Approachability Theory, Discriminating Domain and Differential Games

Sami As Soulaimani¹ joint work with M. Quincampoix¹ and S. Sorin²

¹University of Brest

²University of Paris VI and Ecole polytechnique

Roscoff III

November 2008

- Qualitative Differential Games
- 1 Repeated games with vectorial payoff
- 2 From repeated to differential games
- B-set and Discriminating domain
- Approachability strategies vs preserving strategies
 - 5 Bibliography

• Discriminating Domains

• Consider the two controlled dynamical system

$$\begin{cases} \dot{\mathbf{x}}(t) = f(\mathbf{x}(t), \mathbf{u}(t), \mathbf{v}(t)) & \text{for a.e } t \ge 0\\ \mathbf{x}(0) = x_0 \in \mathbf{R}^d, \end{cases}$$

- Controls of Player 1 : measurable maps $u: [0, +\infty) \mapsto U.$
- Controls of Player 2: measurable maps $v : [0, +\infty) \mapsto V$.
- Let $K \subset \mathbb{R}^d$ be a nonempty closed set.
- The goal of Player 1 is to keep the state of the system in K indefinitely while Player 2 wants to make the state reach K^c.

• Discriminating Domains

Nonanticpative strategies

A map $\alpha : \mathcal{V} \to \mathcal{U}$ is a **nonanticipative strategy (NA)** if $\forall \mathbf{v}_1 \in \mathcal{V}, \ \forall \mathbf{v}_2 \in \mathcal{V}$ we have $\mathbf{v}_1 = \mathbf{v}_2$ on [0, t] Then

 $\alpha(\mathbf{v}_1)(s) \equiv \alpha(\mathbf{v}_2)(s) \quad \forall s \in [0, t].$

Discriminating domain (Aubin '89)

K is a discriminating domain if for every $x_0 \in K$, $\exists \alpha \in NA(\mathcal{V}, \mathcal{U})$, s.t $\forall \mathbf{v} \in \mathcal{V}, \forall t > 0 \mathbf{x}[x_0, \alpha(\mathbf{v}), \mathbf{v}](t) \in K$. The strategy α is then said to preserve *K*.

Proximal normals

 $NP_{\mathcal{K}}(x) = \{p \in \mathbb{R}^d / d_{\mathcal{K}}(x+p) = \|p\|\}$ is the of proximal normal set.

Interpretation Theorem (Cardaliaguet '96

K is a discriminating domain if and only if: $\forall x \in K, \forall p \in NP_{K}(x)$

 $\sup_{v\in V}\inf_{u\in U}\langle f(x,u,v),p\rangle\leq 0.$

Proximal normals

 $NP_{\mathcal{K}}(x) = \{p \in \mathbb{R}^d / d_{\mathcal{K}}(x+p) = \|p\|\}$ is the of proximal normal set.

Interpretation Theorem (Cardaliaguet '96)

K is a discriminating domain if and only if: $\forall x \in K, \forall p \in NP_{K}(x)$

$$\sup_{v\in V}\inf_{u\in U}\langle f(x,u,v),p\rangle\leq 0.$$

• Characterization of Approachability

- Let $A = a_{i,j}$ be an $I \times J$ matrix with coefficients in \mathbb{R}^d
- 2 players matrix game repeated indefinitely.
- At each stage n = 1, 2, ..., each player chooses an element in his set of actions: i_n ∈ I for Player 1 (resp. j_n ∈ J for Player 2), the corresponding outcome is g_n = A_{injn} ∈ ℝ^d and the couple of actions (i_n, j_n) is announced to both players.
- The average payoff $\overline{g}_n = \frac{1}{n} \sum_{m=1}^n g_m$
- The goal of Player 1 is to reach a closed target *K* while the goal of Player 2 is to avoid it.

- $H_n = (I \times J)^n$ is the set of possible histories up to stage n.
- Σ is the set of **strategies** of Player 1 namely mappings:

$$H = \cup_n H_n \mapsto \Delta(I)$$

meaning that: If at stage *n*, the history is $h_{n-1} \in H_{n-1}$, Player 1 chooses an action in *I* according to the probability distribution $\sigma(h_{n-1}) \in \Delta(I)$

• \mathcal{T} is the set of strategies of Player 2 defined similarly.

Approachability (Blackwell '56)

A nonempty closed set K in \mathbb{R}^d is **approachable** for Player 1 if, for every $\varepsilon > 0$, there exists a strategy σ of Player 1 and $N \in \mathbb{N}$ such that, for any strategy τ of Player 2 and any $n \ge N$

$$\mathbb{E}_{\sigma,\tau}(d_{\mathcal{K}}(\overline{g}_n)) \leq \varepsilon.$$

• Characterization of Approachability

B-set (Blackwell '56)

A closed set K in \mathbb{R}^d is a **B**-set for Player 1 if for any $z \notin K$, there exists a closest point x to K and a mixed action u = u(z) in $U = \Delta(I)$ such that the hyperplane through x orthogonal to the segment [xz] separates z from $P(u) = \{uAv | v \in V = \Delta(J)\}$. Namely:

$$\exists u \in U \ \forall v \in V \qquad \langle z - x, uAv - x \rangle \leq 0.$$

Theorem (Blackwell '56)

Every **B**-Set for Player 1 is approachable by that player.

Theorem (Hou '71, Spinat '00)

If a nonempty closed set is approachable then it contains a **B**-set.

B-set (Blackwell '56)

A closed set K in \mathbb{R}^d is a **B**-set for Player 1 if for any $z \notin K$, there exists a closest point x to K and a mixed action u = u(z) in $U = \Delta(I)$ such that the hyperplane through x orthogonal to the segment [xz] separates z from $P(u) = \{uAv | v \in V = \Delta(J)\}$. Namely:

$$\exists u \in U \,\forall v \in V \qquad \langle z - x, uAv - x \rangle \leq 0.$$

Theorem (Blackwell '56)

Every **B**-Set for Player 1 is approachable by that player.

Theorem (Hou '71, Spinat '00)

If a nonempty closed set is approachable then it contains a **B**-set.

B-set (Blackwell '56)

A closed set K in \mathbb{R}^d is a **B**-set for Player 1 if for any $z \notin K$, there exists a closest point x to K and a mixed action u = u(z) in $U = \Delta(I)$ such that the hyperplane through x orthogonal to the segment [xz] separates z from $P(u) = \{uAv | v \in V = \Delta(J)\}$. Namely:

$$\exists u \in U \,\forall v \in V \qquad \langle z - x, uAv - x \rangle \leq 0.$$

Theorem (Blackwell '56)

Every **B**-Set for Player 1 is approachable by that player.

Theorem (Hou '71, Spinat '00)

If a nonempty closed set is approachable then it contains a \mathbf{B} -set.

2 From repeated to differential games

• The "expected" repeated game G^{\star}

• Consider A the same matrix as defined before.

• 2 players.

- At each stage n, each player chooses an element u_n in his set of actions: u_n ∈ U for Player 1 (resp. v_n ∈ V for Player 2), the corresponding outcome is g^{*}_n = u_nAv_n ∈ ℝ^d
- The couple of actions (u_n, v_n) is announced.
- The payoff up to stage *n* is the average payoff over the last stages $\overline{g}_n^* = \frac{1}{n} \sum_{m=1}^n g_m^*$.

- Consider A the same matrix as defined before.
- 2 players.
- At each stage n, each player chooses an element u_n in his set of actions: u_n ∈ U for Player 1 (resp. v_n ∈ V for Player 2), the corresponding outcome is g^{*}_n = u_nAv_n ∈ ℝ^d
- The couple of actions (u_n, v_n) is announced.
- The payoff up to stage *n* is the average payoff over the last stages $\overline{g}_n^* = \frac{1}{n} \sum_{m=1}^n g_m^*$.

- Consider A the same matrix as defined before.
- 2 players.
- At each stage n, each player chooses an element u_n in his set of actions: u_n ∈ U for Player 1 (resp. v_n ∈ V for Player 2), the corresponding outcome is g^{*}_n = u_nAv_n ∈ ℝ^d
- The couple of actions (u_n, v_n) is announced.
- The payoff up to stage *n* is the average payoff over the last stages $\overline{g}_n^{\star} = \frac{1}{n} \sum_{m=1}^n g_m^{\star}$.

- $H_n^{\star} = (U \times V)^n$ is the set of possible histories up to stage *n*.
- Σ (resp T) is the set of strategies of Player 1 namely mappings :

$$H^{\star} = \cup_n H_n^{\star} \mapsto U$$

(resp. Player 2 $H^* \mapsto V$).

*-Approachability

A nonempty closed set K in \mathbb{R}^d is *approachable for Player 1 if, for every $\varepsilon > 0$, there exists a strategy σ^* of Player 1 and $N \in \mathbb{N}$ such that, for any strategy τ^* of Player 2 and any $n \ge N$

$$d_{\mathcal{K}}(\overline{g}_{n}^{\star}) \leq \varepsilon.$$

• Notice that if K is a **B**-set then it is \star approachable.

We mimic the average payoff g^{*}_n by a continuous time average payoff, denoted by g̃, with g̃(0) = 0 and for t > 0 g̃[u, v](t) = 1/t ∫₀^t u(s)Av(s)ds.

• $\frac{\partial \widetilde{g}[\mathbf{u}, \mathbf{v}](t)}{\partial t} = \frac{-\widetilde{g}(t) + \mathbf{u}(t)A\mathbf{v}(t)}{t}.$ • Set $t = e^s$, and denote $\mathbf{x}(s) = \widetilde{g}(e^s)$ $\dot{\mathbf{x}}(s) = -\mathbf{x}(s) + \mathbf{u}(s)A\mathbf{v}(s).$

• which is the dynamics of a qualitative differential with f(x, u, v) = -x + uAv.

Theorem

A nonempty closed set $K \subset \mathbb{R}^d$ is a discriminating domain in the differential game Γ for Player 1 if and only if K is a **B**-set for Player 1 in G (or G^*).

- Suppose that K is a B-Set for Player 1. Let x ∈ K and p ∈ NP_K(x) s.t p ≠ 0.
- let z = x + p/2 and observe that $\pi_{\mathcal{K}}(z)$ is reduced to the singleton $\{x\}$.
- Hence Since K is B-set there exists a mixed move u ∈ U such that, for every v ∈ V,

$$\langle uAv - x, z - x \rangle \leq 0.$$

$$\sup_{v \in V} \inf_{u \in U} \langle f(x, u, v), p \rangle \leq \inf_{u \in U} \sup_{v \in V} \langle f(x, u, v), p \rangle \leq 0.$$

Theorem

A nonempty closed set $K \subset \mathbb{R}^d$ is a discriminating domain in the differential game Γ for Player 1 if and only if K is a **B**-set for Player 1 in G (or G^*).

- Suppose that K is a **B**-Set for Player 1. Let $x \in K$ and $p \in NP_K(x)$ s.t $p \neq 0$.
- let z = x + p/2 and observe that $\pi_{\mathcal{K}}(z)$ is reduced to the singleton $\{x\}$.
- Hence Since K is B-set there exists a mixed move u ∈ U such that, for every v ∈ V,

$$\langle uAv - x, z - x \rangle \leq 0.$$

$$\sup_{v \in V} \inf_{u \in U} \langle f(x, u, v), p \rangle \leq \inf_{u \in U} \sup_{v \in V} \langle f(x, u, v), p \rangle \leq 0.$$

Theorem

A nonempty closed set $K \subset \mathbb{R}^d$ is a discriminating domain in the differential game Γ for Player 1 if and only if K is a **B**-set for Player 1 in G (or G^*).

- Suppose that K is a **B**-Set for Player 1. Let $x \in K$ and $p \in NP_K(x)$ s.t $p \neq 0$.
- let z = x + p/2 and observe that $\pi_{\mathcal{K}}(z)$ is reduced to the singleton $\{x\}$.
- Hence Since K is **B**-set there exists a mixed move $u \in U$ such that, for every $v \in V$,

$$\langle uAv - x, z - x \rangle \leq 0.$$

 $\sup_{v \in V} \inf_{u \in U} \langle f(x, u, v), p \rangle \leq \inf_{u \in U} \sup_{v \in V} \langle f(x, u, v), p \rangle \leq 0.$

Theorem

A nonempty closed set $K \subset \mathbb{R}^d$ is a discriminating domain in the differential game Γ for Player 1 if and only if K is a **B**-set for Player 1 in G (or G^*).

- Suppose that K is a **B**-Set for Player 1. Let $x \in K$ and $p \in NP_K(x)$ s.t $p \neq 0$.
- let z = x + p/2 and observe that $\pi_{\mathcal{K}}(z)$ is reduced to the singleton $\{x\}$.
- Hence Since K is **B**-set there exists a mixed move $u \in U$ such that, for every $v \in V$,

$$\langle uAv - x, z - x \rangle \leq 0.$$

 $\sup_{v \in V} \inf_{u \in U} \langle f(x, u, v), p \rangle \leq \inf_{u \in U} \sup_{v \in V} \langle f(x, u, v), p \rangle \leq 0.$

Theorem

A nonempty closed set $K \subset \mathbb{R}^d$ is a discriminating domain in the differential game Γ for Player 1 if and only if K is a **B**-set for Player 1 in G (or G^*).

- Suppose that K is a **B**-Set for Player 1. Let $x \in K$ and $p \in NP_K(x)$ s.t $p \neq 0$.
- let z = x + p/2 and observe that $\pi_{\mathcal{K}}(z)$ is reduced to the singleton $\{x\}$.
- Hence Since K is **B**-set there exists a mixed move $u \in U$ such that, for every $v \in V$,

$$\langle uAv - x, z - x \rangle \leq 0.$$

۲

$$\sup_{v\in V} \inf_{u\in U} \langle f(x, u, v), p \rangle \leq \inf_{u\in U} \sup_{v\in V} \langle f(x, u, v), p \rangle \leq 0.$$

If a nonempty closed set $K \subset \mathbb{R}^d$ is a **B**-set for Player 1 in G or G^* , there exists a NA strategy α of Player 1 in Γ , such that for every $\mathbf{v} \in \mathcal{V}$

$$orall t \geq 1 \quad d_{\mathcal{K}}(\widetilde{g}[lpha(\mathbf{v}),\mathbf{v}](t)) \leq rac{M}{t},$$

- Given y₀ ∈ K and x₀ ∉ K, let Player 1 use the related preserving strategy α.
- Denote $y_s = \mathbf{x}[y_0, \alpha(\mathbf{v}), \mathbf{v}](s)$ and $x_s = \mathbf{x}[x_0, \alpha(\mathbf{v}), \mathbf{v}](s)$. Since $\dot{x}_t = \alpha(\mathbf{v})(t)Av(t) - x_t$, $\dot{y}_t = \alpha(\mathbf{v})(t)Av(t) - y_t$, one has

$$\frac{d}{dt}(x_t - y_t) = \dot{x}_t - \dot{y}_t = -(x_t - y_t)$$

• Hence $||x_t - y_t|| = ||x_0 - y_0||e^{-t}$

• Since $y_t \in K$

 $d_K(x_t) \leq \|x_0 - y_0\|e^{-t}.$

If a nonempty closed set $K \subset \mathbb{R}^d$ is a **B**-set for Player 1 in G or G^* , there exists a NA strategy α of Player 1 in Γ , such that for every $\mathbf{v} \in \mathcal{V}$

$$orall t \geq 1 \quad d_{\mathcal{K}}(\widetilde{g}[lpha(\mathbf{v}),\mathbf{v}](t)) \leq rac{M}{t},$$

- Given y₀ ∈ K and x₀ ∉ K, let Player 1 use the related preserving strategy α.
- Denote $y_s = \mathbf{x}[y_0, \alpha(\mathbf{v}), \mathbf{v}](s)$ and $x_s = \mathbf{x}[x_0, \alpha(\mathbf{v}), \mathbf{v}](s)$. Since $\dot{x}_t = \alpha(\mathbf{v})(t)Av(t) - x_t$, $\dot{y}_t = \alpha(\mathbf{v})(t)Av(t) - y_t$, one has

$$\frac{d}{dt}(x_t - y_t) = \dot{x}_t - \dot{y}_t = -(x_t - y_t)$$

• Hence $||x_t - y_t|| = ||x_0 - y_0||e^{-t}$

• Since $y_t \in K$

 $d_K(x_t) \leq ||x_0 - y_0||e^{-t}.$

If a nonempty closed set $K \subset \mathbb{R}^d$ is a **B**-set for Player 1 in G or G^* , there exists a NA strategy α of Player 1 in Γ , such that for every $\mathbf{v} \in \mathcal{V}$

$$orall t \geq 1 \quad d_{\mathcal{K}}(\widetilde{g}[lpha(\mathbf{v}),\mathbf{v}](t)) \leq rac{M}{t},$$

- Given y₀ ∈ K and x₀ ∉ K, let Player 1 use the related preserving strategy α.
- Denote $y_s = \mathbf{x}[y_0, \alpha(\mathbf{v}), \mathbf{v}](s)$ and $x_s = \mathbf{x}[x_0, \alpha(\mathbf{v}), \mathbf{v}](s)$. Since $\dot{x}_t = \alpha(\mathbf{v})(t)Av(t) - x_t$, $\dot{y}_t = \alpha(\mathbf{v})(t)Av(t) - y_t$, one has

$$\frac{d}{dt}(x_t - y_t) = \dot{x}_t - \dot{y}_t = -(x_t - y_t)$$

• Hence $||x_t - y_t|| = ||x_0 - y_0||e^{-t}$

• Since $y_t \in K$

 $d_K(x_t) \leq ||x_0 - y_0||e^{-t}.$

If a nonempty closed set $K \subset \mathbb{R}^d$ is a **B**-set for Player 1 in G or G^* , there exists a NA strategy α of Player 1 in Γ , such that for every $\mathbf{v} \in \mathcal{V}$

$$orall t \geq 1 \quad d_{\mathcal{K}}(\widetilde{g}[lpha(\mathbf{v}),\mathbf{v}](t)) \leq rac{M}{t},$$

- Given y₀ ∈ K and x₀ ∉ K, let Player 1 use the related preserving strategy α.
- Denote $y_s = \mathbf{x}[y_0, \alpha(\mathbf{v}), \mathbf{v}](s)$ and $x_s = \mathbf{x}[x_0, \alpha(\mathbf{v}), \mathbf{v}](s)$. Since $\dot{x}_t = \alpha(\mathbf{v})(t)Av(t) - x_t$, $\dot{y}_t = \alpha(\mathbf{v})(t)Av(t) - y_t$, one has

$$\frac{d}{dt}(x_t - y_t) = \dot{x}_t - \dot{y}_t = -(x_t - y_t)$$

• Hence $||x_t - y_t|| = ||x_0 - y_0||e^{-t}$

• Since $y_t \in K$

 $d_K(x_t) \leq ||x_0 - y_0||e^{-t}.$

If a nonempty closed set $K \subset \mathbb{R}^d$ is a **B**-set for Player 1 in G or G^* , there exists a NA strategy α of Player 1 in Γ , such that for every $\mathbf{v} \in \mathcal{V}$

$$orall t \geq 1 \quad d_{\mathcal{K}}(\widetilde{g}[lpha(\mathbf{v}),\mathbf{v}](t)) \leq rac{M}{t},$$

- Given y₀ ∈ K and x₀ ∉ K, let Player 1 use the related preserving strategy α.
- Denote $y_s = \mathbf{x}[y_0, \alpha(\mathbf{v}), \mathbf{v}](s)$ and $x_s = \mathbf{x}[x_0, \alpha(\mathbf{v}), \mathbf{v}](s)$. Since $\dot{x}_t = \alpha(\mathbf{v})(t)Av(t) - x_t$, $\dot{y}_t = \alpha(\mathbf{v})(t)Av(t) - y_t$, one has

$$\frac{d}{dt}(x_t - y_t) = \dot{x}_t - \dot{y}_t = -(x_t - y_t)$$

• Hence $||x_t - y_t|| = ||x_0 - y_0||e^{-t}$

• Since $y_t \in K$

 $d_{\mathcal{K}}(x_t) \leq \|x_0 - y_0\|e^{-t}.$

Theorem

A closed set K is *-approachable for Player 1 if and only if it contains a **B**-Set for that player.

Corollary

Approachability and *-approachable do coincide.

Theorem

For any $\varepsilon > 0$ and any non-anticipative strategy α preserving K in the differential game Γ , there exists an approachability strategy σ for $K + \varepsilon B(0, 1)$ in the repeated game G.

Nonanticpative strategies with delay

We say that a map $\delta : \mathcal{U} \mapsto \mathcal{V}$ is a **nonanticipative strategy with delay (NAD)** if there exits a subdivision of time $t_1 < t_2 < ... < t_n < ...$ for which we have the following property :

 $\forall w_1, w_2 \in \mathcal{U} \text{ s.t } w_1(s) \equiv w_2(s) \text{ for a.e } s \in [0, t_i]$

Then, $\delta(w_1)(s) \equiv \delta(w_2)(s)$ for a.e $s \in [0, t_{i+1}]$.

The idea of the construction is the following:

- Given a NA strategy α we will show that it can be approximated in term of range by a piecewise constant NAD strategy α
 .
- When applied to α preserving K (hence approaching K), we will obtain a NAD strategy approaching K.
- Starting from the repeated game G^* this procedure will produce an approachability strategy.

Nonanticpative strategies with delay

We say that a map $\delta : \mathcal{U} \mapsto \mathcal{V}$ is a **nonanticipative strategy with delay (NAD)** if there exits a subdivision of time $t_1 < t_2 < ... < t_n < ...$ for which we have the following property :

$$\forall w_1, w_2 \in \mathcal{U} \text{ s.t } w_1(s) \equiv w_2(s) \text{ for a.e } s \in [0, t_i]$$

Then, $\delta(w_1)(s) \equiv \delta(w_2)(s)$ for a.e $s \in [0, t_{i+1}]$.

The idea of the construction is the following:

- Given a NA strategy α we will show that it can be approximated in term of range by a piecewise constant NAD strategy $\bar{\alpha}$.
- When applied to α preserving K (hence approaching K), we will obtain a NAD strategy approaching K.
- Starting from the repeated game *G*^{*} this procedure will produce an approachability strategy.

- Blackwell D. (1956) An analog of the minmax theorem for vector payoffs, Pacific Journal of Mathematics, **6**, 1-8.
- Cardaliaguet P. (1996) A differential game with two players and one target, SIAM J. Control and Optimization, **34**, 1441-1460.
- Sorin S. (2002) A First Course on Zero-Sum Repeated Games, Mathématiques et Applications, **37**, Springer.
- Spinat X. (2002) A necessary and sufficient condition for approachability, Mathematics of Operations Research, 27, 31-44.
- Vieille N. (1992) *Weak approachability*, Mathematics of Operations Research, **17**, 781-791.