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External Consistency

2 players game

2-players repeated game with finite actions sets I and J and a
payoff function ρ : I× J→R (extended multilineary).

At round n, player 1 chooses in ∈ I and player 2 jn ∈ J. Player 1
gets ρ(in, jn) as payoff.

Players observe the past actions played by their opponent.

Definitions

pn = ∑
n
m=1 ρ(im, jm)

/
n the average payoff until stage n.

yn = ∑
n
m=1 jm

/
n the empirical mixed action of player 2.
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External Consistency Definitions

External Consistency

External Regret (of Player 1)

Re
n = max

i∈I
ρ(i,yn)−pn

External Consistency
A strategy σ of the player 1 is externally consistent if for every
strategy τ of the second player:

limsup
n→∞

Re
n ≤ 0,(σ ,τ)-ps

Hannan-Blackwell
There exist strategies that are externally consistent.
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External Consistency An undirect Proof

Approachability

2 players game, actions sets I and J, payoff g : I× J→Rk.
gn = ∑m≤n g(im, jm)/n is the average payoff at stage n.

Definition
A strategy σ of player 1 approaches a set C if for every ε > 0,
there exists N ∈N, such that for every strategy τ of player 2
and for every n≥ N :

Eσ ,τ [d(gn,C)]≤ ε.

Theorem - Blackwell

A closed convex C ⊂Rk set is either approachable by player 1
or excludable by player 2:

∃y ∈ ∆(J),∀x ∈ ∆(I),g(x,y) /∈ C
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External Consistency An undirect Proof

Back to External Regret

limsup
n→∞

[
max

i∈I
ρ(i,yn)−pn

]
≤ 0,(σ ,τ)-ps (1)

is equivalent to :

pn→max
i∈I

ρ(i,yn)+R+,(σ ,τ)-ps. (2)

which is implied by the fact that (pn,yn) approaches the closed
convex set C :

C =
⋃

y∈∆(J)

(
max

i∈I
ρ(i,y)+R+,y

)
⊂R1+J.

If σ is such that (pn,yn) ∈R1+J approaches C, then σ is
externally consistent.
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External Consistency An undirect Proof

Undirect Proof

Consider the auxiliary 2-player game, with vector-payoff :

γ(i, j) = (ρ(i, j),0, . . . ,0,1,0, . . . ,0︸ ︷︷ ︸
1 in j-th coordinates

)

In this game the mean payoff is :

γn = (pn,yn) ,

and in this game, C is not excludable by player 2:
if he plays y, then player 1 plays i ∈ BR(y), and (ρ(i,y),y) ∈ C.

C is approachable by player 1, and such a strategy is
externally consistent.
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External Consistency A direct Proof

A direct Proof

Consider the auxiliary 2-player game, with vector- payoff :

γ(i, j) = (ρ(1, j)−ρ(i, j), . . . ,ρ(I, j)−ρ(i, j)) ∈RI,

so that :
γn = (ρ(1,yn)−pn, . . . ,ρ(I,yn)−pn) .

γn approaches the negative orthant⇒ external consistency.

Definition of the strategy
At stage n :

If γn /∈RI
−, play xn+1 proportional to (γn)

+ =
(
max{0,γ i

n}
)

i∈I

Otherwise play anything.
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External Consistency A direct Proof

Lemma
The following holds :

〈Eσ [γ(in+1, jn+1)]−Π−(γn),γn−Π−(γn)〉= 0 (B)

with Π− the projection on the negative orthant.

Equation (B), which implies the Blackwell condition, ensures
that γn converges to C.

σ is externally consistent.

Observations
Note that σ actually depends on the value of {ρ(i, jn)}i,n, and
not on jn.
Same result if player 1 observe (ρ(1, jn), . . . ,ρ(I, jn)) instead of
jn.
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Internal Consistency Definitions

Internal Regret

Player 1 observe p ∈ [−1,1]I an outcome vector chosen by
player 2 and gets pi if he chooses action i.

Definitions
Nn(i) = {m ∈ {1, . . . ,n}, im = i} the set of dates of types i

pn(i) = ∑m∈Nn(i) pn
/

Nn(i) the mean outcome vector on Nn(i).

Internal Regret

Rn(i,k) =
(
pk

n(i)−pi
n(i)
)
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Internal Consistency Definitions

Internal Consistency

Internal Consistency
A strategy σ of the player 1 is internally consistent if for every
strategy τ of the second player:

∀i,k ∈ I, limsup
n→∞

Nn(i)
n

Rn(i,k)≤ 0,(σ ,τ)-ps

Foster Vohra, Hart Mas-Colell, Cover, ...
There exist strategies that are internally consistent.



Internal Consistency Direct Proof

Auxiliary Game

Consider the auxiliary 2-player game, with vector payoff :

γ(i,p) =


0 , . . . , 0

...
p1−pi , . . . , pI−pi

...
0 , . . . , 0

 ∈R
I×I

So that :

γn =



Nn(1)
n

(
Rn(1,1) , . . . , Rn(1, I)

)
...

Nn(i)
n

(
Rn(i,1) , . . . , Rn(i, I)

)
...

Nn(I
n

(
Rn(I,1) , . . . , Rn(I, I)

)


∈RI×I



Internal Consistency Direct Proof

Strategy

γn approaches RI×I
− ⇒ internally consistency

Definition of the strategy
At stage n :

If γn /∈RI×I
− , play xn+1 proportional to an invariant measure

of (γn)
+

Otherwise play anything.

Lemma

〈Eσ [γ(in+1, jn+1)]−Π−(γn),γn−Π−(γn)〉= 0 (B)

σ is internally consistent.
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Random Signals Model

Random Signals

When actions (i, j) are played, player 1 receives a signal drawn
accordingly to s(i, j) with s : I× J→ ∆(S).

More Generally
At stage n,

Player 1 chooses in ∈ I,
Player 2 chooses µn ∈ ∆(S)I,
Player 1 receives sn drawn accordingly to µ in

n ∈ ∆(S).

Evaluation
Player 1 evaluates his payoff through :

G : ∆(I)×∆(S)I →R

Example - Pessimistic evaluation :
G(x,µ) = min{ρ(x,y), st s(i,y) = µ i,∀i ∈ I}.
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Random Signals Model

About the Evaluation Function

Consider the game, no observations are made by player 1.
L R

T 1 0
B 0 1

Player 1 is pessimistic

Its only good action is to play repeatedly (1/2,1/2), and receives
1/2.

On the set of stages when he played T, his evaluation of payoff
is 0 (Player 2 might have played R).
On the set of stages when he played B, his evaluation of payoff
is also 0 (Player 2 might have played L).

The evaluation function has to be defined on ∆(I), the set of
mixed actions.
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Random Signals Model

Strategy

Player 1 will only use a finite number of mixed actions {xl}l∈L :
the set L will replace the finite set I in the definition of the regret.

Timing of the game
At stage n,

Player 1 chooses (randomly) ln ∈ L,
Player 2 chooses µn ∈ ∆(S)I,
A pure action in is selected accordingly to xln ,
Player 1 receives sn drawn accordingly to µ in

n ∈ ∆(S).

With a slight perturbation of Player 1’s choices, we can assume
that he observes a vector of signal sn = (s1

n, . . . ,s
I
n) ∈ SI (at each

stage he plays with a small probability uniformly, and so he can
estimate the vector).
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Random Signals Model

Strategy

Player 1 will only use a finite number of mixed actions {xl}l∈L :
the set L will replace the finite set I in the definition of the regret.

Timing of the game
At stage n,

Player 1 chooses (randomly) ln ∈ L,
Player 2 chooses µn ∈ ∆(S)I,
A pure action in is selected accordingly to xln ,
Player 1 receives sn ∈ SI drawn accordingly to µn ∈ ∆(S)I.

Definition
Nn(l) is the set of stages of type l,
µn(l) = ∑m∈Nn(l) sm/Nn(l).



Random Signals Model

Consistency

Mixed-Internally Regret

Rn(l) = max
x∈∆(I)

[G(x,µn(l))]−G(xl,µn(l))

ε-mixed internally consistency
A strategy σ is ε-mixed internally consistent if, for every
strategy τ of player 2, :

∀l ∈ L, limsup
n→∞

Nn(l)
n

(Rn(l)− ε)≤ 0,(σ ,τ)-ps

Theorem
If {G(x, ·)}x∈∆(I) is equicontinuous, then for every ε > 0, there
are ε-mixed internally consistent strategies.
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are ε-mixed internally consistent strategies.
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Sketch of Proof :

A strategy will be consistent if :

∀l ∈ L,xl ∈ BRε(µn(l)) (i)

or equivalently :
∀l ∈ L,µn(l) ∈ BR−1

ε (xl) (ii)

Since G is equicontinuous, there exists δ > 0, {xl} and {µl}
such that :
{µl}l∈L is a δ -grid of ∆(S)I and xl ∈ BRε(µ) as soon as
‖µ−µl‖2 ≤ δ .

Then (ii) is implied by the fact that ‖µn(l)−µl‖2 ≤ δ or µn(l) is
closer to µl than to any µk.
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Sketch of Proof 2

∀l,k ∈ L,‖µn(l)−µl‖2 ≤ ‖µn(l)−µk‖2 (iii)

This is the definition of calibration : at each stage, player 1
predicts s ∈ SI (with µl). The prediction are calibrated, if on
Nn(l), the average empirical distribution of signal is closer to µl

than to any other µk.
(iii) is equivalent (by linearity of the scalar product) to

∀l,k ∈ L, ∑
m∈Nn(l)

‖sm−µl‖2−‖sm−µk‖2

Nn(l)
≤ 0. (iv)

(iv) is exactly the definition of internal consistency in a auxiliary
game with actions sets L and SI, and the payoff −‖sm−µl‖2.

Any strategy internally consistent in this auxiliary game will be
ε-mixed internally consistent.
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Related Results - Conclusion

External Regret with signals (direct proof) : Rustichini ’99,
Lugosi-Mannor-Stoltz ’08

Internal Regret (undirect proof) : Lehrer-Solan ’08

Conclusion
Proof in the space of signals
Gives a direct procedure that leads to internal consistency
with imperfect monitoring
Generalizes the precedent results
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