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Qualitative Differential Games

Consider the two controlled dynamical system{
ẋ(t) = f (x(t),u(t), v(t)) for a.e t ≥ 0

x(0) = x0 ∈ IRd ,

Controls of Player 1 : measurable maps u : [0,+∞) 7→ U.

Controls of Player 2: measurable maps v : [0,+∞) 7→ V .

Let K ⊂ IRd be a nonempty closed set.

The goal of Player 1 is to keep the state of the system in K
indefinitely while Player 2 wants to make the state reach K c .
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Nonanticpative strategies

A map α : V → U is a nonanticipative strategy (NA) if
∀ v1 ∈ V, ∀v2 ∈ V we have v1 = v2 on [0, t] Then

α(v1)(s) ≡ α(v2)(s) ∀s ∈ [0, t].

Discriminating domain (Aubin ’89)

K is a discriminating domain if for every x0 ∈ K , ∃ α ∈ NA(V,U), s.t
∀v ∈ V, ∀t > 0 x[x0, α(v), v](t) ∈ K .
The strategy α is then said to preserve K .



Proximal normals

NPK (x) = {p ∈ IRd/dK (x + p) = ‖p‖} is the of proximal normal set.

Interpretation Theorem (Cardaliaguet ’96)

K is a discriminating domain if and only if: ∀x ∈ K , ∀p ∈ NPK (x)

sup
v∈V

inf
u∈U
〈f (x , u, v), p〉 ≤ 0.
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Repeated games with vectorial payoff

Let A = ai ,j be an I × J matrix with coefficients in IRd

2 players matrix game repeated indefinitely.

At each stage n = 1, 2, ..., each player chooses an element in his set
of actions: in ∈ I for Player 1 (resp. jn ∈ J for Player 2), the
corresponding outcome is gn = Ainjn ∈ IRd and the couple of actions
(in, jn) is announced to both players.

The average payoff gn = 1
n

∑n
m=1 gm

The goal of Player 1 is to reach a closed target K while the goal of
Player 2 is to avoid it.



Hn = (I × J)n is the set of possible histories up to stage n.

Σ is the set of strategies of Player 1 namely mappings:

H = ∪nHn 7→ ∆(I )

meaning that: If at stage n, the history is hn−1 ∈ Hn−1, Player 1
chooses an action in I according to the probability distribution
σ(hn−1) ∈ ∆(I )

T is the set of strategies of Player 2 defined similarly.

Approachability (Blackwell ’56)

A nonempty closed set K in IRd is approachable for Player 1 if, for every
ε > 0, there exists a strategy σ of Player 1 and N ∈ IN such that, for any
strategy τ of Player 2 and any n ≥ N

IEσ,τ (dK (gn)) ≤ ε.
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Characterization of Approachability

B-set (Blackwell ’56)

A closed set K in IRd is a B-set for Player 1 if for any z /∈ K , there exists a
closest point x to K and a mixed action u = u(z) in U = ∆(I ) such that
the hyperplane through x orthogonal to the segment [xz ] separates z from
P(u) = {uAv |v ∈ V = ∆(J)}. Namely:

∃u ∈ U ∀v ∈ V 〈z − x , uAv − x〉 ≤ 0.

Theorem (Blackwell ’56)

Every B-Set for Player 1 is approachable by that player.

Theorem (Hou ’71, Spinat ’00)

If a nonempty closed set is approachable then it contains a B-set.
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The “expected” repeated game G ?

Consider A the same matrix as defined before.

2 players.

At each stage n, each player chooses an element un in his set of
actions: un ∈ U for Player 1 (resp. vn ∈ V for Player 2), the
corresponding outcome is g?n = unAvn ∈ IRd

The couple of actions (un, vn) is announced.

The payoff up to stage n is the average payoff over the last stages
g?n = 1

n

∑n
m=1 g?m.
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H?
n = (U × V )n is the set of possible histories up to stage n.

Σ (resp T ) is the set of strategies of Player 1 namely mappings :

H? = ∪nH?
n 7→ U

(resp. Player 2 H? 7→ V ).

?-Approachability

A nonempty closed set K in IRd is ?approachable for Player 1 if, for every
ε > 0, there exists a strategy σ? of Player 1 and N ∈ IN such that, for any
strategy τ? of Player 2 and any n ≥ N

dK (g?n) ≤ ε.

Notice that if K is a B-set then it is ?approachable.



The related differential game Γ

We mimic the average payoff g?n by a continuous time average payoff,
denoted by g̃ , with g̃(0) = 0 and for t > 0
g̃ [u, v](t) = 1

t

∫ t
0 u(s)Av(s)ds.

∂g̃ [u, v](t)

∂t
=
−g̃(t) + u(t)Av(t)

t
.

Set t = es , and denote x(s) = g̃(es)

ẋ(s) = −x(s) + u(s)Av(s).

which is the dynamics of a qualitative differential with
f (x , u, v) = −x + uAv .



Main results

Theorem

A nonempty closed set K ⊂ IRd is a discriminating domain in the
differential game Γ for Player 1 if and only if K is a B-set for Player 1 in G
(or G ?).

Suppose that K is a B-Set for Player 1. Let x ∈ K and p ∈ NPK (x)
s.t p 6= 0.

let z = x + p/2 and observe that πK (z) is reduced to the singleton
{x}.
Hence Since K is B-set there exists a mixed move u ∈ U such that,
for every v ∈ V ,

〈uAv − x , z − x〉 ≤ 0.

sup
v∈V

inf
u∈U
〈f (x , u, v), p〉 ≤ inf

u∈U
sup
v∈V
〈f (x , u, v), p〉 ≤ 0.

Thus, K is a discriminating domain for Player 1.
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Proposition

If a nonempty closed set K ⊂ IRd is a B-set for Player 1 in G or G ?, there
exists a NA strategy α of Player 1 in Γ, such that for every v ∈ V

∀t ≥ 1 dK (g̃ [α(v), v](t)) ≤ M

t
.

Given y0 ∈ K and x0 /∈ K , let Player 1 use the related preserving
strategy α.

Denote ys = x[y0, α(v), v](s) and xs = x[x0, α(v), v](s).
Since ẋt = α(v)(t)Av(t)− xt , ẏt = α(v)(t)Av(t)− yt ,
one has

d

dt
(xt − yt) = ẋt − ẏt = −(xt − yt)

Hence ‖xt − yt‖ = ‖x0 − y0‖e−t

Since yt ∈ K
dK (xt) ≤ ‖x0 − y0‖e−t .
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Hence ‖xt − yt‖ = ‖x0 − y0‖e−t

Since yt ∈ K
dK (xt) ≤ ‖x0 − y0‖e−t .



Proposition

If a nonempty closed set K ⊂ IRd is a B-set for Player 1 in G or G ?, there
exists a NA strategy α of Player 1 in Γ, such that for every v ∈ V

∀t ≥ 1 dK (g̃ [α(v), v](t)) ≤ M

t
.

Given y0 ∈ K and x0 /∈ K , let Player 1 use the related preserving
strategy α.

Denote ys = x[y0, α(v), v](s) and xs = x[x0, α(v), v](s).
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Main Theorem

Theorem

A closed set K is ?-approachable for Player 1 if and only if it contains a
B-Set for that player.

Corollary

Approachability and ?-approachable do coincide.



From preserving NA strategies to approachability strategies

Theorem

For any ε > 0 and any non-anticipative strategy α preserving K in the
differential game Γ, there exists an approachability strategy σ for
K + εB(0, 1) in the repeated game G .



Nonanticpative strategies with delay

We say that a map δ : U 7→ V is a nonanticipative strategy with delay
(NAD) if there exits a subdivision of time t1 < t2 < .. < tn < .. for which
we have the following property :

∀ w1,w2 ∈ U s.t w1(s) ≡ w2(s) for a.e s ∈ [0, ti ]

Then, δ(w1)(s) ≡ δ(w2)(s) for a.e s ∈ [0, ti+1].

The idea of the construction is the following:

Given a NA strategy α we will show that it can be approximated in
term of range by a piecewise constant NAD strategy ᾱ.

When applied to α preserving K (hence approaching K ), we will
obtain a NAD strategy approaching K .

Starting from the repeated game G ∗ this procedure will produce an
approachability strategy.
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