let u be the solution of the evolution
equation

u(t)+u′(t) = Φ

(
1

2+ τ−1(t)
,u(t)

)
.

Then ‖u(n)− vn‖→ 0.
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Eulerian exponential formula

In addition to the traditional exponential formula for maximal
monotone operators

U(t) = lim
n→+∞

(
Id +

t
n

A
)−n

(U0)

we also get an "Eulerian" exponential formula

Proposition

∀t ≥ 0, U(t) = lim
n→+∞

(
Id− t

n
A
)n

(U0)



Discrete/continuous The case of vn

Eulerian Kobayashi

If λn is a sequence of reals in ]0,1], let us define Wn by

Wn−Wn−1

λn
=−A(Wn−1).

Wn = (1−λn)Wn−1 +λnΨ(Wn)

We denote σn = ∑
n
i=1 λi ; τn = ∑

n
i=1 λ 2

i .

Proposition

If Wn and W̃n are defined from λn and λ̃n, then∥∥∥Wk− W̃l

∥∥∥ ≤ ‖W0‖+‖W̃0‖+‖Ψ(0)‖
√

(σk− σ̃l)2 + τk + τ̃l

‖Wk−U(σk)‖
σk

≤ ‖W0‖+‖U0‖
σk

+
‖Ψ(0)‖
‖√σk‖

.
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Discrete/continuous The case of vλ

When λ is fixed

Proposition

When λ is fixed, the solution u of the evolution equation

u(t)+u′(t) = Φ(λ ,u(t)) ; u(0) = u0 ∈ X (3)

satisfies
lim

t→+∞
u(t) = vλ
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Sketch of proof

Lemma

The solution of (3) satisfies ‖u(t)− vλ‖ ≤
‖u′(t)‖

λ
.

Lemma
If f satisfies ‖f (t)+ f ′(t)‖ ≤ (1−λ (t))‖f (t)‖, then

‖f (T)‖ ≤ ‖f (0)‖e−
∫ T

0 λ (t)dt.

Let us apply the second lemma to fh = u(t+h)−u(t)
h , so that

‖fh(t)‖ ≤ ‖fh(0)‖e−λ t. We then let h go to 0 and we use the first
lemma.
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Non autonomous case

We are now interested in the equation of the type

u(t)+u′(t) = Φ(λ (t),u(t)) ; u(0) = u0 ∈ X (4)

where λ is a continuous function from R+ into ]0,1[.

Proposition

If λ /∈L 1, then the asymptotic behavior of the solution of (4)
doesn’t depend of u0.
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Hypothesis on Φ(·,x)

From now on we make the following hypothesis :
∃C ∈R, ∀(λ ,µ) ∈]0,1[2, ∀x ∈ X,

‖Φ(λ ,x)−Φ(µ,x)‖ ≤ C|λ −µ|(1+‖x‖) (H )

This hypothesis is satisfied as soon as Ψ is the Shapley
operator of any bounded-payoff game.
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Consequences (I)

Proposition

Let λ and λ̃ be two parametrization, and let u and ũ be the
corresponding solutions of (4). If λ /∈L 1, if u is bounded and if
λ (t)∼ λ̃ (t) then lim

t→+∞
‖u(t)− ũ(t)‖= 0

Corollary

If λ (t)→ λ0 > 0 then u(t)→ vλ0 .

If λ (t)∼ 1
t then ‖u(n)− vn‖→ 0.
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Consequences(II)

Proposition

If λ ↓ 0 is in C 1 and if lim
t→+∞

λ ′(t)
λ 2(t) = 0, then ‖u(t)− vλ (t)‖→ 0

If lim
t→+∞

λ ′′(t)
λ (t)λ ′(t) = 0 then the rate of convergence is in O

(
λ ′(t)
λ 2(t)

)
.

Corollary

If λ (t)∼ 1
tα for an α ∈]0,1[ then

∥∥u(t)− vλ (t)
∥∥→ 0.

In particular vλ converges when λ → 0 if and only if u(t)
converges when t→+∞.
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Back to discrete time

For every λn sequence of numbers in ]0,1[ let us define the
sequence wn of element of X by

wn = Φ(λn,wn−1)

Proposition

If λn→ 0 and 1
λn
− 1

λn+1
→ 0, then ‖wn− vλn‖→ 0

Corollary

If λn→ 0, 1
λn
− 1

λn+1
→ 0, and if wn converges, then vλ converges

to the same limit.
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Summary

Summary

We can express the dynamic structure of stochastic games
by the mean of a nonexpansive operator defined on a
Banach space.
The asymptotic behavior of values of those games is
related to the asymptotic behavior of the solutions of
certain evolution equations.

Perspectives
What is the asymptotic behavior of those solutions ?
We haven’t used the monotonicity of Ψ at all.
The derived game.
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