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Multi-Arm Bandits
A single player sequential decision making 
problem.
Time is continuous or discrete.

The goal: to maximize the discounted payoff.

There is a tradeoff between exploration and exploitation.

At every time t, the decision maker has to choose one arm i, and he observes the 
next realization of the process (xi(s)) (at the sth time in which he chooses arm i
he observes xi(s)). 

The decision maker has finitely many actions 
(called “arms”).
Each arm i generates a payoff which is a 
stochastic process (xi(s)).

The distribution of (xi(s)) is not known. It is drawn at the outset from a known 
family of distributions according to a known probability distribution pi.



Multi-Arm Bandits: cont.
A strategy: an indication of which arm to choose after any history (can use 
randomization).

Question: What is the structure of the optimal strategy?

Answer: The optimal strategy is an index strategy.
For every arm i, calculate an index, which depends only on past observations of 
that arm. Choose the arm with maximal index.

The index is the unique real number s, such that in the problem that contains 
two arms, a safe arm that always generates s, and arm i (given past observations 
on the arm), the decision maker is indifferent between the arms at time 0.

Gittins and Jones (1979) for discrete time problems.
Karatzas (1985) and Kaspi and Mandelbaum (1995) for special continuous time 
problems, when the distribution of each arm is known.



One-Arm Bandits with Two 
Types

One safe arm that always generates s.
One risky arm that generates a stochastic process (X(t)) .

The risky arm can have two types: High or Low. 
The High type’s expected “payoff per time” is higher than s,
The Low type’s expected “payoff per time” is lower than s.

p(t) = the belief at time t that the type of the risky arm is High.

When time is discrete: optimal strategy is a cut-off strategy:
Choose the risky arm as long as p(t) > p*.
Switch to the safe arm once p(t) ≤ p*.
The same if time is continuous and (X(t)) is a Brownian motion with drift.

Question: Can we provide an explicit expression to p* ?



Lévy Payoff Processes

The risky arm generates a stochastic payoff (Xh(t)) or (X l(t)).

Both (Xh(t)) and (X l(t)) are Lévy processes, with different parameters.

The Decision Maker has to decide, for every time interval [t,t+dt) , the 
proportion k of the time interval to invest in the risky arm (the rest will be 
invested in the safe arm).

The payoff at the time interval [t,t+dt) , is 

k dt × s + (1-k)× dX(t)

Payoff is discounted at a discount rater .

safe arm risky arm



A Lévy Process
The continuous time analog of random walk.
A Lévy process is a continuous time process (X(t)) that satisfies:
1) It starts at the origin: X(0) = 0.
2) It has stationary independent increments.
3) It has Càdlàg modification (RCLL): continuous from the right, has limits 

from the left.

Special cases: 
1) Brownian motion.
2) Linear drift: X(t) = µt.
3) Poisson process: a lump sum c arrives at a time that has a Poisson 

distribution.
4) Compound Poisson process: the sum of Poisson processes (there are 

many possible jumps. The expected number of jumps with size in a Borel
subset A of R up to time 1 is ν(A)).

5) The sum of independent copies of the above.



A Lévy Process, cont.
The Lévy-Ito decomposition theorem: A Lévy process with finite Lévy

measure is the sum of a linear drift, a Brownian motion, and a compound 
Poisson process (independent of the Brownian motion).

The Lévy measure is finiteif E[ν] := ∫x ν(dx) is finite.
This is the expected jump size per time in [t,t+dt).

I will present results for Lévy processes with finite Lévymeasure, but they 
were extended to Lévy processes with infinite Lévy measure.



Back to the Bandit Problem
High type Low type

Linear drift

Standard deviation of Brownian motion

Intensity of jump’s size

σh σl

µh µl

νh νl



High type Low type

Linear drift

Standard deviation of Brownian motion

Intensity of jump’s size

σh σl

νh νl

Back to the Bandit Problem

If the standard deviations of the Brownian motions differ, the DM can 
identify the type of the arm at an infinitesimal time interval.

µh µl



Back to the Bandit Problem
High type Low type

Linear drift

Standard deviation of Brownian motion

Intensity of jump’s size

µh µl

νh νl

σ σ



High type Low type

Linear drift

Standard deviation of Brownian motion

Intensity of jump’s size

σ σ

νh νl

Back to the Bandit Problem

If, e.g., a jump that has 0 probability under νl and positive probability under 
νh arrives, then the DM deduces that the arm is High.

µh µl



High type Low type

Linear drift

Standard deviation of Brownian motion

Intensity of jump’s size

µh µl

σ σ

νh νl

Assumptions

High type is better than Low type in a strong sense:
1) High type is better than safe arm is better than Low type: 

µh+E[νh] > s > µl+ E[νl].
2)  Jumps of High type dominate jumps of Low type: νh(A)≥νl(A) for every 

Borel set A.



Implications of 
Assumptions

Suppose that a jump of size x occurs:
If νl(x) = 0, then the DM known that the type is High.
If νl(x) > 0, then the probability of the High type does not decrease.
If there is a jump, the probability of the High type does not decrease.

High type is better than Low type in a strong sense:
1) High type is better than safe arm is better than Low type: 

µh+E[νh] > s > µl+ E[νl].
2)  Jumps of High type dominate jumps of Low type: νh(A)≥νl(A) for every 

Borel set A.



The Dynamic Programming 
Principle

Write the dynamic programming equation of the optimal payoff (Bolton and 
Harris (1999), Keller, Rady and Cripps (2005):

U(p) = max{ s, (p(E[νh]+µh) + (1-p)(E[νl]+µl))rdt + exp(-rdt) E[U(p+dp)]} .

instanteous payoff continuation payoff

U is continuous, non-decreasing and convex. 
Use Taylor expansion (second order), and obtain a differential equation 
(with U’ and U’’).
Find its solution.



The Solution
Define:

f(η) =   νl(dx)( ) + η(E[νh ]-E[νl ]) – E[νl ] + ½ (η+1)η ( ) – r.
νl(dx)

νh(dx)

η

∫
The equation f(η)=0 has a unique solution α in the interval (0,∞).

The optimal cut-off is: p* := 
α(s-gl)

α(gh-gl) + (gh-s)

The optimal payoff is: U(p) = 

pgl + (gh-gl)p + C(1-p)( )
s,      if p ≤ p*

1-p α

C := 
s-gl – p*(gh-gl)

(1-p* ) 
p*

1-p*

)(
α

σ

µh--µl
2

Here:
gh = µh+E[νh], 
gl =  µl+ E[νl].



Application 1: Pricing 
Information

Suppose that Xh(t) = Yh(t) + Zh(t),       and X l(t) = Yl(t) + Zl(t).

The DM observes only Yh (or Y l), but his payoff also depends on Zh (or Z l).

The DM can observe Zh (or Z l) at a cost c.

Question: What is the optimal strategy in each case?
Question: What is the fair price c of the additional information?



Application 2: 
Optimism versus 

Pessimism

Suppose that the DM believes that the initial prior is q0, even though the true 
probability of the High type is p0.

The DM uses the optimal strategy given q0.
Question: What is the expected payoff?

Question: Who will fare better, an optimist with a prior belief p0 + ε, or a 
pessimist with a prior belief p0 - ε?


