Approachability Theory, Discriminating Domain and Differential Games

Sami As Soulaimani1
joint work with M. Quincampoix1 and S. Sorin2

1University of Brest
2University of Paris VI and Ecole polytechnique

Roscoff III

November 2008
Plan

0 Qualitative Differential Games
1 Repeated games with vectorial payoff
2 From repeated to differential games
3 B-set and Discriminating domain
4 Approachability strategies vs preserving strategies
5 Bibliography
Plan

Qualitative Differential Games
- Set up
- Discriminating Domains
Consider the two controlled dynamical system

\[
\begin{align*}
\dot{x}(t) &= f(x(t), u(t), v(t)) \quad \text{for a.e } t \geq 0 \\
x(0) &= x_0 \in \mathbb{R}^d,
\end{align*}
\]

Controls of Player 1: measurable maps \(u: [0, +\infty) \mapsto U\).

Controls of Player 2: measurable maps \(v: [0, +\infty) \mapsto V\).

Let \(K \subset \mathbb{R}^d\) be a nonempty closed set.

The goal of Player 1 is to keep the state of the system in \(K\) indefinitely while Player 2 wants to make the state reach \(K^c\).
Plan

Qualitative Differential Games
- Set up
- Discriminating Domains
Nonanticipative strategies

A map $\alpha : \mathcal{V} \rightarrow \mathcal{U}$ is a **nonanticipative strategy (NA)** if

$\forall v_1 \in \mathcal{V}, \forall v_2 \in \mathcal{V}$ we have $v_1 = v_2$ on $[0, t]$ Then

$$\alpha(v_1)(s) \equiv \alpha(v_2)(s) \ \forall s \in [0, t].$$

Discriminating domain (Aubin '89)

K is a discriminating domain if for every $x_0 \in K$, $\exists \alpha \in NA(\mathcal{V}, \mathcal{U})$, s.t

$\forall v \in \mathcal{V}, \forall t > 0 \ x[x_0, \alpha(v), v](t) \in K.$

The strategy α is then said to preserve K.
Proximal normals

\[NP_K(x) = \{ p \in \mathbb{R}^d / d_K(x + p) = \|p\| \} \] is the of proximal normal set.

Interpretation Theorem (Cardaliaguet ’96)

\(K \) is a discriminating domain if and only if: \(\forall x \in K, \ \forall p \in NP_K(x) \)

\[
\sup_{v \in V} \inf_{u \in U} \langle f(x, u, v), p \rangle \leq 0.
\]
Proximal normals

\[NP_K(x) = \{ p \in \mathbb{R}^d / d_K(x + p) = \|p\| \} \] is the of proximal normal set.

Interpretation Theorem (Cardaliaguet '96)

\[K \text{ is a discriminating domain if and only if: } \forall x \in K, \ \forall p \in NP_K(x) \]
\[\sup_{\nu \in \mathcal{V}} \inf_{u \in \mathcal{U}} \langle f(x, u, \nu), p \rangle \leq 0. \]
Plan

1. Repeated games with vectorial payoff
 - Set up
 - Characterization of Approachability
Repeated games with vectorial payoff

- Let $A = a_{i,j}$ be an $I \times J$ matrix with coefficients in \mathbb{R}^d
- 2 players matrix game repeated indefinitely.
- At each stage $n = 1, 2, ..., $ each player chooses an element in his set of actions: $i_n \in I$ for Player 1 (resp. $j_n \in J$ for Player 2), the corresponding outcome is $g_n = A_{i_nj_n} \in \mathbb{R}^d$ and the couple of actions (i_n, j_n) is announced to both players.
- The average payoff $\bar{g}_n = \frac{1}{n} \sum_{m=1}^{n} g_m$
- The goal of Player 1 is to reach a closed target K while the goal of Player 2 is to avoid it.
• \(H_n = (I \times J)^n \) is the set of possible histories up to stage \(n \).
• \(\Sigma \) is the set of strategies of Player 1 namely mappings:

\[
H = \bigcup_n H_n \mapsto \Delta(I)
\]

meaning that: If at stage \(n \), the history is \(h_{n-1} \in H_{n-1} \), Player 1 chooses an action in \(I \) according to the probability distribution \(\sigma(h_{n-1}) \in \Delta(I) \)

• \(T \) is the set of strategies of Player 2 defined similarly.

Approachability (Blackwell ’56)

A nonempty closed set \(K \) in \(\mathbb{R}^d \) is **approachable** for Player 1 if, for every \(\varepsilon > 0 \), there exists a strategy \(\sigma \) of Player 1 and \(N \in \mathbb{N} \) such that, for any strategy \(\tau \) of Player 2 and any \(n \geq N \)

\[
\mathbb{E}_{\sigma,\tau}(d_K(\bar{g}_n)) \leq \varepsilon.
\]
1. Repeated games with vectorial payoff
 - Set up
 - Characterization of Approachability
Characterization of Approachability

B-set (Blackwell ’56)

A closed set K in \mathbb{R}^d is a B-set for Player 1 if for any $z \notin K$, there exists a closest point x to K and a mixed action $u = u(z)$ in $U = \Delta(I)$ such that the hyperplane through x orthogonal to the segment $[xz]$ separates z from $P(u) = \{uAv | v \in V = \Delta(J)\}$. Namely:

$$\exists u \in U \forall v \in V \langle z - x, uAv - x \rangle \leq 0.$$

Theorem (Blackwell ’56)

Every B-Set for Player 1 is approachable by that player.

Theorem (Hou ’71, Spinat ’00)

If a nonempty closed set is approachable then it contains a B-set.
Characterization of Approachability

B-set (Blackwell ’56)

A closed set K in \mathbb{R}^d is a B-set for Player 1 if for any $z \not\in K$, there exists a closest point x to K and a mixed action $u = u(z)$ in $U = \Delta(I)$ such that the hyperplane through x orthogonal to the segment $[xz]$ separates z from $P(u) = \{uAv | v \in V = \Delta(J)\}$. Namely:

$$\exists u \in U \ \forall v \in V \quad \langle z - x, uAv - x \rangle \leq 0.$$

Theorem (Blackwell ’56)

Every B-Set for Player 1 is approachable by that player.

Theorem (Hou ’71, Spinat ’00)

If a nonempty closed set is approachable then it contains a B-set.
Characterization of Approachability

B-set (Blackwell ’56)

A closed set K in \mathbb{R}^d is a B-set for Player 1 if for any $z \notin K$, there exists a closest point x to K and a mixed action $u = u(z)$ in $U = \Delta(I)$ such that the hyperplane through x orthogonal to the segment $[xz]$ separates z from $P(u) = \{uAv | v \in V = \Delta(J)\}$. Namely:

$$\exists u \in U \forall v \in V \quad \langle z - x, uAv - x \rangle \leq 0.$$

Theorem (Blackwell ’56)

Every B-Set for Player 1 is approachable by that player.

Theorem (Hou ’71, Spinat ’00)

If a nonempty closed set is approachable then it contains a B-set.
From repeated to differential games

- The “expected” repeated game G^*
The “expected” repeated game \(G^* \)

- Consider \(A \) the same matrix as defined before.
- 2 players.
- At each stage \(n \), each player chooses an element \(u_n \) in his set of actions: \(u_n \in U \) for Player 1 (resp. \(v_n \in V \) for Player 2), the corresponding outcome is \(g_n^* = u_n A v_n \in \mathbb{R}^d \)
- The couple of actions \((u_n, v_n)\) is announced.
- The payoff up to stage \(n \) is the average payoff over the last stages \(\overline{g}_n^* = \frac{1}{n} \sum_{m=1}^n g_m^* \).
Consider A the same matrix as defined before.

2 players.

At each stage n, each player chooses an element u_n in his set of actions: $u_n \in U$ for Player 1 (resp. $v_n \in V$ for Player 2), the corresponding outcome is $g_n^* = u_n A v_n \in \mathbb{R}^d$.

The couple of actions (u_n, v_n) is announced.

The payoff up to stage n is the average payoff over the last stages $\bar{g}_n^* = \frac{1}{n} \sum_{m=1}^{n} g_m^*$.

The “expected” repeated game G^*
The “expected” repeated game G^*

- Consider A the same matrix as defined before.
- 2 players.
- At each stage n, each player chooses an element u_n in his set of actions: $u_n \in U$ for Player 1 (resp. $v_n \in V$ for Player 2), the corresponding outcome is $g_n^* = u_nAv_n \in \mathbb{R}^d$
- The couple of actions (u_n, v_n) is announced.
- The payoff up to stage n is the average payoff over the last stages $\overline{g}_n^* = \frac{1}{n} \sum_{m=1}^{n} g_m^*$.
- $H_n^* = (U \times V)^n$ is the set of possible histories up to stage n.
- Σ (resp T) is the set of strategies of Player 1 namely mappings:

$$H^* = \bigcup_n H_n^* \mapsto U$$

(resp. Player 2 $H^* \mapsto V$).

\$\star\$-Approachability

A nonempty closed set K in \mathbb{R}^d is \star-approachable for Player 1 if, for every $\varepsilon > 0$, there exists a strategy σ^* of Player 1 and $N \in \mathbb{N}$ such that, for any strategy τ^* of Player 2 and any $n \geq N$

$$d_K(\bar{g}^*_n) \leq \varepsilon.$$

- Notice that if K is a \mathcal{B}-set then it is \star-approachable.
The related differential game Γ

- We mimic the average payoff \bar{g}^*_n by a continuous time average payoff, denoted by \tilde{g}, with $\tilde{g}(0) = 0$ and for $t > 0$
 \[\tilde{g}[u, v](t) = \frac{1}{t} \int_0^t u(s)A_v(s)ds. \]

- \[
 \frac{\partial \tilde{g}[u, v](t)}{\partial t} = -\tilde{g}(t) + \frac{u(t)A_v(t)}{t}.
 \]

- Set $t = e^s$, and denote $x(s) = \tilde{g}(e^s)$
 \[
 \dot{x}(s) = -x(s) + u(s)A_v(s).
 \]

- which is the dynamics of a qualitative differential with
 \[f(x, u, v) = -x + uA_v. \]
Main results

Theorem

A nonempty closed set \(K \subset \mathbb{R}^d \) is a discriminating domain in the differential game \(\Gamma \) for Player 1 if and only if \(K \) is a \(\mathcal{B} \)-set for Player 1 in \(G \) (or \(G^* \)).

- Suppose that \(K \) is a \(\mathcal{B} \)-Set for Player 1. Let \(x \in K \) and \(p \in NP_K(x) \) s.t \(p \neq 0 \).
- let \(z = x + p/2 \) and observe that \(\pi_K(z) \) is reduced to the singleton \(\{x\} \).
- Hence Since \(K \) is \(\mathcal{B} \)-set there exists a mixed move \(u \in U \) such that, for every \(v \in V \),
 \[
 \langle uAv - x, z - x \rangle \leq 0.
 \]
-
 \[
 \sup_{v \in V} \inf_{u \in U} \langle f(x, u, v), p \rangle \leq \inf_{u \in U} \sup_{v \in V} \langle f(x, u, v), p \rangle \leq 0.
 \]

Thus, \(K \) is a discriminating domain for Player 1.
Main results

Theorem

A nonempty closed set $K \subset \mathbb{R}^d$ is a discriminating domain in the differential game Γ for Player 1 if and only if K is a \mathcal{B}-set for Player 1 in G (or G^*).

- Suppose that K is a \mathcal{B}-Set for Player 1. Let $x \in K$ and $p \in NP_K(x)$ s.t $p \neq 0$.
- let $z = x + p/2$ and observe that $\pi_K(z)$ is reduced to the singleton $\{x\}$.
- Hence Since K is \mathcal{B}-set there exists a mixed move $u \in U$ such that, for every $v \in V$,

$$\langle uAv - x, z - x \rangle \leq 0.$$

$$\sup_{v \in V} \inf_{u \in U} \langle f(x, u, v), p \rangle \leq \inf_{u \in U} \sup_{v \in V} \langle f(x, u, v), p \rangle \leq 0.$$

Thus, K is a discriminating domain for Player 1.
Main results

Theorem

A nonempty closed set $K \subset \mathbb{R}^d$ is a discriminating domain in the
differential game Γ for Player 1 if and only if K is a \mathcal{B}-set for Player 1 in G
(or G^*).

- Suppose that K is a \mathcal{B}-Set for Player 1. Let $x \in K$ and $p \in NP_K(x)$
s.t $p \neq 0$.
- Let $z = x + p/2$ and observe that $\pi_K(z)$ is reduced to the singleton
 $\{x\}$.
- Hence Since K is \mathcal{B}-set there exists a mixed move $u \in U$ such that,
 for every $v \in V$,
 $$\langle uAv - x, z - x \rangle \leq 0.$$

 $$\sup_{v \in V} \inf_{u \in U} \langle f(x, u, v), p \rangle \leq \inf_{u \in U} \sup_{v \in V} \langle f(x, u, v), p \rangle \leq 0.$$

 Thus, K is a discriminating domain for Player 1.
Main results

Theorem

A nonempty closed set $K \subset \mathbb{R}^d$ is a discriminating domain in the differential game Γ for Player 1 if and only if K is a \mathcal{B}-set for Player 1 in G (or G^*).

- Suppose that K is a \mathcal{B}-Set for Player 1. Let $x \in K$ and $p \in NP_K(x)$ s.t $p \neq 0$.
- let $z = x + p/2$ and observe that $\pi_K(z)$ is reduced to the singleton $\{x\}$.
- Hence Since K is \mathcal{B}-set there exists a mixed move $u \in U$ such that, for every $v \in V$,
 \[\langle uAv - x, z - x \rangle \leq 0. \]

Thus, K is a discriminating domain for Player 1.
Main results

Theorem

A nonempty closed set $K \subset \mathbb{R}^d$ is a discriminating domain in the differential game Γ for Player 1 if and only if K is a B-set for Player 1 in G (or G^*).

- Suppose that K is a B-Set for Player 1. Let $x \in K$ and $p \in NP_K(x)$ s.t $p \neq 0$.
- Let $z = x + p/2$ and observe that $\pi_K(z)$ is reduced to the singleton $\{x\}$.
- Hence Since K is B-set there exists a mixed move $u \in U$ such that, for every $v \in V$,
 \[\langle uA v - x, z - x \rangle \leq 0. \]

Thus, K is a discriminating domain for Player 1.

\[\sup_{v \in V} \inf_{u \in U} \langle f(x, u, v), p \rangle \leq \inf_{u \in U} \sup_{v \in V} \langle f(x, u, v), p \rangle \leq 0. \]
Proposition

If a nonempty closed set $K \subset \mathbb{R}^d$ is a B-set for Player 1 in G or G^*, there exists a NA strategy α of Player 1 in Γ, such that for every $\mathbf{v} \in \mathcal{V}$

$$\forall t \geq 1 \quad d_K(\tilde{g}[\alpha(\mathbf{v}), \mathbf{v}](t)) \leq \frac{M}{t}.$$

- Given $y_0 \in K$ and $x_0 \notin K$, let Player 1 use the related preserving strategy α.
- Denote $y_s = x[y_0, \alpha(\mathbf{v}), \mathbf{v}](s)$ and $x_s = x[x_0, \alpha(\mathbf{v}), \mathbf{v}](s)$. Since $\dot{x}_t = \alpha(\mathbf{v})(t)A\mathbf{v}(t) - x_t$, $\dot{y}_t = \alpha(\mathbf{v})(t)A\mathbf{v}(t) - y_t$, one has
 $$\frac{d}{dt}(x_t - y_t) = \dot{x}_t - \dot{y}_t = -(x_t - y_t)$$

- Hence $\|x_t - y_t\| = \|x_0 - y_0\|e^{-t}$
- Since $y_t \in K$
 $$d_K(x_t) \leq \|x_0 - y_0\|e^{-t}.$$
Proposition

If a nonempty closed set $K \subset \mathbb{R}^d$ is a \mathbf{B}-set for Player 1 in G or G^*, there exists a NA strategy α of Player 1 in Γ, such that for every $\mathbf{v} \in \mathcal{V}$

\[\forall t \geq 1 \quad d_K(\tilde{g}[\alpha(\mathbf{v}), \mathbf{v}](t)) \leq \frac{M}{t}. \]

- Given $y_0 \in K$ and $x_0 \not\in K$, let Player 1 use the related preserving strategy α.
- Denote $y_s = x[y_0, \alpha(\mathbf{v}), \mathbf{v}](s)$ and $x_s = x[x_0, \alpha(\mathbf{v}), \mathbf{v}](s)$. Since $\dot{x}_t = \alpha(\mathbf{v})(t)A\mathbf{v}(t) - x_t$, $\dot{y}_t = \alpha(\mathbf{v})(t)A\mathbf{v}(t) - y_t$, one has

\[\frac{d}{dt}(x_t - y_t) = \dot{x}_t - \dot{y}_t = -(x_t - y_t) \]

- Hence $\|x_t - y_t\| = \|x_0 - y_0\|e^{-t}$
- Since $y_t \in K$

\[d_K(x_t) \leq \|x_0 - y_0\|e^{-t}. \]
Proposition

If a nonempty closed set \(K \subset \mathbb{R}^d \) is a \(\mathcal{B} \)-set for Player 1 in \(G \) or \(G^* \), there exists a NA strategy \(\alpha \) of Player 1 in \(\Gamma \), such that for every \(\mathbf{v} \in \mathcal{V} \)

\[
\forall t \geq 1 \quad d_K(\tilde{g}[\alpha(\mathbf{v}), \mathbf{v}](t)) \leq \frac{M}{t}.
\]

- Given \(y_0 \in K \) and \(x_0 \notin K \), let Player 1 use the related preserving strategy \(\alpha \).
- Denote \(y_s = x[y_0, \alpha(\mathbf{v}), \mathbf{v}](s) \) and \(x_s = x[x_0, \alpha(\mathbf{v}), \mathbf{v}](s) \).
 Since \(\dot{x}_t = \alpha(\mathbf{v})(t)A_{\mathbf{v}}(t) - x_t, \quad \dot{y}_t = \alpha(\mathbf{v})(t)A_{\mathbf{v}}(t) - y_t \)
 one has

\[
\frac{d}{dt}(x_t - y_t) = \dot{x}_t - \dot{y}_t = -(x_t - y_t)
\]
- Hence \(\|x_t - y_t\| = \|x_0 - y_0\|e^{-t} \)
- Since \(y_t \in K \)

\[
d_K(x_t) \leq \|x_0 - y_0\|e^{-t}.
\]
Proposition

If a nonempty closed set $K \subset \mathbb{R}^d$ is a \mathcal{B}-set for Player 1 in G or G^*, there exists a NA strategy α of Player 1 in Γ, such that for every $v \in \mathcal{V}$

$$\forall t \geq 1 \quad d_K(\tilde{g}[\alpha(v), v](t)) \leq \frac{M}{t}.$$

- Given $y_0 \in K$ and $x_0 \notin K$, let Player 1 use the related preserving strategy α.
- Denote $y_s = x[y_0, \alpha(v), v](s)$ and $x_s = x[x_0, \alpha(v), v](s)$. Since $\dot{x}_t = \alpha(v)(t)A v(t) - x_t$, $\dot{y}_t = \alpha(v)(t)A v(t) - y_t$, one has
 $$\frac{d}{dt}(x_t - y_t) = \dot{x}_t - \dot{y}_t = -(x_t - y_t)$$
- Hence $\|x_t - y_t\| = \|x_0 - y_0\|e^{-t}$
- Since $y_t \in K$
 $$d_K(x_t) \leq \|x_0 - y_0\|e^{-t}.$$
Proposition

If a nonempty closed set $K \subset \mathbb{R}^d$ is a B-set for Player 1 in G or G^*, there exists a NA strategy α of Player 1 in Γ, such that for every $v \in \mathcal{V}$

$$\forall t \geq 1 \quad d_K(\tilde{g}[\alpha(v),v](t)) \leq \frac{M}{t}.$$

- Given $y_0 \in K$ and $x_0 \notin K$, let Player 1 use the related preserving strategy α.
- Denote $y_s = x[y_0, \alpha(v), v](s)$ and $x_s = x[x_0, \alpha(v), v](s)$.

 Since $\dot{x}_t = \alpha(v)(t)A v(t) - x_t$, \quad $\dot{y}_t = \alpha(v)(t)A v(t) - y_t$,

 one has

 $$\frac{d}{dt} (x_t - y_t) = \dot{x}_t - \dot{y}_t = -(x_t - y_t)$$

- Hence $\|x_t - y_t\| = \|x_0 - y_0\| e^{-t}$
- Since $y_t \in K$

 $$d_K(x_t) \leq \|x_0 - y_0\| e^{-t}.$$
Main Theorem

Theorem
A closed set K is \star-approachable for Player 1 if and only if it contains a B-Set for that player.

Corollary
Approachability and \star-approachable do coincide.
Theorem

For any $\varepsilon > 0$ and any non-anticipative strategy α preserving K in the differential game Γ, there exists an approachability strategy σ for $K + \varepsilon B(0, 1)$ in the repeated game G.
We say that a map $\delta : \mathcal{U} \mapsto \mathcal{V}$ is a \textbf{nonanticipative strategy with delay (NAD)} if there exits a subdivision of time $t_1 < t_2 < \ldots < t_n < \ldots$ for which we have the following property:

$$\forall \ w_1, w_2 \in \mathcal{U} \text{ s.t. } w_1(s) \equiv w_2(s) \text{ for a.e } s \in [0, t_i]$$

Then, $\delta(w_1)(s) \equiv \delta(w_2)(s) \text{ for a.e } s \in [0, t_{i+1}].$

The idea of the construction is the following:

- Given a NA strategy α we will show that it can be approximated in term of range by a piecewise constant NAD strategy $\bar{\alpha}$.
- When applied to α preserving K (hence approaching K), we will obtain a NAD strategy approaching K.
- Starting from the repeated game G^* this procedure will produce an approachability strategy.
Nonanticipative strategies with delay

We say that a map $\delta : \mathcal{U} \mapsto \mathcal{V}$ is a nonanticipative strategy with delay (NAD) if there exists a subdivision of time $t_1 < t_2 < .. < t_n < ..$ for which we have the following property:

$$\forall \ w_1, w_2 \in \mathcal{U} \ s.t \ w_1(s) \equiv w_2(s) \ for \ a.e \ s \in [0, t_i]$$

Then, $\delta(w_1)(s) \equiv \delta(w_2)(s) \ for \ a.e \ s \in [0, t_{i+1}]$.

The idea of the construction is the following:

- Given a NA strategy α we will show that it can be approximated in term of range by a piecewise constant NAD strategy $\bar{\alpha}$.

- When applied to α preserving K (hence approaching K), we will obtain a NAD strategy approaching K.

- Starting from the repeated game G^* this procedure will produce an approachability strategy.

