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Introduction : value

Shapley in (1953) introduced finite zero-sum stochastic games.
He proved the existence of the value, v (λ), of the
λ-discounted game using dynamic programming.
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He proved the existence of the value, v (λ), of the
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Kohlberg (1974) introduced the operator approach and proved
the existence of the asymptotic value v := limλ→0 v (λ) in the
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Introduction : value

Shapley in (1953) introduced finite zero-sum stochastic games.
He proved the existence of the value, v (λ), of the
λ-discounted game using dynamic programming.

Kohlberg (1974) introduced the operator approach and proved
the existence of the asymptotic value v := limλ→0 v (λ) in the
subclass of absorbing games.

The operator approach has been extended by Rosenberg and
Sorin (2001) in particular to compact-continuous absorbing
games. Mertens, Neyman and Rosenberg proved the existence
of the uniform value in the compact-continuous case (but not
an explicit formula).
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Introduction : minmax

Using a differential-game approach, we provide a new proof for
the existence of limλ→0 v (λ) and an explicit formula
(Coulomb 2001’s work implies a formula for the limit).
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Introduction : minmax

Using a differential-game approach, we provide a new proof for
the existence of limλ→0 v (λ) and an explicit formula
(Coulomb 2001’s work implies a formula for the limit).

Our approach extends to the compact-continuous case and
allows also to (1) prove the existence of the asymptotic
minmax of multi-player absorbing games, (2) provide an
explicit formula for the limit and (3) characterize some
periodic equilibrium payoffs of a multi-player game as the
discount factor goes to zero.
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Introduction : minmax

Using a differential-game approach, we provide a new proof for
the existence of limλ→0 v (λ) and an explicit formula
(Coulomb 2001’s work implies a formula for the limit).

Our approach extends to the compact-continuous case and
allows also to (1) prove the existence of the asymptotic
minmax of multi-player absorbing games, (2) provide an
explicit formula for the limit and (3) characterize some
periodic equilibrium payoffs of a multi-player game as the
discount factor goes to zero.

The existence of the uniform minmax was proved by Neyman
2005 for any finite stochastic game.
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The zero-sum finite game

Consider two finite sets I and J, and tree functions f , g and p

from I × J to [0, 1] .
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The zero-sum finite game

Consider two finite sets I and J, and tree functions f , g and p

from I × J to [0, 1] .
At stage t = 1, 2, ... player I chooses at random it ∈ I (using
some mixed action xt ∈ ∆ (I ) and, simultaneously, Player J
chooses at random jt ∈ J (using some mixed action
yt ∈ ∆ (J).
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Consider two finite sets I and J, and tree functions f , g and p

from I × J to [0, 1] .
At stage t = 1, 2, ... player I chooses at random it ∈ I (using
some mixed action xt ∈ ∆ (I ) and, simultaneously, Player J
chooses at random jt ∈ J (using some mixed action
yt ∈ ∆ (J).
players receive at stage t, f (it , jt) .
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The zero-sum finite game

Consider two finite sets I and J, and tree functions f , g and p

from I × J to [0, 1] .
At stage t = 1, 2, ... player I chooses at random it ∈ I (using
some mixed action xt ∈ ∆ (I ) and, simultaneously, Player J
chooses at random jt ∈ J (using some mixed action
yt ∈ ∆ (J).
players receive at stage t, f (it , jt) .

with probability 1 − p (it , jt) the game is absorbed and player I
receives in all future stages g (it , jt) (and player J receives
−g (it , jt)),
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The zero-sum finite game

Consider two finite sets I and J, and tree functions f , g and p

from I × J to [0, 1] .
At stage t = 1, 2, ... player I chooses at random it ∈ I (using
some mixed action xt ∈ ∆ (I ) and, simultaneously, Player J
chooses at random jt ∈ J (using some mixed action
yt ∈ ∆ (J).
players receive at stage t, f (it , jt) .

with probability 1 − p (it , jt) the game is absorbed and player I
receives in all future stages g (it , jt) (and player J receives
−g (it , jt)),
with probability p (it , jt) the interaction continues (the
situation is repeated at step t + 1).
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The zero-sum finite game

Consider two finite sets I and J, and tree functions f , g and p

from I × J to [0, 1] .
At stage t = 1, 2, ... player I chooses at random it ∈ I (using
some mixed action xt ∈ ∆ (I ) and, simultaneously, Player J
chooses at random jt ∈ J (using some mixed action
yt ∈ ∆ (J).
players receive at stage t, f (it , jt) .

with probability 1 − p (it , jt) the game is absorbed and player I
receives in all future stages g (it , jt) (and player J receives
−g (it , jt)),
with probability p (it , jt) the interaction continues (the
situation is repeated at step t + 1).
If the stream of payoffs is r(t), t = 1, 2, ..., the
λ-discounted-payoff of the game is

∑∞
t=1

λ(1 − λ)t−1r(t).
Player I maximizes and player J minimizes.
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A quitting game example

C A
C 0 1∗

A 1∗ 0∗

vλ = value





C A
C (1 − λ)vλ 1
A 1 0





= max
x∈[0,1]

min
y∈[0,1]

[xy(1 − λ)vλ + x(1 − y) + y(1 − x)]

= min
y∈[0,1]

max
x∈[0,1]

[xy(1 − λ)vλ + x(1 − y) + y(1 − x)] .
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A quitting game example

C A
C 0 1∗

A 1∗ 0∗

vλ = value





C A
C (1 − λ)vλ 1
A 1 0





= max
x∈[0,1]

min
y∈[0,1]

[xy(1 − λ)vλ + x(1 − y) + y(1 − x)]

= min
y∈[0,1]

max
x∈[0,1]

[xy(1 − λ)vλ + x(1 − y) + y(1 − x)] .

Hence:

vλ = xλ = yλ =
1 −

√
λ

1 − λ
.
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Notations

M+(I ) = {α = (αi )i∈I : αi ∈ [0,+∞)} is the set of positive
measures on I . It contains ∆(I ).
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Notations

M+(I ) = {α = (αi )i∈I : αi ∈ [0,+∞)} is the set of positive
measures on I . It contains ∆(I ).

p∗(i , j) = 1 − p(i , j) and f ∗(i , j) = [1 − p(i , j)] × g(i , j).
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Minmax
The value of infinite games

Notations

M+(I ) = {α = (αi )i∈I : αi ∈ [0,+∞)} is the set of positive
measures on I . It contains ∆(I ).

p∗(i , j) = 1 − p(i , j) and f ∗(i , j) = [1 − p(i , j)] × g(i , j).

Let ϕ : I × J → [0, 1] ,

For α ∈ M+(I ), and j ∈ J, let

ϕ(α, j) =
∑

i∈I

αiϕ(i , j)
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Characterization

Theorem

v (λ) satisfies

v (λ) = max
x∈∆(I )

min
j∈J

λf (x , j) + (1 − λ)f ∗(x , j)

λp(x , j) + (1 − λ)p∗(x , j)

and converges to v as λ goes to zero where,

v := sup
x∈∆(I )

sup
α⊥x∈M+(I )

min
j∈J

(

f ∗(x , j)

p∗(x , j)
1{p∗(x ,j)>0} +

f (x , j) + f ∗(α, j)

p(x , j) + p∗(α, j)
1{p∗(x ,j)=0}

)

.

where α ⊥ x means that for every i , xi > 0 ⇒ αi = 0.
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Proof

If in the λ-discounted game, player I plays the stationary strategy
x , and player J plays a pure stationary strategy j ∈ J, the
λ-discounted reward r (λ, x , j) satisfies:

r (λ, x , j) = λf (x , j) + (1 − λ) p(x , j)r (λ, x , j) + (1 − λ)f ∗(x , j)

hence,

r (λ, x , j) =
λf (x , j) + (1 − λ)f ∗(x , j)

λp(x , j) + (1 − λ)p∗(x , j)
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Minmax
The value of infinite games

Proof

If in the λ-discounted game, player I plays the stationary strategy
x , and player J plays a pure stationary strategy j ∈ J, the
λ-discounted reward r (λ, x , j) satisfies:

r (λ, x , j) = λf (x , j) + (1 − λ) p(x , j)r (λ, x , j) + (1 − λ)f ∗(x , j)

hence,

r (λ, x , j) =
λf (x , j) + (1 − λ)f ∗(x , j)

λp(x , j) + (1 − λ)p∗(x , j)

Since the maximizer has a stationary optimal strategy and the
minimizers has a pure stationary best reply (Shapley 1953), the
formula for v(λ) follows.
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Proof

Let w = limn→∞ v (λn) where λn → 0.
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Proof

Let w = limn→∞ v (λn) where λn → 0.
There exists x (λn) ∈ ∆(I ) such that for every j ∈ J,

v (λn) ≤
λnf (x(λn), j) + (1 − λn) f ∗(x(λn), j)

λnp(x(λn), j) + (1 − λn) p∗(x(λn), j)
.
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Let w = limn→∞ v (λn) where λn → 0.
There exists x (λn) ∈ ∆(I ) such that for every j ∈ J,

v (λn) ≤
λnf (x(λn), j) + (1 − λn) f ∗(x(λn), j)
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.

By compactness of ∆(I ) one can suppose that x (λn) → x .
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Minmax
The value of infinite games

Proof

Let w = limn→∞ v (λn) where λn → 0.
There exists x (λn) ∈ ∆(I ) such that for every j ∈ J,

v (λn) ≤
λnf (x(λn), j) + (1 − λn) f ∗(x(λn), j)

λnp(x(λn), j) + (1 − λn) p∗(x(λn), j)
.

By compactness of ∆(I ) one can suppose that x (λn) → x .

Case 1: p∗(x , j) > 0.
Letting λn goes to zero implies

w = lim v (λn) ≤
f ∗(x , j)

p∗(x , j)
.
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Proof

Case 2: p∗(x , j) =
∑

i∈I xip
∗(i , j) = 0.

Thus,
∑

i∈S(x) p∗(i , j) = 0 where S(x) = {i ∈ I : x i > 0}.
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Minmax
The value of infinite games

Proof

Case 2: p∗(x , j) =
∑

i∈I xip
∗(i , j) = 0.

Thus,
∑

i∈S(x) p∗(i , j) = 0 where S(x) = {i ∈ I : x i > 0}.
Let α(λn) =

(

x i (λn)(1−λn)
λn

1{xi=0}

)

i∈I
∈ M+(I )
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Minmax
The value of infinite games

Proof

Case 2: p∗(x , j) =
∑

i∈I xip
∗(i , j) = 0.

Thus,
∑

i∈S(x) p∗(i , j) = 0 where S(x) = {i ∈ I : x i > 0}.
Let α(λn) =

(

x i (λn)(1−λn)
λn

1{xi=0}

)

i∈I
∈ M+(I )

so that α(λn) ⊥ x . Consequently,
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Proof

Case 2: p∗(x , j) =
∑

i∈I xip
∗(i , j) = 0.

Thus,
∑

i∈S(x) p∗(i , j) = 0 where S(x) = {i ∈ I : x i > 0}.
Let α(λn) =

(

x i (λn)(1−λn)
λn

1{xi=0}

)

i∈I
∈ M+(I )

so that α(λn) ⊥ x . Consequently,

∑

i∈I

x i (λn) (1 − λn)

λn

p
∗(i , j) =

∑

i∈I

α
i (λn) p

∗(i , j) = p
∗(α (λn) , j)

and

∑

i∈I

x i (λn) (1 − λn)

λn
f
∗(i , j) =

∑

i∈I

α
i (λn) f

∗(i , j) = f
∗(α (λn) , j)
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Proof

Case 2: p∗(x , j) =
∑

i∈I xip
∗(i , j) = 0.

Thus,
∑

i∈S(x) p∗(i , j) = 0 where S(x) = {i ∈ I : x i > 0}.
Let α(λn) =

(

x i (λn)(1−λn)
λn

1{xi=0}

)

i∈I
∈ M+(I )

so that α(λn) ⊥ x . Consequently,

∑

i∈I

x i (λn) (1 − λn)

λn

p
∗(i , j) =

∑

i∈I

α
i (λn) p

∗(i , j) = p
∗(α (λn) , j)

and

∑

i∈I

x i (λn) (1 − λn)

λn
f
∗(i , j) =

∑

i∈I

α
i (λn) f

∗(i , j) = f
∗(α (λn) , j)

so,

w ≤ lim
n→∞

f (x , j) + f ∗(α(λn), j)

p(x , j) + p∗(α(λn), j)
.

Consequently, w ≤ v .
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Proof

Construct a strategy for player I in the λn-discounted game that
guarantees v as λn → 0.
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Minmax
The value of infinite games

Proof

Construct a strategy for player I in the λn-discounted game that
guarantees v as λn → 0.
Let (α, x) ∈ M+(I ) × ∆(I ) be ε-optimal for the maximizer in the
formula of v . For λn small enough, define x(λn) as follows

x (λn) ∝ x + λnα
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Minmax
The value of infinite games

Proof

Construct a strategy for player I in the λn-discounted game that
guarantees v as λn → 0.
Let (α, x) ∈ M+(I ) × ∆(I ) be ε-optimal for the maximizer in the
formula of v . For λn small enough, define x(λn) as follows

x (λn) ∝ x + λnα

Let r(λn) be the unique real in [0, 1] that satisfies,

r(λn) = min
j∈J

[

λn [f (x(λn), j)] + (1 − λn) (p(x(λn), j)) r (λn)
+ (1 − λn) f ∗(x(λn), j)

]

.
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MaxMin or value in finite games

Minmax
The value of infinite games

Proof

Construct a strategy for player I in the λn-discounted game that
guarantees v as λn → 0.
Let (α, x) ∈ M+(I ) × ∆(I ) be ε-optimal for the maximizer in the
formula of v . For λn small enough, define x(λn) as follows

x (λn) ∝ x + λnα

Let r(λn) be the unique real in [0, 1] that satisfies,

r(λn) = min
j∈J

[

λn [f (x(λn), j)] + (1 − λn) (p(x(λn), j)) r (λn)
+ (1 − λn) f ∗(x(λn), j)

]

.

It is easy to show that lim v(λn) ≥ lim r(λn) ≥ v
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Notations

A team of N players (named I) play against a player J.

Each player k in team I has a finite set of actions I k . Player J
has a finite set of actions J.
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Notations

A team of N players (named I) play against a player J.

Each player k in team I has a finite set of actions I k . Player J
has a finite set of actions J.

Let I = I 1 × ... × IN and f , g and p from I × J → [0, 1].
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Notations

A team of N players (named I) play against a player J.

Each player k in team I has a finite set of actions I k . Player J
has a finite set of actions J.

Let I = I 1 × ... × IN and f , g and p from I × J → [0, 1].

The game is played as above, except of the following
constraint. At each period, players in team I randomize
independently (cannot correlate their random moves).
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Minmax
The value of infinite games

Notations

A team of N players (named I) play against a player J.

Each player k in team I has a finite set of actions I k . Player J
has a finite set of actions J.

Let I = I 1 × ... × IN and f , g and p from I × J → [0, 1].

The game is played as above, except of the following
constraint. At each period, players in team I randomize
independently (cannot correlate their random moves).

Team I minimizes the expected λ-discounted-payoff and player
J maximizes the same payoff.
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MaxMin or value in finite games

Minmax
The value of infinite games

Notations

A team of N players (named I) play against a player J.

Each player k in team I has a finite set of actions I k . Player J
has a finite set of actions J.

Let I = I 1 × ... × IN and f , g and p from I × J → [0, 1].

The game is played as above, except of the following
constraint. At each period, players in team I randomize
independently (cannot correlate their random moves).

Team I minimizes the expected λ-discounted-payoff and player
J maximizes the same payoff.

X k = ∆(I k), X = X 1 × ... × XN , and
M+ = M+(I 1) × ... × M+(IN).
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The value of infinite games

Minmax: characterization

For x ∈ X , j ∈ J, k ∈ N and α ∈ M+, ϕ : I × J → [0, 1] , is
extended multi-linearly as follows:

ϕ(x , j) =
∑

i=(i1,...,iN)∈I

x1

i1 × ... × xN
iN

ϕ(i , j)

ϕ(αk , x−k , j) =
∑

i=(i1,...,iN)∈I

x1

i1 × ... × xk−1

ik−1 × αk
ik
× xk+1

ik+1 ... × xN
iNϕ(i , j
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Minmax
The value of infinite games

Minmax: characterization

For x ∈ X , j ∈ J, k ∈ N and α ∈ M+, ϕ : I × J → [0, 1] , is
extended multi-linearly as follows:

ϕ(x , j) =
∑

i=(i1,...,iN)∈I

x1

i1 × ... × xN
iN

ϕ(i , j)

ϕ(αk , x−k , j) =
∑

i=(i1,...,iN)∈I

x1

i1 × ... × xk−1

ik−1 × αk
ik
× xk+1

ik+1 ... × xN
iNϕ(i , j

Theorem

v (λ) = minx∈X maxj∈J
λf (x ,j)+(1−λ)f ∗(x ,j)
λf (x ,j)+(1−λ)f ∗(x ,j) and converges as λ → 0

to

v = inf
x∈X

inf
α∈M+:∀k,αk⊥xk

max
j∈J





f ∗(x,j)
p∗(x,j)

1{p∗(x,j)>0}

+
f (x,j)+

∑N

k=1
f ∗(αk

,x−k
,j)

p(x,j)+
∑

N

k=1
p∗(αk ,x−k ,j)

1{p∗(x,j)=0}



 .
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Main modification in proof 1

Let w = limn→∞ v (λn) where λn → 0.
Let x (λn) → x such that for every j ∈ J,

v (λn) ≤
λnf (x(λn), j) + f ∗(x(λn), j)

λnp(x(λn), j) + p∗(x(λn), j)
.
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Main modification in proof 1

Let w = limn→∞ v (λn) where λn → 0.
Let x (λn) → x such that for every j ∈ J,

v (λn) ≤
λnf (x(λn), j) + f ∗(x(λn), j)

λnp(x(λn), j) + p∗(x(λn), j)
.

Let y(λn) = x (λn) − x → 0. Then,

p∗(x(λn), j) = p∗(x , j)+

N
∑

k=1

p∗(yk(λn), x
−k , j)+o(

N
∑

k=1

p∗(yk(λn), x
−k , j))

and

f ∗(x(λn), j) = f ∗(x , j)+
N
∑

k=1

f ∗(yk(λn), x
−k , j)+o(

N
∑

k=1

f ∗(yk(λn), x
−k , j))
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Notations

Assume I and J are compact-metric and h, g and f separately
continuous functions from I × J to [0, 1].
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Notations

Assume I and J are compact-metric and h, g and f separately
continuous functions from I × J to [0, 1].

∆(K ), K = I , J, is the set of Borel probability measures on K

and M+(K ) is the set of Borel positive measure on K .
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Notations

Assume I and J are compact-metric and h, g and f separately
continuous functions from I × J to [0, 1].

∆(K ), K = I , J, is the set of Borel probability measures on K

and M+(K ) is the set of Borel positive measure on K .

For (α, β) ∈ M+(I ) × M+(J) and ϕ : I × J → [0, 1]
measurable ϕ(α, β) =

∫

I×J
ϕ(i , j)dα(i)dβ(j).
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Notations

Assume I and J are compact-metric and h, g and f separately
continuous functions from I × J to [0, 1].

∆(K ), K = I , J, is the set of Borel probability measures on K

and M+(K ) is the set of Borel positive measure on K .

For (α, β) ∈ M+(I ) × M+(J) and ϕ : I × J → [0, 1]
measurable ϕ(α, β) =

∫

I×J
ϕ(i , j)dα(i)dβ(j).

This is the framework of Rosenberg and Sorin 2001, Israel
Journal of Math. They proved the existence of lim v(λ) and
provided a variational characterization of it using the derivative
of the Shapley Operator around λ ≈ 0.

Rida Laraki Explicit formulas for repeated games with absorbing states



introduction
MaxMin or value in finite games

Minmax
The value of infinite games

Characterization

Theorem

v = sup
(x ,α):α⊥x

inf
(y ,β):β⊥y

(

f ∗(x ,y)
p∗(x ,y)1{p∗(x ,y)>0}

+ f (x ,y)+f ∗(α,y)+f ∗(x ,β)
p(x ,y)+p∗(α,y)+p∗(x ,β)1{p∗(x ,y)=0}

)

= inf
(y ,β):β⊥y

sup
(x ,α):α⊥x

(

f ∗(x ,y)
p∗(x ,y)1{p∗(x ,y)>0}

+ f (x ,y)+f ∗(α,y)+f ∗(x ,β)
p(x ,y)+p∗(α,y)+p∗(x ,β)1{p∗(x ,y)=0}

)
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Proof

Consider a subsequence that converges to lim sup vλ. Take an
optimal strategy x(λn) in the λn-discounted game that converges
to some x .
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Proof

Consider a subsequence that converges to lim sup vλ. Take an
optimal strategy x(λn) in the λn-discounted game that converges
to some x .
Consider any strategy of player 2 of the form y (λn) ∝ y + λnβ.
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Proof

Consider a subsequence that converges to lim sup vλ. Take an
optimal strategy x(λn) in the λn-discounted game that converges
to some x .
Consider any strategy of player 2 of the form y (λn) ∝ y + λnβ.

This will imply that v(λn) is smaller than

λnf (x(λn), y + λnβ) + λn (1 − λn) f ∗(x(λn), β) + (1 − λn) f ∗(x(λn), y)

λnp(x(λn), y + λnβ) + λn (1 − λn) p∗(x(λn), β) + (1 − λn) p∗(x(λn), y)
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Minmax
The value of infinite games

Proof

Consider a subsequence that converges to lim sup vλ. Take an
optimal strategy x(λn) in the λn-discounted game that converges
to some x .
Consider any strategy of player 2 of the form y (λn) ∝ y + λnβ.

This will imply that v(λn) is smaller than

λnf (x(λn), y + λnβ) + λn (1 − λn) f ∗(x(λn), β) + (1 − λn) f ∗(x(λn), y)

λnp(x(λn), y + λnβ) + λn (1 − λn) p∗(x(λn), β) + (1 − λn) p∗(x(λn), y)

If p∗(x , y) > 0 then v ≤ f ∗(x ,y)
p∗(x ,y) .
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Proof

Consider a subsequence that converges to lim sup vλ. Take an
optimal strategy x(λn) in the λn-discounted game that converges
to some x .
Consider any strategy of player 2 of the form y (λn) ∝ y + λnβ.

This will imply that v(λn) is smaller than

λnf (x(λn), y + λnβ) + λn (1 − λn) f ∗(x(λn), β) + (1 − λn) f ∗(x(λn), y)

λnp(x(λn), y + λnβ) + λn (1 − λn) p∗(x(λn), β) + (1 − λn) p∗(x(λn), y)

If p∗(x , y) > 0 then v ≤ f ∗(x ,y)
p∗(x ,y) .

If not, divide by λn, define α(λn) =
(

x i(λn)(1−λn)
λn

1{x i=0}
)

i∈I
, go

to the limit and deduce that lim sup vλ ≤ sup inf.
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Proof

Consider a subsequence that converges to lim sup vλ. Take an
optimal strategy x(λn) in the λn-discounted game that converges
to some x .
Consider any strategy of player 2 of the form y (λn) ∝ y + λnβ.

This will imply that v(λn) is smaller than

λnf (x(λn), y + λnβ) + λn (1 − λn) f ∗(x(λn), β) + (1 − λn) f ∗(x(λn), y)

λnp(x(λn), y + λnβ) + λn (1 − λn) p∗(x(λn), β) + (1 − λn) p∗(x(λn), y)

If p∗(x , y) > 0 then v ≤ f ∗(x ,y)
p∗(x ,y) .

If not, divide by λn, define α(λn) =
(

x i(λn)(1−λn)
λn

1{x i=0}
)

i∈I
, go

to the limit and deduce that lim sup vλ ≤ sup inf.
Also, lim inf vλ ≥ inf sup. A trivial comparison principle implies that
sup inf ≤ inf sup. This end the proof.
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Conclusion

The results does not depend on the signaling structure.
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Conclusion

The results does not depend on the signaling structure.

A characterization of the set equilibrium payoffs is obtained for
periodic Nash-equilibria as the discount factor goes to zero
(formulas are more complexes as the period increases).
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Conclusion

The results does not depend on the signaling structure.

A characterization of the set equilibrium payoffs is obtained for
periodic Nash-equilibria as the discount factor goes to zero
(formulas are more complexes as the period increases).

The results could be applied to repeated games with imperfect
monitoring (signals).

Rida Laraki Explicit formulas for repeated games with absorbing states



introduction
MaxMin or value in finite games

Minmax
The value of infinite games

Conclusion

The results does not depend on the signaling structure.

A characterization of the set equilibrium payoffs is obtained for
periodic Nash-equilibria as the discount factor goes to zero
(formulas are more complexes as the period increases).

The results could be applied to repeated games with imperfect
monitoring (signals).

It would be nice to find an elegant proof for the existence of
the uniform value from its formula (Mertens, Neyman and
Rosenberg proved existence in the compact-continuous case,
to appear in MOR).
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Conclusion

The results does not depend on the signaling structure.

A characterization of the set equilibrium payoffs is obtained for
periodic Nash-equilibria as the discount factor goes to zero
(formulas are more complexes as the period increases).

The results could be applied to repeated games with imperfect
monitoring (signals).

It would be nice to find an elegant proof for the existence of
the uniform value from its formula (Mertens, Neyman and
Rosenberg proved existence in the compact-continuous case,
to appear in MOR).

Uniform equilibria of non zero sum absorbing games are much
more difficult to study (Paris Mach of Sorin and the existence
result of Solan for 3 player games).
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