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Multi-Arm Banis

A single player sequential decision makinggss= .,

Time is continuous or discrete. Ty ® .il T = AR _
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The decision maker has finitely many actiofs | B g| j ! f
(called “arms”). ;
Each arm generates a payoff which is a

stochastic process'(s)).

The distribution ofx/(s)) is not known. It is drawn at the outset from a known
family of distributions according to a known prodapidistributionp'.

At every timet, the decision maker has to choose oneiaand he observes the
next realization of the procefd(s)) (at thes time in which he chooses aim
he observes!(s)).

The goat to maximize the discounted payoff.

There is a tradeoff between exploration and exguiioin.



Multi-Arm Bandits: cont.

A strategy: an indication of which arm to choose after anydms{can use
randomization).

Question What is the structure of the optimal strategy?

Answer: The optimal strategy is an index strategy.
For every arm, calculate amdex, which depends only on past observations of
that arm. Choose the arm with maximal index.

The index is the unigue real numisesuch that in the problem that contains
two arms, a safe arm that always genergtaad arm (given past observations
on the arm), the decision maker is indifferent betwie arms at time O.

Gittins and Jones (1979) for discrete time problems.
Karatzas (1985) and Kaspi and Mandelbaum (1995) feciabcontinuous time
problems, when the distribution of each arrknswn.



One-Arm Bandits with Two
Types

One safe arm that always generates
One risky arm that generates a stochastic prq€ss.

The risky arm can have two typeésgh or Low.
TheHigh type’s expected “payoff per time” is higher than
ThelLow type’s expected “payoff per time” is lower than

p(t) = the belief at timé that the type of the risky arm is High.

When time is discrete: optimal strategy is a cut-oHtegy:

Choose the risky arm as long@$) > p’.

Switch to the safe arm onpét) <p".

The same if time is continuous afX{t)) is a Brownian motion with drift.

Questiort Can we provide an explicit expressiomt®



Lévy Payoff Processes

The risky arm generates a stochastic pa@of{t)) or (X(t)).

The Decision Maker has to decide, for every timervat,t+dt) , the
proportionk of the time interval to invest in the risky arm (test will be
iInvested in the safe arm).

The payoff at the time intervitlt+dt) , is
k dt x s + (1-k)x dX(t)
\\ J
—Y Y

safe arm risky arm

Payoff is discounted at a discount rate

Both (X, (t)) and(X,(t)) are Levy processes, with different parameters.



A Lévy Process

The continuous time analog of random walk.

A Lévy process is a continuous time proce§d)) that satisfies:
1) It starts at the origirnX(0) = 0.

2) It has stationary independent increments.

3) It has Cadlag modification (RCLL): continuous frmlne rlght has Ilmlts

from the left. giE-n

Inverse barometer not applied

Special cases: Tol . gL
1) Brownian motion. N "ﬂ; C
2) Linear drift:X(t) = pt. R O

3) Poisson process: a lump sgrarrives at a time that has a P0|sson
distribution.

4) Compound Poisson process: the sum of Poisson pro¢tdssesare
many possible jumps. The expected number of jumpssathin a Borel
subsefA of R up to time 1 iv(A)).

5) The sum of independent copies of the above.



A Lévy Process, cont.

The Léevy-lto decomposition theorem A Lévy process with finite Lévy
measure is the sum of a linear drift, a Brownian nmptamd a compound
Poisson process (independent of the Brownian motion).

The Lévy measure is finitef E[v] .= fx v(dx) is finite.
This is the expected jump size per time in [t,t+dt).

| will present results for Lévy processes with finite Léngasure, but they
were extended to Lévy processes with infinite Lévy mesasu



Back to the Bandit Problem

High type Low type

Linear drift Iy, 1,

Standard deviation of Brownian motion op o,

Intensity of jJump’s size Vi, Vi




Back to the Bandit

Linear drift
Standard deviation of Brownian motion

Intensity of jJump’s size

Problem

High type Low type
M H
G, G
Vh Vi

If the standard deviations of the Brownian motionedjthe DM can
identify the type of the arm at an infinitesimal éinmterval.



Back to the Bandit Problem

High type Low type

Linear drift Hy, 1,

Standard deviation of Brownian motion o) o)

Intensity of jJump’s size Vi, Vi




Back to the Bandit Problem

High type Low type

Linear drift Hy, 1,
Standard deviation of Brownian motion o) o)
Intensity of jump’s size Vi \/

If, e.g., a jump that has 0 probability une@gand positive probability under
v, arrives, then the DM deduces that the arm is High.



Assumptions

High type Low type

Linear drift Hy, 1,
Standard deviation of Brownian motion o) o)
Intensity of jJump’s size Vi, v,

High type is better thahow type in a strong sense:
1) High type is better than safe arm is better thaw type:
pptE[vp] > s >p+ E[v].
2) Jumps ofigh type dominate jumps afow type:v,(A)2v,(A) for every
Borel setA.



Implications of
Assumptions

High type is better thahow type in a strong sense:
1) High type is better than safe arm is better thaw type:
uptE[vp] > s >p+ E[v].
2) Jumps ofigh type dominate jumps dfow type:v,(A)2v,(A) for every
Borel setA.

Suppose that a jump of sixeccurs:

If v,(X) = 0, then the DM known that the typehisgh.

If v,(X) > 0, then the probability of thieigh type does not decrease.
If there is a jump, the probability of tlhégh type does not decrease.



The Dynamic Programming
Principle

Write the dynamic programming equation of the optipayoff (Bolton and
Harris (1999), Keller, Rady and Cripps (2005):

U(p) = max s, (p(E[vi]+m.) + (1-p)(Elv]+n,))rdt + exp(-rdt) E[U(p+dp)] } .
\ O )
~N Y

instanteous payoff continuation payoff

U is continuous, non-decreasing and convex.

Use Taylor expansion (second order), and obtain ardittial equation
(with U’ and U”).

Find its solution.



The Solution

Define:

(cX) 1 oot Y
f(n) =IV|(dX) h(dX)) + n(E[vy]-Ev]) — EW ] + %2 (n+1)n ( c ) -

The equation f{)=0 has a unique solutianin the interval (Gp).

| | a(s-q) Here:
Th | cut-off is: p:=
e optimal cut-off is: p (9-g) + (G-5) g, = py+E[v,],
_ g = m+ E[v].
s, ifpsp

The optimal payoff is: U(p) =< 1-py\ o
g+ (g-9)p + C(l-p)(—p )

S-g — P (9y-9) ~
@) ()"

C:=



Application 1: Pricing
Information

Suppose that, (t) = Y, (t) + Z,(1), anadX,(t) = Y,(t) + Z,(t).
The DM observes only, (or Y,), but his payoff also depends ap(or Z)).
The DM can observg, (orZ,) at a cost.

Question What is the optimal strategy in each case?
Questiont What is the fair price of the additional information?



Application 2:
Optimism versus
Pessimism

Suppose that the DM believes that the initial prsay,j even though the true
probability of the High type ip,.

The DM uses the optimal strategy given
Question What is the expected payoff?

Questiont Who will fare better, an optimist with a prior leflp, + €, or a
pessimist with a prior beligd, - €?



