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What Is there in common

between road trafic, Evolution theory, market analysis, breeding sheeps. ..



What is there in common
between road trafic, Evolution theory, market analysis, breeding sheeps. ..
Answer

How individual selfish behaviour of many identical individuals translates
Into population equilibrium.

Game of one individual against a population of identical individuals playing
the same game for themselves.



Framework and notation
A large population of agents. Each has a choice of strategies x € X.
A(X) is the set of positive measures of mass 1 (probabilities) over X.
For A C X, n(A) the number of agents using a strategy « € A,
q(A) = n(A)/ [x n(dz) the proportion of the population using xz € A.

(q(A) is also the probability that an agent picked at random with a uniform
probability over the population uses a strategy x € A.)



Framework and notation
A large population of agents. Each has a choice of strategies x € X.
A(X) is the set of positive measures of mass 1 (probabilities) over X.

For A C X, n(A) the number of agents using a strategy « € A,

q(A) = n(A)/ [x n(dz) the proportion of the population using xz € A.
(q(A) is also the probability that an agent picked at random with a uniform
probability over the population uses a strategy x € A.)

Three cases

e X finite, X = {x1,x>,...,zyn}, denote q(z;) = q;, ¢ € Zp, C R",

e X C R", (hardly considered here), ¢q Is a measure over a continuum,
e X of infinite dimension (control). Two examples will be provided.



Strategies
“strategies” x may be phenotypes (Evolution), instinctive or learned be-

haviours (behavioural ecology), routing strategies (road engineering, rout-
Ing In @ communication network), trading strategies (stock market), etc.
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Strategies
“strategies” x may be phenotypes (Evolution), instinctive or learned be-
haviours (behavioural ecology), routing strategies (road engineering, rout-
Ing In @ communication network), trading strategies (stock market), etc.

Mixed strategy

Maynard-Smith distinguishes phenotypes that yield a probabilistic behaviour,
allowing for a mixed strategy in a monomorphic population
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Strategies

“strategies” x may be phenotypes (Evolution), instinctive or learned be-
haviours (behavioural ecology), routing strategies (road engineering, rout-
Ing In @ communication network), trading strategies (stock market), etc.

Mixed strategy

a polymorphic population where each agent uses always the same strat-
egy, but collective mixed behaviour results from shares of the population
choosing each strategy. (As explained bove)
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Fitness and generating function

Hypothesis The fitness that gets an agent using a strategy x is a function
G(x, g) of x and the distribution of stategies ¢ across the population.

The collective fitness of a sub-population using a distribution » within itself
in a larger population of overall distribution ¢ is

F(r,q) = [ G(a,q)r(de).
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Fitness and generating function

Hypothesis The fitness that gets an agent using a strategy x is a function
G(x, g) of x and the distribution of stategies ¢ across the population.

The collective fitness of a sub-population using a distribution » within itself
in a larger population of overall distribution ¢ is

F(r,q) = | G(a,q)r(da).
Linear case

An important sub-case is when q — G(x, q) is linear (a math. expectation)

G(z.0) = [ H@yady), Fro= [ Hzyaayr(de).

This is not necessary for many results.
14



Fitness and generating function

Hypothesis The fitness that gets an agent using a strategy x is a function
G(x, q) of x and the distribution of stategies ¢ across the population.

The collective fitness of a sub-population using a distribution r within itself
in a larger population of overall distribution ¢ is

F(r,q) = [ G(a,q)r(de).
Nonlinear case

In the general case, ¢ — G(x, g) is nonlinear, we let

DQG(:Ea Q) — H(:c,y, Q) ) DQG(xa Q) T = /X H(x7y7Q)T(dy> -
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Evolutionary stability

In a population with initial distribution p, a fraction £ mutates to q. The
overall distribution is then

e =p+e(qg—p).
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Evolutionary stability
In a population with initial distribution p, a fraction £ mutates to q. The
overall distribution is then

e =p+e(qg—p).

This sub-population invades the original one if F'(q, q:) > F'(p, gc). Hence
the population is protected against invasion, or evolutionarily stable, if

Vq S A(X)—{p},3€o > O : \V/E;‘ < (0750)7 F(Q,Qs) < F(p>Q€) .

17



Evolutionary stability
In a population with initial distribution p, a fraction £ mutates to q. The
overall distribution is then

e =p+e(qg—p).

This sub-population invades the original one if F'(q, q:) > F'(p, gc). Hence
the population is protected against invasion, or evolutionarily stable, if

Vg € A(X)—{p},Je0 >0:Ve € (0,e0), F(q,¢:) < F(p,ge)-.
The supremum of such ¢g’s is called the invasion barrier.
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Wardrop equilibrium

In the E.S.S. condition above, let e — 0. It comes

F(p,p) = F(q,
(p, p) qergég( ) (¢,p)

(p, p) is @ Nash point of the game J1(p, ¢) = F(p, q), J2(p,q9) = F(q,p).
Hence Von-Neumann’s equalization theorem holds:

Vr € X, G(z,p) < F(p,p), p({z|G(z,p) < F(p,p)}) =0. (W)
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Wardrop equilibrium

In the E.S.S. condition above, let e — 0. It comes

F(p,p) = F(q,
(p, p) qgnga&) (¢,p)

(p, p) is @ Nash point of the game J1(p, ¢) = F(p, q), J2(p,q9) = F(q,p).
Hence Von-Neumann’s equalization theorem holds:

Vr € X, G(z,p) < F(p,p), p({z|G(z,p) < F(p,p)}) =0. (W)

Quote “The journey times on all routes actually used are equal, and less

than those that would be experienced by a single vehicle on any unused

route [...] The first criterion is quite a likely one in practice [...] an equilib-

rium situation in which no driver can reduce his journey time by choosing

a new route” John Glen Wardrop, 1952
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Linear case : second order condition

The Wardrop condition is only necessary. Let the set of best responses to
pbe B(p) = {r | F(r,p) = maxq F'(q,p) = F(p,p)}

Proposition In the linear case, a Wardrop equilibrum p is an E.S.S. iff

Vg€ B(p), ((¢—p),H(g—p))<O.
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Linear case : second order condition

The Wardrop condition is only necessary. Let the set of best responses to
pbe B(p) = {r | F'(r,p) = maxq F(q,p) = F(p,p)}

Proposition In the linear case, a Wardrop equilibrum p is an E.S.S. iff

Vg€ B(p), ((¢—p),H(qg—p)) <O.

Let X1 = {z | G(z,p) = F(p,p)} and X, = support(p) C X1. (W)
Let Hy be the restriction of H to X7 x X7 and H» to X» x Xbo.
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Linear case : second order condition

Proposition

Let X1 = {z | G(z,p) = F(p,p)} and X, = support(p) C X1. (W)
Let Hq be the restriction of H to X7 x X1 and H» to X» x Xo.

Theorem In the linear case, a Wardrop equilibrium p is an E.S.S.
If the restriction of the quadratic form (r, Hir) to r € 1+ c A(Xq) is
negative definite,
and only if the restriction of the quadratic form (r, Hor) to r € 1+ ¢
A (X5) is non-positive definite.

23



Finite linear case : a simple test

(1 4 5 )

A =17 3 9

\ 4 6 2 )



Finite linear case : a simple test

o(A) =
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Finite linear case : a simple test

o(A) =

A passes the test:

—14 11
U(A)+O‘(A)t:< 11 _20> <O0.
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Nonlinear case : second order condition

H(x,y,q) = D>G(x, q). Let Hy be its restriction to X1 x X7 x M(X1),
and similarily H» its restriction to X» x X»> x M(X5).

Definition A (finite) Wardrop equilibrium is regular if ¢ — H1(q) is continu-
ous at p and the restriction of (r, H1(p)r) tor € 1+ C M(X;) is negative
definite.

Theorem For a Wardrop equilibrium to be an ESS, it is

necessary that the restriction of the quadratic form (r, Hor) to r € 1+ ¢
M (X5) be nonpositive definite,

sufficient in the finite case that it be regular.
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Local Superiority

Definition A strategy distribution p is called locally superior or equivalently p
Is an Evolutionarily Robust Strategy (E.R.S.) (or a Neighborhood Invading
Strategy N.I.S.) if there exists a neighborhood N of p such that

Vge N—{p}, F(p,q) > F(q,q)

Easy result: E.R.S. = E.S.S. (Place ¢- in above definition and use the
linearity of F’ w.r.t. its first argument.)
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Local Superiority

Definition A strategy distribution p is called locally superior or equivalently p
Is an Evolutionarily Robust Strategy (E.R.S.) (or a Neighborhood Invading
Strategy N.I.S.) if there exists a neighborhood N of p such that

Vge N—{p}, F(p,q) > F(q,q)

Easy result: E.R.S. = E.S.S. (Place ¢- in above definition and use the
linearity of F’ w.r.t. its first argument.)

More difficult;
Theorem In the finite, linear case, E.S.S. = E.R.S.
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Clutch size In parasitoids

Female parasitoids lay their eggs in hosts. 2 females parasitize each host.
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Clutch size In parasitoids
Female parasitoids lay their eggs in hosts. 2 females parasitize each host.

All eggs layed in a single host either die together or succeed together.
The probability of success is one if 2 eggs are in the host, 7 > 1/3if 3
eggs are present, O if 4 eggs or more are present.
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Clutch size In parasitoids
Female parasitoids lay their eggs in hosts. 2 females parasitize each host.

All eggs layed in a single host either die together or succeed together.
The probability of success is one if 2 eggs are in the host, 7 > 1/3if 3
eggs are present, O if 4 eggs or more are present.

A strategy z is the clutch size z € {1,2}. The game matrix is

1
H_<27T O>'
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Clutch size In parasitoids
Female parasitoids lay their eggs in hosts. 2 females parasitize each host.

All eggs layed in a single host either die together or succeed together.
The probability of success is one if 2 eggs are in the host, 7 > 1/3if 3
eggs are present, O if 4 eggs or more are present.

A strategy z is the clutch size z € {1,2}. The game matrix is

1
H_<27T O>'

If 7 = 1/2,p1 = 1 and Gz(p) = 1.
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Clutch size In parasitoids
Female parasitoids lay their eggs in hosts. 2 females parasitize each host.

All eggs layed in a single host either die together or succeed together.
The probability of success is one if 2 eggs are in the host, 7 > 1/3if 3
eggs are present, O if 4 eggs or more are present.

A strategy z is the clutch size z € {1,2}. The game matrix is

1
H—<27T O>' c(H)=1-37r<0.

If m=2/3,p1 =2/3and G;(p) =8/9 < 1.

This is an instance of Braess’paradox, well known in the transportation

literature.
34



Replicator dynamics

Let n(x) be the number (or density) of individuals using strategy =.
Let g(xz) = n(x)/ [xdn(y) the strategy distribution.
Assume G (x, q) is the reproductive efficiency. Then

Discrete generations Generation duration h

1+ hG(z,q)

g(z,t+h) = Q(a:,t)1 ThE(e )

Continuous time The limit as h — O:

q(x,q) = qlG(x,q) — F(q,q)].
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Stability of the replicator equation

Theorem

e Any limit point of the replicator dynamics is a Wardrop equilibrium,

e in finite dimension, E.S.S. are Lyapunov asymptotically stable. Its at-
traction basin contains a neighborhood of the relative interior of the
lowest dimensional face of A(X) it lies on.

The stability proof uses the relative entropy of ¢ to p as Lyapunov function.

Its derivative is negative if p is an E.R.S. But we have no stability result of

E.R.S. in the infinite case, because that function is not weakly continuous.
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A population game
Lynxes and wolves

DNW cow. agr.
1—A 1
cow. A O
0 —0
agr. |1 —pu 1l —v
Ad+pu>1>v

ocl=x+p—v, pPP=0-v)/A+p-1v),

o2 =-\—0,

pt=0/(\+90).
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A population game
Lynxes and wolves

DNW cow. agr.
1—A 1
cow. A O
0 —0
agr. |1 —pu 1l —v
Ad+pu>1>v

ocl=x+p—v, pPP=0-v)/A+p-1v),

o2 =-\—0,

pt=0/(\+90).
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Population games and replicator dynamics

Replicator equation of the 2 x 2 case: mixed Nash equilibrium (pt, p?),
" =o"q"(1 - d") (" -p"), =3-k

Theorem If there exists a mixed Nash equilibrium,

-if e1o2 < 0, the trajectories are all periodical,

-if o162 > 0, (pl,p?) is a saddle. There are two (diagonally opposite)
pure Nash equilibria which are asymptotically stable.
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Population games and replicator dynamics

Replicator equation of the 2 x 2 case: mixed Nash equilibrium (pt, p?),
" =o"q"(1 - d") (" -p"), =3-k

Theorem If there exists a mixed Nash equilibrium,

-if e1o2 < 0, the trajectories are all periodical,

-if o162 > 0, (pl,p?) is a saddle. There are two (diagonally opposite)
pure Nash equilibria which are asymptotically stable.

See L. Samuelson : “Evolutionary Games and Equilibrium Selection”
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Joint interest

Assume Wolves and Lynxes share a common foe : Man. Then each one
benefits from the presence of the other one in repelling the foe. This cre-
ates a joint interest (similar to inclusive fitness in E.S.S.)
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Joint interest

Assume Wolves and Lynxes share a common foe : Man. Then each one
benefits from the presence of the other one in repelling the foe. This cre-
ates a joint interest (similar to inclusive fitness in E.S.S.)

A possible representation: G% (z, ¢1, ¢%) = (1—a)GF(z, ¢ ) +aG(x, ¢)
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Joint interest

Assume Wolves and Lynxes share a common foe : Man. Then each one
benefits from the presence of the other one in repelling the foe. This cre-
ates a joint interest (similar to inclusive fitness in E.S.S.)

A possible representation: G% (z, ¢1, ¢%) = (1—a)GF(z, ¢ ) +aG(x, ¢)
If G*(q) = G¥q, gives FE(q*,¢%) = (1 — a)(d*, G*q¢%) + a(qt, G4F).

Replaces the game matrices G* by GX = (1 — a)G* 4 a(G*)?
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Joint interest

Assume Wolves and Lynxes share a common foe : Man. Then each one
benefits from the presence of the other one in repelling the foe. This cre-
ates a joint interest (similar to inclusive fitness in E.S.S.)

A possible representation: G% (z, ¢1, ¢%) = (1—a)GF(z, ¢ ) +aG(x, ¢)
If G*(q) = G¥q, gives FE(q*,¢%) = (1 — a)(d*, G*q¢%) + a(qt, G4F).
Replaces the game matrices G* by GE = (1 — a)G* 4 a(GH).

A bifurcation from periodic behaviour to a stable pure strategy occurs as a
p" crosses one or zero.
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Dynamics in the generating function
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Dynamics in the generating function

z IS a control function, X is of infinite dimension.
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Bang-bang control

Strategy z(t) € {0, 1}, ¢q(t) share of the population that uses x(t) = 1.
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Bang-bang control
Strategy z(t) € {0, 1}, ¢q(t) share of the population that uses x(t) = 1.

State of the world y € R™ driven by the population over [0, T7:

y = f(y,q), y(0)=uyo.
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Bang-bang control
Strategy z(t) € {0, 1}, ¢q(t) share of the population that uses x(t) = 1.

State of the world y € R™ driven by the population over [0, T7:

y = f(y,q), y(0)=uyo.

Increment of fithess gained by using = 1: ¢g(y). Hence

T
G(2(),0()) = [ a(®gly®))dt.
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Notation and hypotheses

Assume

Dg(y)f(y,0) >0, Dg(y)f(y,1) <O.
Let

Di1f(y,q) = A(y,q), Dof(y,q) =b(y,q), Dg(y) =c(y).

Hypothesis More use of the resource depletes it : c(y)b(y,q) < 0. =

The equation ¢(y) = c¢(y) f(y, g) = 0 generates an implicit function
q = ¢o(y).
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Wardrop equilibrium

Wardrop equilibrium p(-) generating a trajectory z(-) is given by
p(t) = ¢(=(t)) where

0 ifg(y) <O,
¢(y) =1 ¢o(y) ifg(y) =0,
1 ifg(y) > 0.
The trajectory z(-) reaches {y | g(y) = 0} at tg and stays on it.
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Wardrop equilibrium

Wardrop equilibrium p(-) generating a trajectory z(-) is given by
p(t) = ¢(=(t)) where

0 ifg(y) <O,
¢(y) =1 ¢o(y) ifg(y) =0,
1 ifg(y) > 0.
The trajectory z(-) reaches {y | g(y) = 0} at tg and stays on it.

E.S.S. 7
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Necessary condition

Let d(¢, s) be the tansition matrix of A(z(-), p(+)), and

h(t,s) := c(2(t))P(t, 5)b(2(s),p(s))

Theorem A necessary condition for p(-) to be an E.S.S. is that

V(s,t) e T ={s<te[tg,T]}, h(t,s)°—h(s,s)h(t,t)<O0.
Proof Apply the necessary condition (r, Hor) < O

(r, Hor) = 8//Tr(t)h(t, s)r(s)dtds

and let r(-) be composed of two strong variations.

57



The tragedy of the Commons

The shepherds of a village share a common pasture. They may feed their
flocks on the pasture (x = 1) or refrain (x = 0). The grass obeys a logistic
law

y’=a(1—%>y—|—bq—|—c, b<0.

The “cost” of feeding on the pasture is ~ per unit time, and g(y) = y — .
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The tragedy of the Commons

The shepherds of a village share a common pasture. They may feed their
flocks on the pasture (x = 1) or refrain (x = 0). The grass obeys a logistic
law

y’=a(1—%>y—|—bq—|—c, b<0.

The “cost” of feeding on the pasture is ~ per unit time, and g(y) = y — .

The equilibrium state is z = v, ¢g(2) = [(1 —~v/K)~y + c]/(—b).
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The tragedy of the Commons

The shepherds of a village share a common pasture. They may feed their

flocks on the pasture (x = 1) or refrain (x = 0). The grass obeys a logistic
law

y’=a(1—%>y—|—bq—|—c, b<0.

The “cost” of feeding on the pasture is ~ per unit time, and g(y) = y — .
The equilibrium state is z = v, ¢g(2) = [(1 —~v/K)~y + c]/(—b).

A(z,p) = a(l —2v/K) := a. The test is, Vs < t,
bQ(eQCL(t—S) . 1) S O ]
It succeeds ifa <0, i.e. v € [K/2, K].
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General scalar case

If y € R, the Wardrop “trajectory” is constant :
y(t) = z such that g(z) = 0, and ¢(t) = p such that ¢(2) f(z,p) = O.

The condition (r, Hyr) < O implies the local asymptotic stability of

fly,q),
q(1 —q)g(y),

Y
£q

in the neighborhood of (z, p).

The second equation above is a kind of shortsighted replicator equation.
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A routing problem  (Joint work with E. Altmann)

An ad-hoc telecommunication network densely covers an open region €2
of the plane R2. ' = 9Q = Q U R. Messages flow in 2 through Q at a

given rate o(y) > 0 and a density p(y) > O of messages is generated at
each y € 2. All messages have to leave through R.
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A routing problem  (Joint work with E. Altmann)

An ad-hoc telecommunication network densely covers an open region €2
of the plane R2. ' = 9Q = Q U R. Messages flow in 2 through Q at a

given rate o(y) > 0 and a density p(y) > O of messages is generated at
each y € 2. All messages have to leave through R.

A strategy x is a route or a direction of tavel z(t), with ||z|| = 1.
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A routing problem  (Joint work with E. Altmann)

An ad-hoc telecommunication network densely covers an open region €2
of the plane R2. ' = 9Q = Q U R. Messages flow in 2 through Q at a
given rate o(y) > 0 and a density p(y) > O of messages is generated at
each y € 2. All messages have to leave through R.

A strategy x is a route or a direction of tavel z(t), with ||z|| = 1.

A collective routing strategy is a vector field g : Q — R? giving = = ¢/||q||
and the intensity of the flow ||q|| at each y € 2.
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A routing problem  (Joint work with E. Altmann)

An ad-hoc telecommunication network densely covers an open region €2
of the plane R2. ' = 9Q = Q U R. Messages flow in 2 through Q at a
given rate o(y) > 0 and a density p(y) > O of messages is generated at
each y € 2. All messages have to leave through R.

A strategy x is a route or a direction of tavel z(t), with ||z|| = 1.

A collective routing strategy is a vector field g : Q — R? giving = = ¢/||q||
and the intensity of the flow ||q|| at each y € 2.

The time required by the router at y to transmit a message is 7(y). Hence
the delay suffered by messages throug y is 7(y)||q(y)||-
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A routing problem  (Joint work with E. Altmann)

An ad-hoc telecommunication network densely covers an open region €2
of the plane R2. ' = 9Q = Q U R. Messages flow in 2 through Q at a
given rate o(y) > 0 and a density p(y) > O of messages is generated at
each y € 2. All messages have to leave through R.

A strategy x is a route or a direction of tavel z(t), with ||z|| = 1.

A collective routing strategy is a vector field g : Q — R? giving = = ¢/||q||
and the intensity of the flow ||q|| at each y € 2.

The time required by the router at y to transmit a message is 7(y). Hence
the delay suffered by messages throug y is 7(y)||q(y)||-

A routing strategy p(y) is a Wardrop equilibrium if a lone message travel-
ling to R minimizes the travel time by following z(y) = p(y)/||lp(y)||-
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Wardrop equilibrium

Let a message originate in yg € Q U €2, and reach R in y1. Let s be the
curvilinear abscissa along the path.

Weas), o= ["rwe)las))]ds.

dS Yo
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Wardrop equilibrium

Let a message originate in yg € Q U €2, and reach R in y1. Let s be the
curvilinear abscissa along the path.

Weas), o= ["rwe)las))]ds.

dS Yo

The H.-J.-B. equation of the optimization problem is

vy € €2, Hgﬂi:ﬂl(VV(y),@ +7(W)llp(y)l| =0,

Vye R, V(y)=0.
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Wardrop equilibrium

Let a message originate in yg € Q U €2, and reach R in y1. Let s be the
curvilinear abscissa along the path.

Weas), o= ["rwe)las))]ds.

dS Yo

The H.-J.-B. equation of the optimization problem is

vy € €2, Hgﬂi:ﬂl(VV(y),@ +7(W)llp(y)l| =0,

Vye R, V(y)=0.

The optimum is obtained at x = —VV/||VV|| and |VV|| = 7||p||.
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Computing the Wardrop equilibrium

A vector field ¢ is admissible if Vy € O, (¢(y),n(y)) = —o(y),
and Vy € €2, divq(y) = p(y).
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Computing the Wardrop equilibrium

A vector field ¢ is admissible if Vy € O, (¢(y),n(y)) = —o(y),
and Vy € €2, divq(y) = p(y).

Recapitulating the Wardrop conditions yields

Vye Q, (VV(y),p(y)) = —a(y),
Vye R, V(y) =0

vy e Q. div (va/(y)> = o(y) .
7(y)

A classical mixed Dirichlet-Neuman elliptic P.D.E.
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Thank you
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