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What is there in common

between road trafic, Evolution theory, market analysis, breeding sheeps. . .

Answer

How individual selfish behaviour of many identical individuals translates
into population equilibrium.

Game of one individual against a population of identical individuals playing
the same game for themselves.
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Framework and notation

A large population of agents. Each has a choice of strategies x ∈ X.

∆(X) is the set of positive measures of mass 1 (probabilities) over X.

For A ⊂ X, n(A) the number of agents using a strategy x ∈ A,
q(A) = n(A)/

∫
X n(dx) the proportion of the population using x ∈ A.

(q(A) is also the probability that an agent picked at random with a uniform
probability over the population uses a strategy x ∈ A.)

Three cases
• X finite, X = {x1, x2, . . . , xn}, denote q(xi) = qi, q ∈ Σn ⊂ Rn,

• X ⊂ Rn, (hardly considered here), q is a measure over a continuum,

• X of infinite dimension (control). Two examples will be provided.
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Strategies

“strategies” x may be phenotypes (Evolution), instinctive or learned be-
haviours (behavioural ecology), routing strategies (road engineering, rout-
ing in a communication network), trading strategies (stock market), etc.

Mixed strategy

Maynard-Smith distinguishes phenotypes that yield a probabilistic behaviour,
allowing for a mixed strategy in a monomorphic population

from

a polymorphic population where each agent uses always the same strat-
egy, but collective mixed behaviour results from shares of the population
choosing each strategy. (As explained bove)
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Fitness and generating function

Hypothesis The fitness that gets an agent using a strategy x is a function
G(x, q) of x and the distribution of stategies q across the population.

The collective fitness of a sub-population using a distribution r within itself
in a larger population of overall distribution q is

F (r, q) =
∫
X

G(x, q)r(dx) .

Linear case

An important sub-case is when q 7→ G(x, q) is linear (a math. expectation)

G(x, q) =
∫
X

H(x, y)q(dy) , F (r, q) =
∫∫

X×X
H(x, y)q(dy)r(dx) .

This is not necessary for many results.
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Fitness and generating function

Hypothesis The fitness that gets an agent using a strategy x is a function
G(x, q) of x and the distribution of stategies q across the population.

The collective fitness of a sub-population using a distribution r within itself
in a larger population of overall distribution q is

F (r, q) =
∫
X

G(x, q)r(dx) .

Nonlinear case

In the general case, q 7→ G(x, q) is nonlinear, we let

D2G(x, q) = H(x, y, q) , D2G(x, q) · r =
∫
X

H(x, y, q)r(dy) .

This is not necessary for many results.
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Evolutionary stability

In a population with initial distribution p, a fraction ε mutates to q. The
overall distribution is then

qε = p + ε(q − p) .

This sub-population invades the original one if F (q, qε) ≥ F (p, qε). Hence
the population is protected against invasion, or evolutionarily stable, if

∀q ∈ ∆(X)−{p} , ∃ε0 > 0 : ∀ε ∈ (0, ε0) , F (q, qε) < F (p, qε) .

The supremum of such ε0’s is called the invasion barrier.
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Wardrop equilibrium

In the E.S.S. condition above, let ε → 0. It comes

F (p, p) = max
q∈∆(X)

F (q, p)

(p, p) is a Nash point of the game J1(p, q) = F (p, q), J2(p, q) = F (q, p).
Hence Von-Neumann’s equalization theorem holds:

∀x ∈ X , G(x, p) ≤ F (p, p) , p({x | G(x, p) < F (p, p)}) = 0 . (W)

Quote “The journey times on all routes actually used are equal, and less
than those that would be experienced by a single vehicle on any unused
route [. . . ] The first criterion is quite a likely one in practice [. . . ] an equilib-
rium situation in which no driver can reduce his journey time by choosing
a new route” John Glen Wardrop, 1952
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Linear case : second order condition

The Wardrop condition is only necessary. Let the set of best responses to
p be B(p) = {r | F (r, p) = maxq F (q, p) = F (p, p)}

Proposition In the linear case, a Wardrop equilibrum p is an E.S.S. iff

∀q ∈ B(p) , 〈(q − p), H(q − p)〉 < 0 .

Let X1 = {x | G(x, p) = F (p, p)} and X2 = support(p) ⊂ X1. (W)
Let H1 be the restriction of H to X1 ×X1 and H2 to X2 ×X2.

Theorem In the linear case, a Wardrop equilibrium p is an E.S.S.
if the restriction of the quadratic form 〈r, H1r〉 to r ∈ 1l⊥ ⊂ ∆(X1) is
negative definite,
and only if the restriction of the quadratic form 〈r, H2r〉 to r ∈ 1l⊥ ⊂
∆(X2) is non-positive definite.
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Finite linear case : a simple test

σ(A) =


1 4 5

−7 5
7 3 9

6 −10
4 6 2



A passes the test:

σ(A) + σ(A)t =

(
−14 11
11 −20

)
< 0 .
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Nonlinear case : second order condition

H(x, y, q) = D2G(x, q). Let H1 be its restriction to X1 ×X1 ×M(X1),
and similarily H2 its restriction to X2 ×X2 ×M(X2).

Definition A (finite) Wardrop equilibrium is regular if q 7→ H1(q) is continu-
ous at p and the restriction of 〈r, H1(p)r〉 to r ∈ 1l⊥ ⊂M(X1) is negative
definite.

Theorem For a Wardrop equilibrium to be an ESS, it is

necessary that the restriction of the quadratic form 〈r, H2r〉 to r ∈ 1l⊥ ⊂
M(X2) be nonpositive definite,

sufficient in the finite case that it be regular.
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Local Superiority

Definition A strategy distribution p is called locally superior or equivalently p

is an Evolutionarily Robust Strategy (E.R.S.) (or a Neighborhood Invading
Strategy N.I.S.) if there exists a neighborhood N of p such that

∀q ∈ N−{p} , F (p, q) > F (q, q)

Easy result: E.R.S. ⇒ E.S.S. (Place qε in above definition and use the
linearity of F w.r.t. its first argument.)

More difficult:
Theorem In the finite, linear or regular case, E.S.S. ⇒ E.R.S.
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Clutch size in parasitoids

Female parasitoids lay their eggs in hosts. 2 females parasitize each host.

All eggs layed in a single host either die together or succeed together.
The probability of success is one if 2 eggs are in the host, π > 1/3 if 3
eggs are present, 0 if 4 eggs or more are present.

A strategy x is the clutch size x ∈ {1,2}. The game matrix is

H =

(
1 π
2π 0

)
. σ(H) = 1− 3π < 0 .

If π = 1/2, p1 = 1 and Gi(p) = 1.
If π = 2/3, p1 = 2/3 and Gi(p) = 8/9 < 1.

This is an instance of Braess’paradox, well known in the transportation
literature.
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Replicator dynamics

Let n(x) be the number (or density) of individuals using strategy x.
Let q(x) = n(x)/

∫
Xdn(y) the strategy distribution.

Assume G(x, q) is the reproductive efficiency. Then

Discrete generations Generation duration h

q(x, t + h) = q(x, t)
1 + hG(x, q)

1 + hF (q, q)
.

Continuous time The limit as h → 0:

q̇(x, q) = q[G(x, q)− F (q, q)] .
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Stability of the replicator equation

Theorem

• Any limit point of the replicator dynamics is a Wardrop equilibrium,

• in finite dimension, E.S.S. are Lyapunov asymptotically stable. Its at-
traction basin contains a neighborhood of the relative interior of the
lowest dimensional face of ∆(X) it lies on.

The stability proof uses the relative entropy of q to p as Lyapunov function.
Its derivative is negative if p is an E.R.S. But we have no stability result of
E.R.S. in the infinite case, because that function is not weakly continuous.
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A population game
Lynxes and wolves

L\W cow. agr.
1− λ 1

cow. λ 0
0 −θ

agr. 1− µ 1− ν

λ + µ > 1 > ν

σ1 = λ + µ− ν , p2 = (1− ν)/(λ + µ− ν) ,

σ2 = −λ− θ , p1 = θ/(λ + θ) .

Draw case λ = ν = 0,5, µ = 0,75, θ = 1,5.
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Population games and replicator dynamics

Replicator equation of the 2× 2 case: mixed Nash equilibrium (p1, p2),

q̇k = σkqk(1− qk)(q` − p`) , ` = 3− k

Theorem If there exists a mixed Nash equilibrium,
- if σ1σ2 < 0, the trajectories are all periodical,
- if σ1σ2 > 0, (p1, p2) is a saddle. There are two (diagonally opposite)
pure Nash equilibria which are asymptotically stable.

See L. Samuelson : “Evolutionary Games and Equilibrium Selection”
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Joint interest

Assume Wolves and Lynxes share a common foe : Man. Then each one
benefits from the presence of the other one in repelling the foe. This cre-
ates a joint interest (similar to inclusive fitness in E.S.S.)

A possible representation: Gk
α(x, q1, q2) = (1−α)Gk(x, q`)+αG`(x, qk)

If Gk(q) = Gkq, gives F k
α(qk, q`) = (1− α)〈qk, Gkq`〉+ α〈q`, G`qk〉.

Replaces the game matrices Gk by Gk
α = (1− α)Gk + α(G`)t.

A bifurcation from periodic behaviour to a stable pure strategy occurs as a
pk crosses one or zero.
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Dynamics in the generating function

x is a control function, X is of infinite dimension.
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Bang-bang control

Strategy x(t) ∈ {0,1}, q(t) share of the population that uses x(t) = 1.

State of the world y ∈ Rn driven by the population over [0, T ]:

ẏ = f(y, q) , y(0) = y0 .

Increment of fitness gained by using x = 1: g(y). Hence

G(x(·), q(·)) =
∫ T

0
x(t)g(y(t)) dt .
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Notation and hypotheses

Assume

Dg(y)f(y,0) > 0 , Dg(y)f(y,1) < 0 .

Let

D1f(y, q) = A(y, q) , D2f(y, q) = b(y, q) , Dg(y) = c(y) .

Hypothesis More use of the resource depletes it : c(y)b(y, q) < 0. ⇒

The equation ġ(y) = c(y)f(y, q) = 0 generates an implicit function
q = φ0(y).
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Wardrop equilibrium

Wardrop equilibrium p(·) generating a trajectory z(·) is given by
p(t) = φ(z(t)) where

φ(y) =


0 if g(y) < 0 ,
φ0(y) if g(y) = 0 ,
1 if g(y) > 0 .

The trajectory z(·) reaches {y | g(y) = 0} at t0 and stays on it.

E.S.S. ?
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Necessary condition

Let Φ(t, s) be the tansition matrix of A(z(·), p(·)), and

h(t, s) := c(z(t))Φ(t, s)b(z(s), p(s))

Theorem A necessary condition for p(·) to be an E.S.S. is that

∀(s, t) ∈ T = {s ≤ t ∈ [t0, T ]} , h(t, s)2 − h(s, s)h(t, t) ≤ 0 .

Proof Apply the necessary condition 〈r, H2r〉 < 0

〈r, H2r〉 = ε
∫∫
T

r(t)h(t, s)r(s)dtds

and let r(·) be composed of two strong variations.

57



The tragedy of the Commons

The shepherds of a village share a common pasture. They may feed their
flocks on the pasture (x = 1) or refrain (x = 0). The grass obeys a logistic
law

ẏ = α

(
1−

y

K

)
y + bq + c , b < 0 .

The “cost” of feeding on the pasture is γ per unit time, and g(y) = y − γ.

The equilibrium state is z = γ, φ0(z) = [(1− γ/K)γ + c]/(−b).

A(z, p) = α(1− 2γ/K) := a. The test is, ∀s < t,

b2(e2a(t−s) − 1) ≤ 0 .

It succeeds if a ≤ 0, i.e. γ ∈ [K/2, K].
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General scalar case

If y ∈ R, the Wardrop “trajectory” is constant :
y(t) = z such that g(z) = 0, and q(t) = p such that c(z)f(z, p) = 0.

The condition 〈r, H2r〉 < 0 implies the local asymptotic stability of

ẏ = f(y, q) ,

εq̇ = q(1− q)g(y) ,

in the neighborhood of (z, p).

The second equation above is a kind of shortsighted replicator equation.
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A routing problem (Joint work with E. Altmann)

An ad-hoc telecommunication network densely covers an open region Ω
of the plane R2. Γ = ∂Ω = Q ∪ R. Messages flow in Ω through Q at a
given rate σ(y) ≥ 0 and a density ρ(y) ≥ 0 of messages is generated at
each y ∈ Ω. All messages have to leave through R.

A strategy x is a route or a direction of tavel x(t), with ‖x‖ = 1.

A collective routing strategy is a vector field q : Ω → R2 giving x = q/‖q‖
and the intensity of the flow ‖q‖ at each y ∈ Ω.

The time required by the router at y to transmit a message is τ(y). Hence
the delay suffered by messages throug y is τ(y)‖q(y)‖.

A routing strategy p(y) is a Wardrop equilibrium if a lone message travel-
ling to R minimizes the travel time by following x(y) = p(y)/‖p(y)‖.
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Wardrop equilibrium

Let a message originate in y0 ∈ Q ∪Ω, and reach R in y1. Let s be the
curvilinear abscissa along the path.

dy

ds
= x(s) , G =

∫ y1

y0

τ(y(s))‖q(y(s))‖ds .

The H.-J.-B. equation of the optimization problem is

∀y ∈ Ω , min
‖x‖=1

〈∇V (y), x〉+ τ(y)‖p(y)‖ = 0 ,

∀y ∈ R , V (y) = 0 .

The optimum is obtained at x = −∇V/‖∇V ‖ and ‖∇V ‖ = τ‖p‖.
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Computing the Wardrop equilibrium

A vector field q is admissible if ∀y ∈ Q, 〈q(y), n(y)〉 = −σ(y),
and ∀y ∈ Ω, div q(y) = ρ(y).

Recapitulating the Wardrop conditions give

∀y ∈ Q , 〈∇V (y), p(y)〉 = −σ(y) ,

∀y ∈ R , V (y) = 0

∀y ∈ Ω , div

(
1

τ(y)
∇V (y)

)
= ρ(y) .

A classical mixed Dirichlet-Neuman elliptic P.D.E.
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Thank you
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